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1. Introduction  
 

Along with the rapid development of science and 

technology, it is often required to obtain the exact value of 

the expected load acting on the engineering structure. For 

instance, we need to know it when carrying the 

experimental modal analysis and structural health 

monitoring. However, it is difficult or impossible to directly 

measure the dynamic load in many practical engineering 

problems considering the economic condition, environment 

factors and technical limitations. In addition, the 

determination of dynamic loads acting on the structure is a 

very important task in the fields of civil engineering, 

aerospace engineering, mechanical engineering, etc. For 

instance, aerodynamic load influences flight; the tall 

building is subjected to wind load; the bridge suffers 

exciting forces from the vehicles and pedestrian, etc. 

Theoretically, the dynamic load identification is an 

important inverse problem in the field of structural 

dynamics considering that these loads play important role in 

the safety of structure, so many researchers have developed 

lots of indirect methods to identify the dynamic loads acting 

on the practical structure by the measured dynamic 

responses (Zhu et al. 2014, Wang et al. 2011a, Wang et al. 

2012, Chan et al. 2008a, Chan et al. 2008b). Bartlett and 

Flannelly exploited modal ver ificat ion of force 

determination to identify vibration loads acting on the 
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structure of helicopter spindle (Bartlett and Flannelly 1979). 

Giansante et al. calculated the magnitudes and phases of the 

external loads through the acceleration response measured 

on the AH-IG helicopter airframe in flight (Giansante et al. 

1982). Simonian predicted wind loads on a structure by 

using a dynamic programming filter (Simonian 1981a, 

Simonian 1981b). Wang et al. presented an improved 

iteration regularization method for solving linear inverse 

problems (Wang et al. 2011b). Xu et al. proposed an 

improved force identification model based on modal filter 

and identified the dynamic load acting on the structure of 

cantilever (Xu et al. 2002). Zhang and Zhu proposed a 

dynamic load identification method based on neural 

network method and obtained well results (Zhang and Zhu 

1997). Liu et al. proposed a computational inverse scheme 

based on the Gegenbauer polynomial expansion theory and 

regularization method to identify dynamic loads acting on 

stochastic structures (Liu et al. 2015a). Emilio Turco 

proposed an inverse strategy to identify the external static 

loads and external dynamic loads acting on the structure of 

pin-jointed truss by the stress or strains responses data 

(Turco 1998, Turco 2005a, Turco 2005b). 

Some researchers developed lots of computational 

inverse methods in time domain mainly depending on the 

relation between loads and system responses (Liu et al. 

2011b, Lu and Law 2007, Liu et al. 2002, Ronasi et al. 

2011, Liu et al. 2014). Gunawan exploited B-splines 

functions, quadratic splines functions and harmonic 

functions as the basis functions to identify the impact forces 

acting on the structure (Gunawan and Homma 2008a, 

Gunawan and Homma 2008b, Gunawan et al. 2006). Amiri 

used Derivation of a new parametric impulse response 

matrix to identify the nodal wind load by response 

measurement (Amiri and Bucher 2015). Zhang and Qin 

exploited orthogonal polynomial fitting technique to 
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identify the dynamic loads acting on the structure (Zhang et 

al. 2006, Qin et al. 2007). Xu and He proposed a time 

domain substructural identification approach for 

simultaneous identification of physical parameters of 

concerned substructures and unknown external excitations 

(Xu and He 2015). 

In Reference (Neubauer 2000), Neubauer assured that 

Landweber iteration method is an iterative regularization 

method, and has good performances when solving the ill-

posed problems, yet the rate of convergence of regularized 

solution by this method is very slow and inefficient. 

Moreover, most of these inverse problems mentioned above 

are ill-posed. However, there are few papers about 

regularization methods which are proved mathematically 

and suitable for solving the load identification problems, as 

far as we know. In the authors' previous work (Wang and 

Xie 2012), the simple ill-conditioned problem of dynamic 

load identification has been solved by the new conjugate 

gradient method which is based on the gradient operator
2 2

k 1 1( )T

k k k k kg g d g d    . Due to that this operator 

is not very effective in revising unusually smaller singular 

values when solving the extremely ill-conditioned problems 

of dynamic load identification, it seems incapable to deal 

with the extremely ill-posed problem of dynamic load 

identification, especially in complex engineering 

structure.}} In order to break through these bottlenecks and 

solve these difficulties, we attempt to propose and create an 

efficient conjugate gradient method (MCG) based on the 

ideas of (Wei et al. 2006), and investigate the minimum of 

this minimization problem.  

The rest of the paper is organized as follows. Section 2 

briefly introduces the basic theories and the establishment 

of a new conjugate gradient method. In Section 3, the 

convergence of the proposed conjugate gradient method is 

provided and proved. Numerical simulations are given to 

demonstrate the effectiveness of the proposed method in 

Section 4. Finally Section 5 summarizes some conclusions. 

 

 

2. The establishment of a new conjugate gradient 
algorithm 

 

Conjugate gradient methods are very stable and efficient 

in solving the optimization problems, and they can also 

converge in a few steps and find the approximate solution 

of inverse problems stably and effectively. 

We consider the following unconstrained optimization 

problem 

min ( ),
nx R

f x


 
(1) 

where f:R
n
→R is a continuously differentiable function, and 

g(xk) is the gradient of this function f(x) at point xk. The 

iterative form of this method is 

+1= + ,k k k kx x d =0,1,2, ,k  (2) 

where αk is a steplength, and dk is the search direction. This 

stepsize is often obtained by one dimensional search 

method. The exact line search is generally given as follows 

0
( + )= min ( + )k kk k k kf x f xd d


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 (3) 

The search direction is dk, which is often defined by 
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where βk is a scalar, and different choices correspond to 

different conjugate methods. Next we propose a new 

formula 
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(5) 

The corresponding algorithm is defined as follows: 

Algorithm 2.1. (MCG method) 

Step 0: Initialization. Given x0R
n
, set k=0.  

Step 1: Compute βk by the formula (5). \\ 

Step 2: Generate dk based on (4). If ||gk||<ε, then stop.  

Step 3: Compute αk by (3).  

Step 4: Updating the new point based on (2). If 

f(xk+1)<f(xk) and ||gk||<ε, then stop. Otherwise go to Step 0 

with k=k+1. 

 

 

3. The convergence analysis of the proposed 
method 

 
Next we will discuss and study the convergent properties of 

WCX

k . In order to validate the well definition of the proposed 

method, we should prove its global convergence properties and 

sufficient descent properties. 

Theorem 3.1. Consider the CG method in the form (3) and 

(4) based on the formula (5), then the sufficient descent 

condition holds, i.e., there exists a positive constant C such that 

2
-T

k k kg d C g  (6) 

for k≥0. 

Proof. It is easy to check that the assertion holds for k=0. 
Next we will show that the sufficient condition also holds for 

k≥1. Exploiting (4), we can obtain 

+1 +1 +1 +1 +1

2

+1 +1 +1

= (- + )

=- + .

T T

k k k k k k

T

k k k k

g d g g d

g g d





 (7) 

We also know that 
+1 0T

k kg d   in terms of the exact line 

search. Therefore we have 
2

+1 +1 +1=- .T

k k kg d g  

Then we can give a conclusion that dk+1 is a sufficient 

direction. Thus we complete the proof of Theorem 3.1. 

Next we will show the global convergence properties of the 

proposed method. 

(H1). f is bounded below on the level set R
n
; f is 

continuously differentiable in a neighborhood N of the level set 

 0= | ( ) ( )nx R f x f x    at the initial point x0. 

(H2). The gradient g(x) is Lipschitz continuous, i.e., there 

exists a constant L>0 such that 

( )- ( ) - , , .g x g y L x y x y N    

Based on the two assumptions above, we immediately 
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have the following Lemma (Yuan et al. 2010, Zoutendijk 

1970):  

Lemma 3.1 Let (H1)-(H2) be satisfied. Consider any 

CG method by the formula (4), where αk satisfies the exact 

minimization rule and dk is a descent search direction. Then 

2
=0

.
T

k k

k k

g d

d



   

Under Lemma 3.1, we immediately have the following 

convergent theorem of the present method. 

Theorem 3.2. Suppose that (H1)-(H2) and the descent 

condition hold true. Consider the CG method in the form of (2) 

and (4), where αk is generated by the exact minimization rule. 

Then either 

lim =0k
k

g


 

or 
2

2
=0

( )
.

T

k k

k k

g d

d



   

Proof.  In fact, we can prove it by contradiction. So there 

exists a constant ε>0 such that 

.kg   (8) 

Using the formula (4), we have 

+1 +1 +1+ = .k k k kd g d  

Then we can obtain 
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So 
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Exploiting (8) and (12), we can obtain 

2
=0

,
T

k k

k k

g d

d



   

which obviously contradicts Lemma 3.1. Then we complete 

the proof of the Theorem 3.2. 

 

 

4. Numerical examples and discussion 
 

In order to evaluate the effectiveness of the proposed 

method described in the previous sections, two practical 

engineering problems will be investigated. Numerical results 

performed by the proposed method and Landweber iteration 

regularization method will be contrasted under the same 

convergence criteria.  

Herein we consider the multi-source dynamic loads 

identification problem for a linear and time-invariant dynamic 

system. The response at an arbitrary receiving point in a 

structure can be expressed as a convolution integral of the 

forcing time history and the corresponding Green's kernel in 

time domain (Liu et al. 2002, Liu et al. 2011) 

0
( ) ( ) ( ) ,

t

y t G t p d     (13) 

where y(t) is the response which can be displacement, velocity, 

acceleration, strain, etc. G(t) is the corresponding Green's 

function, which is the kernel of impulse response. p(t) is the 

desired unknown dynamic load acting on the structure. 

By discretizing this convolution integral, the whole 

concerned time period is separated into equally spaced 

intervals, and the Eq. (13) is transformed into the following 

system of algebraic equation 

( ) ( ) ( ),Y t G t P t  (14) 

or equivalently, 

1 1 1

2 2 1 2

1 1

,

m m m m

y g p

y g g p
t
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    
    
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    

  

where yi, gi and pi are response, 

Green's function matrix and input force at time t=iΔt, 

respectively. Δt is the discrete time interval. Since the structure 

without applied force is static before force is applied, y0 and g0 

are equal to zero. All the elements in the upper triangular part 

of G are zeros and are not shown. The special form of the 

Green's function matrix reflects the characteristic of the 

convolution integral. 

To recover the time history P(t), the knowledge of y(t) and 

G(t) are required. In fact, the response at a receiving point and 

the numerical Green's function of a structure can be obtained 

by finite element method. However, the problem of identifying 

the dynamic load P(t) by y(t) and G(t) is usually ill-posed, and 

cannot be solved by inverse matrix method. In the following, 

our method will be suggested to solve this problem. 

In order to illustrate the accuracy of the present method, we 

consider the simulated exact concentrated loads as follows 

1
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(15) 

where td is the time cycle of sine force, and q is a constant 

amplitude of the force. In order to compare the performances 

of two regularization methods mentioned above, we choose 
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td=0.004 s, q1=1000 N, and q2=800 N.
 

Herein, the 

experimental data of response is simulated by the computed 

numerical solution, and the corresponding vertical 

displacement response can be obtained by finite element 

method. Furthermore, a noise is directly added to the 

computer-generated response to simulate the noise-

contaminated measurement, and the noisy response is defined 

as follow 

)1,1()(  randYstdlYY calnoisecalerr  (16) 

where Ycal is the computer-generated response; std(Ycal) is the 

standard deviation of Ycal; rand(−1,1) denotes the random 

number between −1 and +1; lnoise is a parameter which controls 

the level of the noise contamination. 

In order to investigate the effect of measurement error on 

the accuracy of the estimated values, we consider the case of 

noise level namely 5%, and the present method is adopted to 

determine the dynamic forces. 

In the reference (Neubauer 2000), it is shown that 

Landweber iteration method can stably and effectively solve 

ill-posed problems. Therefore, the optimal solution obtained by 

the present method will be compared with the Landweber 

iterative solution. The comparison will be quantitatively made 

by way of the relative estimation error 

Real Identified

j

( ) ( )
*100.

max{ }
| |F i F i

F
F


  (17) 

and the average error 

Real Identified
Average

1 j

( ) ( )1
*100,

max{ }
| |

n

i

F i F i
F

n F


   (18) 

where i=1,2,…,n, j=1,2. 

 

4.1 A stiffened plate 
 
A practical engineering problem is to determine vertical 

forces of stiffened plate, as shown in Fig. 1. The main 

parameters of the model are as: It is 0.48 m long, 0.32 m wide, 

and the thickness is 0.002 m. The properties of the material 

used are listed as follows: E=210000 N/m
2
, v=0.33$, 

ρ=7.8×10
3
 kg/m

3
.
 
The vertical concentrated load is applied to 

the outside surface of stiffened plate and the measured 

response is the vertical displacement. The bottoms of the 

stiffened plate are fixed, and the other parts are free. We 

establish its finite element model as shown in Fig. 1. The arrow 

in Fig. 1 denotes the acting point of dynamic force. 

In order to illustrate the accuracy of the present method, we 

also consider the simulated exact concentrated loads as the 

formula (15). Herein, the experimental data of response is 

simulated by the computed numerical solution, and the 

corresponding vertical displacement response at node 1013316 

and 1015766 can be respectively obtained by finite element 

 

 

 

Fig. 1 The finite element model of stiffened plate 

 

 

Fig. 2 The corresponding vertical displacement response at 

Point 1013316 

 

 

Fig. 3 The corresponding vertical displacement response at 

Point 1015766 

 

 

Fig. 4 The identified sine force at noise level 5%; the 

number of iterations: NLandweber=400, NMCG=42 

 

 

method, as shown in Figs. 2-3. Likewise, we simulate the 

noise-contaminated measurement in the form of (16). In order 

to investigate the effect of measurement error on the accuracy 

of the estimated values, we consider the case of noise level 

namely 5% and the present method is adopted to determine the 

dynamic forces. We also compare the regularized solution by 

two regularization methods and the true solution by the 

formulas (17) and (18). 

To evaluate the effectiveness of two regularization methods 

mentioned above, five time points are selected, and the 

identified force for each point will be compared with the 

corresponding actual force. The results of numerical  
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Fig. 5 The identified triangle force at noise level 5%; 

the number of iterations: NLandweber=400, NMCG=42 

 

 

Fig. 6 The relative deviations for the identified sine force at 

noise level 5% 

 

 

Fig. 7 The relative deviations for the identified triangle 

force at noise level 5% 

 

 

simulations are as follows: 

The proposed method is applied to the above engineering 

problem, and the corresponding analysis results are shown in 

Figs. 4-7 and listed in Table 1. Figs. 4 and 5 show the 

performances of two regularization methods in identifying the 

multi-source dynamic forces. In these two figures, it is clearly 

shown that these two methods are both efficient and stable in 

identifying the loads, yet the number of iterations by MCG 

method is 42, smaller than the Landweber iteration method 

whose iterative number is 400. Moreover, the detailed 

comparison results between the Landweber iteration method 

and the proposed method is also provided in Table 1 in terms 

of the relative estimation error which is computed by the  

 

Fig. 8 The finite element model of thin-walled cylindrical 

shell 

 

 

formulas (17) and (18). From Table 1, we can find that the 

maximal deviations and average deviations of the sine force 

and triangle force by the Landweber iteration method are 

14.27%, 4.55%, 14.70%, and 5.08%, respectively. For the 

new conjugate gradient method, the maximal deviations and 

average deviations of the sine force and triangle force are 

16.24%, 4.40%, 14.5%, and 4.5714.27%, 4.55%, 14.70%, 

respectively, most of which are smaller than the Landweber 

iteration method, respectively. It could be also found that a 

great amount of deviations by Landweber method and the 

proposed method converge the range in 14.7014.27%, 4.55%, 

14.70%, and 16.2414.27%, 4.55%, 14.70%, respectively. 

This further indicates that the present method offers a better 

and more effective solution than the Landweber iteration 

method which is shown in Figs. 6 and 7. In one word, the 

improved algorithm achieves a prominent computation in the 

practical engineering structure. 

 

4.2 A thin-walled cylindrical shell 
 
A practical engineering problem is to determine vertical 

forces of thin-walled cylindrical shell, as shown in Fig. 8. The 

main parameters of the model are as: This thin-walled 

cylindrical shell is 190.0 mm in outside diameter, 180.0 mm in 

inner diameter and 180.0 mm in length. The properties of the 

material used are listed as follows: E=7.0×10
10

 N/m
2
, v=0.33, 

ρ=2.8×10
3
 kg/m

3
. The radial concentrated load is applied to the 

outside surface of thin-walled cylindrical shell and the 

measured response is the radial displacement. One side of the 

shell is free, and the other is fixed. We establish its finite 

element model as shown in Fig. 8. The arrow in Fig. 8 denotes 

the acting point of dynamic force. 

In order to illustrate the accuracy of the present method, we 

also consider the simulated exact concentrated loads as the 

formula (15). Herein, the experimental data of response is 

simulated by the computed numerical solution, and the 

corresponding vertical displacement response at node 27 and 

318 can be respectively obtained by finite element method, as 

shown in Figs. 9-10. Likewise, we simulate the noise-

contaminated measurement in the form of (16). In order to 

investigate the effect of measurement error on the accuracy of 

the estimated values, we consider the case of noise level 

namely 5% and the present method is adopted to determine the  
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Fig. 9 The corresponding radial displacement response at 

Point 27 

 

 

Fig. 10 The corresponding radial displacement response at 

Point 318 

 

 

Fig. 11 The identified sine force at noise level 5%; the 

number of iterations: NLandweber=52, NMCG=16 

 

 

dynamic forces. We also compare the regularized solution by 

two regularization methods and the true solution by the 

formulas (17) and (18). To evaluate the effectiveness of two 

regularization methods mentioned above, five time points are 

also selected, and the identified force for each point will be 

compared with the corresponding actual force. 

The proposed method is applied to the above engineering 

problem, and the corresponding analysis results are shown in 

Figs. 11-14 and listed in Table 2. Figs. 11-12 show the 

performances of two regularization methods in identifying the 

multi-source dynamic forces. In these two figures, it is clearly 

shown that these two methods are both efficient and stable in 

identifying the loads, yet the number of iterations by MCG 

 

Fig. 12 The identified triangle force at noise level 5%; the 

number of iterations: NLandweber=52, NMCG=16 

 

 

Fig. 13 The relative deviations for the identified sine force 

at noise level 5% 

 

 

Fig. 14 The relative deviations for the identified triangle 

force at noise level 5% 

 

 

method is 16, smaller than the Landweber iteration method 

whose iterative number is 52. Moreover, the detailed 

comparison results between the Landweber iteration method 

and the proposed method is also provided in Table 2 in terms 

of the relative estimation error which is computed by the 

formulas (17) and (18). It can be found that at these five time 

points for noise level ±5%, the most deviations of the 

identified loads by the present method are smaller than 

Landweber iteration method due to its better efficient 

identification. It can be also found that the most deviations by 

Landweber method and the present method concentrate in the 

range of 9.93%, 7.71%,
 
respectively. For the identification of 

sine force, the maximal deviations and average deviations by 

the present method and the Landweber iteration method are  
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Table 1 The identified force at five time points at noise level 

5% 

 Landweber method MCG method 

 
Time 

point 

Real 

force 

Identified 

force 

Error 

(%) 

Identified 

force 

Error 

(%) 

Sine 0.001 1000 1033.6 3.36 1027.5 2.75 

Triangle 0.0006 480 534.26 6.78 569.84 11.23 

Sine 0.003 -1000 -944.03 5.60 -1019.9 1.99 

Triangle 0.001 800 827.2 3.4 801.77 0.22 

Sine 0.0045 707.11 654.73 5.24 651.7 5.54 

Triangle 0.0016 320 281.17 4.85 288.69 3.91 

Sine 0.0063 -453.99 -438.52 1.55 -454.36 0.04 

Triangle 0.0033 -560 -515.69 5.54 -566.42 0.80 

Sine 0.0073 -891.01 -880.52 1.05 -842.55 4.85 

Triangle 0.0038 -160 -185.43 3.18 -150.29 1.21 

Error (%) Maximum Average Maximum Average 

Sine 14.27 4.55 16.24 4.40 

Triangle 14.70 5.08 14.55 4.57 

 

 

7.00%, 1.76%, 9.93%, 2.03%, respectively. For the 

identification of triangle force, the maximal deviation and 

average deviation by the Landweber iteration method is 9.69%, 

2.35%, respectively, which are also respectively both larger 

than the MCG method whose maximal deviation and average 

deviation are 7.71%, 1.53%, respectively. This further shows 

that the proposed method provides a better and more accurate 

solution than the Landweber iteration method which is also 

shown from Figs. 13-14. However, these deviations are 

relatively small and it can fully satisfy the request of the 

practical structural analysis. Analyzing the results above, we 

can find that the proposed method has a quick convergence 

speed and relatively high computational efficiency, as only 

small numbers of iterative steps are required. In summary, the 

present algorithm is stable, effective and robust in identifying 

the multi-source dynamic loads acting on the practical 

engineering structure, and gives very good and satisfactory 

results. 

 

 

5. Conclusions 
 

In this paper, a new conjugate gradient method is 

proposed, strictly proved and suggested for solving the 

multi-source dynamic loads identification problems. To 

verify the feasibility and effectiveness of the proposed 

method, two engineering examples are performed by the 

proposed method and Landweber iteration method, and 

their computational results are also contrasted. The results 

of numerical simulations show that the proposed method 

provides more efficient and numerically stable 

approximation of the true loads than the traditional 

Landweber iteration method. In a word, the proposed 

method is stable, effective and robust in solving the multi-

source dynamic loads identification problems of practical 

structural engineering. 

 

Table 2 The identified force at five time points at noise level 

5% 

 Landweber method MCG method 

 
Time 

point 

Real 

force 

Identified 

force 

Error 

(%) 

Identified 

force 

Error 

(%) 

Sine 0.001 1000 985.37 1.46 978.66 2.13 

Triangle 0.0006 480 458.48 2.69 442.84 4.65 

Sine 0.003 -1000 -984.64 1.54 -973.32 2.67 

Triangle 0.001 800 742.26 7.22 761.15 4.86 

Sine 0.0045 707.11 667.93 3.92 689.29 1.78 

Triangle 0.0016 320 314.42 0.70 327 0.88 

Sine 0.0063 -453.99 -409.95 4.40 -444.16 0.98 

Triangle 0.0033 -560 -524.43 4.45 -573.32 1.67 

Sine 0.0073 -891.01 -832.92 5.81 -821.02 7.00 

Triangle 0.0038 -160 -116.83 5.40 -146.01 1.75 

Error (%) Maximum Average Maximum Average 

Sine 9.93 2.03 7.00 1.76 

Triangle 9.69 2.35 7.71 1.53 
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