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1. Introduction 
 

The pre-twisted beam, also known as a naturally twisted 

beam, presents an initially twisted shape in the natural state. 

Some researchers have called it naturally Twisted Beam 

(Berdichevskii and Starosel’skii 1985, Polyakov and Yu 

1996, Zubov 2006). Static and dynamic analysis of 

naturally twisted beams have many important applications 

in mechanical and civil engineering, such as turbine blades, 

helicopter rotor blades, aircraft propeller blades, wind 

turbine blades, and others (Subrahmanyam et al. 1981, Nabi 

and Ganesan 1996, Yoo et al. 2001, Sinha et al. 2011). 

Berdichevskii and Starosel’skii (1985) investigated the 

stress state of pre-twisted rod and showed that the spatial 

problem can be successfully reduced to a Neumann-type 

problem for a certain system of second-order elliptic 

equations in the cross-section, and the pre-twisted rod is 

decomposed into two independent problems, one bending 

and one extension-torsion. Polyakov et al. (1996) developed 

an applied theory of naturally twisted rods without 

involving any hypotheses, using rigorous mathematical 

methods. Problems on large stretching, torsional and 

bending deformations of a naturally twisted rod, loaded 

with end forces and moments, are considered from the point 
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of view of the non-linear three-dimensional theory of 

elasticity, and particular solutions of the equations of 

elastostatics are found (Zubov 2006). Many research studies 

are focused on the vibration performance of pre-twisted 

blades (Subrahmanyam et al. 1981, Nabi and Ganesan 

1996, Yoo et al. 2001, Sinha et al. 2011) and beams (Chen 

and Keer 1993, Banerjee 2001, 2004, Choi et al. 2007). 

Subrahmanyam et al. (1981) applied the Reissner method 

and the total potential energy approach to calculate the 

natural frequencies and mode shapes of pre-twisted 

cantilever blades including shear deformation and rotary 

inertia. Nabi and Ganesan (1996) analyzed the vibration 

characteristics of pre-twisted metal matrix composite blades 

by using beam and plate theories. A beam element with 

eight degrees of freedom per node has been developed with 

torsion-flexure, flexure-flexure and shear-flexure couplings, 

which are encountered in twisted composite beams. A 

triangular plate element was used for the composite material 

to model the beam as a plate structure. Yoo et al. (2001) 

used a modeling method for the vibration analysis of 

rotating pre-twisted blades with a concentrated mass. Sinha 

et al. (2011) derived the governing partial differential 

equation of motion for the transverse deflection of a 

rotating pre-twisted plate by using the thin shell theory. 

Chen and Keer (1993) studied the transverse vibration 

problems of a rotating twisted Timoshenko beam under 

axial loading, and investigated the effects of the twist angle, 

rotational speed, and axial force on natural frequencies by 

the finite element method. Banerjee (2010, 2004) developed 

an exact dynamic stiffness method to predict the natural 

frequencies of a pre-twisted beam. Choi et al. (2007) 

studied bending vibration control of the pre-twisted rotating 

composite thin-walled beam based on a single cell 

composite beam, including a warping function, centrifugal 

force, Coriolis acceleration, pre -twist angle and  
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Fig. 1 Global and local coordinate of pre-twisted Euler 

beam 

 

 

piezoelectric effect.  

Dynamic stability of a pre-twisted beam is a very 

important research direction in many fields of aerospace 

and mechanical engineering. Kar and Ray (1995) dealt with 

the parametric instability of a pre-twisted, cantilevered, 

three-layered symmetric sandwich beam subjected to a 

periodic axial load at the free end by Hamilton’s principle 

and the generalized Galerkin method. Lee (1995) studied 

the equations of motion of a spinning pre-twisted beam 

subject to axial loads, by using Euler beam theory. The 

equations of motion are transformed to the standard form of 

an eigenvalue problem for determining the perturbation 

frequencies defining the boundaries of the regions of 

instability of the spinning beam. Young and Gau (2003), 

Sabuncu et al. (2006), Chen (2010) discussed the influence 

of thickness-to-width ratio, twist angle, spinning speed and 

axial load on the natural frequency and buckling load of 

Timoshenko beams. 

Currently, only a few reports have been reported in the 

existing literature on the general solution of pre-twisted 

beam (Yu et al. 2011). The finite element method provides 

an effective method and has a wide application (Zupan 

2004, Yardimoglu and Yildirim 2004, Petrov and Géradin 

1998, Long et al. 2013, Chen 2016). The common finite 

element method to handle static and dynamic problem about 

pre-twisted beam is based on infinite approach strategy. 

However, the polynomial displacement functions based on 

traditional straight beam do not correctly reflect the fact that 

the strain is zero when rigid motion occurs. Meanwhile, the 

fact that bending displacements are coupled with each other 

due to the naturally twisted angle ω will further cause a new 

error (Zupan 2004, Chen 2014, 2016). As a result, research 

on the general solution and mechanics performance of pre-

twisted beam will have important theoretical and practical 

meaning. 

 

 
Fig. 2 Infinitesimal element shear strains of pre-twisted 

Euler beam 

 

 

2. The generalized strain of pre-twisted Euler beam 
 
2.1 The coupled elastic bending displacement 
 
In the global coordinate system O_XYZ, the coupled 

elastic bending displacement behaviour of the pre-twisted 

thin-walled beam is studied. At any position Z=z, we 

introduce the local coordinate system G_ξηz, where the Gz 

axis and OZ axis are coincident, Gξ and Gη are the main 

bending axis of the section, and the twisted angle of G_ξηz 

relative to the O_XYZ is ω=kz. The linear displacements are 

u and v along the axes Gξ and Gη, the rotational 

displacements are φξ 
and φη. At position Z=z+dz, the linear 

displacements are u+u′dz and v+v′dz along the axis G  

and G , as shown in Fig. 1. 

The incremental displacements of adjacent section in the 

local coordinate system are given by 

' '( d )cosd ( d )sindu u u z v v z u        (1) 

' '( d )cosd ( d )sindv v v z u u z v        
 

(2) 

To the first order, cosdω=1, sindω=dω and dω=kdz; 

these are 

( ' )du u kv z    (3) 

( ' )dv v ku z    (4) 

From the definition of shear strain (Fig. 2), the following 

equations can be obtained 

' ,  'z zu kv v ku              (5) 

Without considering shear deformation of the Euler 

beam 

' ku    , 'u kv    (6) 

Due to the bending effect, the axial displacement W of 
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any point in G_ξη plane along the GZ axis is given by 

W      (7) 

By introducing the global and local coordinate system 

conversion relation 

cos sin ,  sin cosX Y X Y           (8) 

substituting Eq. (6) and (8) into (7), we can get 

( sin cos )( ' )

        ( cos sin )( ' )

W X Y ku

X Y u kv

  

 

    

  
 (9) 

The normal strain is 

( sin cos )( '' ')

                  ( cos sin )( '' ')

                 ( cos sin ) ( ' )

               ( sin cos ) ( ' )

z

W
X Y ku

z

X Y u kv

X Y k ku

X Y k u kv

   

 

  

 


     



  

   

   

 (10) 

Substituting Eqs. (8) into (10) gives 

2 2
( '' 2 ' ) ( '' 2 ' )

z
u kv k u ku k v           (11) 

 

2.2 Generalized strain of pre-twisted Euler beam 
 

According to the relation of bending moment and section 

stress, we can get the bending moment at the location Z=z of 

pre-twisted beam, as following 

d d ,  d dz z

A A

M E M E             (12) 

Substituting Eqs. (6) and (11) into (12), and considering 

the biaxial symmetry section, namely product of inertia 

d d 0
A

I     , we can get 

'( )M EI k       (13) 

'( )M EI k       (14) 

where 2d d
A

I     , 2d d
A

I     .Considering two-way 

bending deformation coupling effects on axial deformation, 

we can get the normal strain 

' '' ( ) ( )z w k k               (15) 

where
d

'
d

w
w

z
 . To solve subsequent equivalent Eqution, we 

introduce the following generalized strains: 

'

'

'

'

'

'

z z

w

u kv

v ku

k k

k k

k

 

 

  

  



 

 

 

 






   

   



 
  

 

 (16) 

Introducing the assumption of ignoring shear strain, we 

can get the generalized strain of pre-twisted Euler beam 

 

Fig. 3 the internal force relation of pre-twisted Euler beam 

 

 

2

2

'

'

( " 2 ' )

" 2 '

z z

w

k v ku k v

k u kv k u

k












   


  




 (17) 

 

 

3. The equivalent equilibrium equation 
 

3.1 The internal force equilibrium equation 
 

In the local coordinate system G_ξηz, the section 

internal forces are as follows 

d d

z

z

A

z

N

Q

Q

 

 



  



   
   

   
   
   

 , d d

z z z

z

A

z

M

M

M

 





 

  



   
   

   
     

  (18) 

where, N, Qξ, Qη represent the axial force, shear force in the 

ξ and η direction, respectively. Mz, Mξ, Mη 
represent torque, 

bending moment in the ξ and η direction, respectively. A is 

the section area. 

The equilibrium relations of internal force between z 

and z+dz sections are as shown in Fig. 3. According to the 

force and moment equilibrium conditions, we can get 

'

' '

' '

d d 0

( d )cos(d ) ( d )sin(d ) d 0

( d )cos(d ) ( d )sin(d ) d 0

zN N z N p z

Q Q z Q Q Q z p z

Q Q z Q Q Q z p z

     

     

 

 

    


     


     

 (19) 

'

' '

' '

d d 0

( d )cos(d ) ( d )sin(d )

d d 0

( d )cos(d ) ( d )sin(d )

d d 0

z z z zM M z M m z

M M z M M z

M Q z m z

M M z M M z

M Q z m z

   

  

   

  

 

 

    


  

   


  
   

 (20) 

where, the load vectors are p=[pz,pξ,pη]′ m=[mz,mξ,mη]′. 

Only considering the first order, the Eqs. (19) and (20) will 

be simplified, as following 

'

'

' 0

0

0

zN p

Q kQ p

Q kQ p

  

  

  


  


  

 (21) 
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'

'

'

0

0

0

z zM m

M kM Q m

M kM Q m

   

   

  


   


   

 (22) 

According to the Eq. (22), we can get the relation of 

bending moment and shear force, as following 

'

'

Q M kM m

Q M kM m

   

   

    


  

 (23) 

Substituting the Eqs. (23) into (21) gives 

"

" 2 ' '

" 2 ' '

' 0

0

2 0

2 0

z

z z

N p

M m

M k M kM m km p

M k M kM m km p





    

    

 


 
      

      


 (24) 

 

3.2 The equivalent equilibrium equation 
 

According to the Eq. (18), we can get the equivalent 

constitutive equation, as following 

,  ,  

,  ,  z z

N EA Q GA Q GA

M GJk M EI k M EI k

   

     

    

  
 (25) 

According to the Eqs. (17), (24) and (25), we can get the 

equilibrium equation using the parameter of the linear 

displacement (u, v, w) and rotation displacement (φξ, φη, φz), 

as following 

' 2

' 2

"

" ' 2

" ' 2

" 0

( " 2 ' ) 0

( " 2 ' ) 0

0

( ) ( )

' 0

( ) ( )

' 0

z

z z

EAw p

GA u kv k k u p

GA v ku k k v p

GJ m

EI k EI EI k EI GA

GAv GAku m

EI k EI EI k EI GA

GAu GAkv m

  

  

      



      



 

 



  

  

 


     


     
  


   
   

    

   

 (26) 

Ignoring the effect on shear deformation, the 

equilibrium equation is simplified, as following 

"

" ' 2

" ' 2

" 0

0

( ) 0

( ) 0

z

z z

EAw p

GJ m

EI k EI EI k EI m

EI k EI EI k EI m

       

       



  

  

 


 


    
     

 (27) 

To solve the above equilibrium equations, we change the 

above Eqs. (16), (25) and (26) to the following matrixes 

         

      

'

'

U U H

K

  

  

   


 

 (28) 

    

    

N B

M D K

 




 (29) 

      

         

' 0

' 0

N N p

M M H N m





   


   

 (30) 

where:  

 

N

N Q

Q





 
 

  
 
 

，  
zM

M M

M





 
 

  
 
 

，  
zp

p p

p





 
 

  
 
 

，  
zm

m m

m





 
 

  
 
 

, 

 

w

U u

v

 
 


 
  

,  
z







 



 
 

  
 
 

 

  





 



 
 

  
 
 

,  
zk

K k

k





 
 

  
 
 

,    

0 0 0 0 0 0

0 0 ,  0 0 1

0 0 0 1 0

k H

k



   
   

 
   
       

 

   

0 0 0 0

0 0 ,  D 0 0

0 0 0 0

EA GJ

B GA EI

GA EI





  
  

    
     

 

 

 

4. The general solution of pre-twist Euler beam 
 

Introducing the coordinate transformation matrix [A] 

between the local coordinate system G_ξηz and the global 

coordinate system O_XYZ, as following 

 

1 0 0

0 cos sin

0 sin cos

A kz kz

kz kz

 
 


 
  

 (31) 

By using the solve method of constant variation of 

differential equations, we can get the general solution of the 

equilibrium Eq. (30), as following 

          

    

           

          

0
0

0

0
0 0

0 0

d

       d d

       ( d )d

z T

z zT T

z zT T

N A N A A p z

M A M

A A H A N z A m z

A A H A A p z z

  

 



 

 




 

 

 (32) 

where [N0] and [M0] are
 
the integral constant .  

Similarly, the general solution of the Eq. (28) can be 

obtained, as following 

    

            
          

          

0

0
0 0

0 0

0
0

      d d

      ( d )d

d

z zT T

z zT T

z T

U A U

A A H A z A z

A A H A A K z z

A A A K z

 

 

 

  





  


 

 



 (33) 

where,
 
[U0] and [φ0] are

 
the integral constant vectors. 

Introducing a position vector of pre-twisted Euler beam 

along the axial direction, as following 

[ ] [ ( ), ( ), ( )]TZ Z z X z Y z  (34) 

According to the properties of the dual-antisymmetric  
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3P KN

G





X

Y

O

 

Fig. 4 the geometric parameter with rectangular cross 

section 

 

 

matrix 
0

  
 

of any vector    0 10 20 30,  ,  
T

    , there is 

the following conversion formula (Yu 2002) 

          
00 0 '

T
A H A Z Z       (35) 

So the general solution of the differential Eq. (33) can 

be further expressed as followings 

          
          

          

0 0
0

0 0

0
0

[ ][ ] d

     [ ]  d [ ] d

d

z T

R

z zT T

R R

z T

U A U A z

A A K z A K z

A A A K z

 

 

    




   

  




 



 (36) 

where [ΩR] is a dual-antisymmetric matrix generated by the 

vector R=[Z]−[Z0]. 

 

 

5. The mechanical performance analysis 
 

5.1 The analysis example  
 

The analysis model in our example is a cantilever beam, 

whose length l is 6000 mm; the cross-section is a rectangular 

cross section (Fig. 4): the height h is 600 mm, the width is 

200 mm. The pre-twisted angle ω

 

is 0.5 π. The steel material 

modulus E is 2.1×10
5
 Mpa. The concentrated force P is 3 

kN.  

The load vectors in this example are [p]=[m]=[0]; the 

coordinate transformation matrix is as follows 

1 0 0

[ ] 0 cos sin

0 sin cos

z lA kL kL

kL kL



 
 


 
    

(37) 

The position vector is    0[ ] [ ] [ ] ,0,0
T

R Z Z z   , whose 

the dual-antisymmetric matrix is

0 0 0

[ ] 0 0

0 0

R z

z

 
 

  
 
  

. 

The boundary conditions are as follows 

0 0[ ] [ ] (0,0,0)

[ ] (0,0, ) (0,0,3000)

[ ] (0,0,0)

T

z z

T T

z L

T

z L

U

N p

M

 





  


 


  

(38) 

 

 

Fig. 5 (a) the bending moment Mξ 

 

 

Fig. 5 (b) the bending moment Mη 

 

 

Fig. 5 (c) the shear force Qξ 

 

 

Fig. 5 (d) the shear force Qξ 

 
 

5.2 The comparison results 
 

According to the comparisons between the general 

solution and ANSYS by using the straight Beam-188 

element based on infinite approach method (the numbers of  
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Fig. 6 (a) the deformation UX 

 

 

Fig. 6 (b) the deformation UY 

 

 

beam elements are 100), we can get the following results 

(Figs. 5-6): 

 (1) The change trends of internal force and 

displacement are almost same; the maximal difference 

values of bending moment and shear force are less than 1%.  

(2) The linear displacements using the general solution 

are smaller than the ANSYS results, the UX is -0.9372 mm 

at the end of the cantilever beam, the ANSYS result is -

1.0053 mm, and the difference value is 6.77%. The UY is 

0.5267 mm, the ANSYS result is 0.6805 mm, and the 

difference value is 22.6%.  

(3) The possible reason of the linear smaller 

displacement by using the general solution could be not to 

consider the influences of shear deformation and discrete 

error by using infinite approach method in the ANSYS 

program. 

 

 

6. Parametric analysis 
 

6.1 The effect of pre-twisted angle on deflection 
 

The effect of pre-twisted angle ω on the deflections has 

been investigated (Fig. 7). 

(1) When ω=kz[0, π/2], the displacement Ux 

corresponding to the main axis Gη increased gradually with 

increasing of the pre-twisted angle, and the displacement 

Uy corresponding to the secondary axis Gξ is also 

increased. The equivalent stiffness is also shown to be 

decreased along main axis direction as the increment of pre-

twisted angle, and then the displacement is increased when 

the pre-twisted angle changes in the range of [0,0.5π]. The  

 

Fig. 7 (a) the deformation UX 

 

 

Fig. 7 (b) the deformation UY 

 

 

Fig. 8 (a) the deformation UX 

 

 

Fig. 8 (b) the deformation UY 

 

 

displacements along main axis and secondary axis direction 

are coupled to each other as the existence of pre-twisted 

angle. The coupling effect will become stronger, and the 

lateral displacement Uy will also be increased with the 

increasing of pre-twisted angle. 
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(2) When ω=kz[π/2,π], the displacement UX 

corresponding to the flexural main axis Gη  increased 

gradually with the increasing of pre-twisted angle, while the 

displacement UY corresponding to the flexural secondary 

axis Gξ decreased. It is indicated that the coupling effect 

became smaller, and lateral displacement decreased with the 

increment of pre-twisted angle when the pre-twisted angle 

changes in the range of [π/2,π]. 

 

6.2 The effect of flexural stiffness ratio on deflection 
 

Introducing the flexural stiffness ratio of pre-twisted 

beam 

1
I

I





    (39) 

According to the above example, and assuming the 

flexural stiffness EIξ along secondary axis Gξ direction 

remain the same, the effect of parameter μ on the 

deflections of pre-twisted rectangular beam has been 

investigated by using section flexural stiffness ratio μ from 

1 to 6. 

From the figure 10, it is indicated that the displacement 

UX decreased corresponding to the flexural main axis Gη, 

while the displacement UY increased corresponding to 

flexural secondary axis Gξ
 
with the increasing of flexural 

stiffness ratio μ. The coupled effect of pre-twisted beam 

became stronger between the flexural main axis and 

secondary axis with the increasing of flexural stiffness ratio 

μ. 

 

 

7. Conclusions 
 

• Based on the coupled elastic bending deformation 

features and relationship between the internal force and 

deformation of pre-twisted Euler beam, the generalized 

strain, the equivalent constitutive equation and the 

internal force equilibrium equation of pre-twisted Euler 

beam are developed.  

• Based on the properties of the dual-antisymmetric 

matrix, the general solution of pre-twisted Euler beam is 

obtained. By comparison with ANSYS solution by using 

straight Beam-188 element based on infinite approach 

method, the results show that the developed method is 

available for pre-twisted Euler beam and provides an 

accuracy displacement interpolation function for the 

subsequent finite element analysis. 

• The effect of pre-twisted angle on the deflections has 

been investigated. The displacements along section 

flexural main axis and secondary axis direction are 

coupled to each other because of the existence of pre-

twisted angle.  

• The equivalent stiffness decreased along section 

flexural main axis direction as the increment of pre-

twisted angle when the pre-twisted angle changes in the 

range of [0,π/2]. While the coupling effect became 

smaller, and lateral displacement decreased with the 

increment of pre-twisted angle when the pre-twisted 

angle changes in the range of [π/2,π]. 
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