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1. Introduction 
 

The gearing is the best solution to transmit rotational 

motions and couple which has been offered numerous 

advantages (Guerine et al. 2015a, Guerine et al. 2024, 

Karmi et al. 2024): it ensures a mechanical reliability. 

Furthermore, its mechanical efficiency is of the order of 

0.96 to 0.99. But today, several applications inquire for the 

gearing transmissions to be more and more reliable, light 

and having long useful life that requires the control of the 

vibratory behavior of these gearings (Guerine et al. 2015b, 

Guerine et al. 2016a, Guerine and El Hami 2022, Beyaoui 

et al. 2016).  

Several parametric studies have shown the great 

sensitivity of the dynamic behavior of gear systems (Walha 

et al. 2009). However, these parameters admit strong 

dispersions. Therefore, it becomes necessary to consider 

these uncertainties to ensure the robustness of the analysis 

(Guerine et al. 2016b, Begg et al. 2000, Guerine et al. 2017, 

Dong et al. 2023, Georgoussis and Mamou 2020, Abegaz 

2022, Ouazir 2022). Zhao et al. studied the effect of the 

geometric eccentricity on the dynamic behaviors of helical 

gear systems in both the quasi-static and dynamic analysis 

(Zhao et al. 2020). Walha et al. studied the nonlinear 

dynamic behavior of an automotive clutch coupled with a 

helical two stage gear system with eccentricity defect 

(Walha et al. 2011). They modeled the eccentricity defect 

located on the gear and the flywheel of the clutch.  In 

addition, A general dynamic model for the cylindrical 

geared rotor system with local tooth profile errors and 

global mounting errors have been developed in (Yu et al. 

2017). In this article, they studied the dynamic coupling 

behaviour of the transverse and rotational motions of gears 
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subjected to gear eccentricities.  

Many studies used an uncertainty method to analyzed 

the dynamic behavior of gear transmission system. For 

instance, Bel Mabrouk et al. studied the dynamic response 

analysis of Vertical Axis Wind Turbine geared transmission 

system with uncertainty (Bel Mabrouk et al. 2017). They 

used a new approach to determine the dynamic behavior of 

a bevel gear system with uncertainty associated to the 

performance coefficient of the input aerodynamic torque. 

The dynamic response analysis on torsional vibrations of 

wind turbine geared transmission system with uncertainty 

have been discussed in (Wei et al. 2015). In this article, 

they used the Chebyshev interval method to study the 

dynamic responses of a geared transmission system with 

uncertain parameters including the mesh stiffness, the 

transmission error, the mesh damping, the shaft damping, 

the moment of inertia of the input blades and the torsional 

stiffness of the driving coupling shaft. 

Mélot et al. proposed a robust design of vibro-impacting 

geared systems with uncertain tooth profile modifications 

via bifurcation tracking (Mélot et al. 2023). They studied 

the influence of uncertain tooth profile modifications on the 

nonlinear dynamic response of a spur gear pair induced by a 

backlash nonlinearity. They proposed a methodology for a 

fast and reliable estimation of the tooth profile modification 

that minimizes the amplitude-jump instability by defining 

two criteria using the results of the bifurcation tracking 

algorithm. The stochastic dynamical response of a gear pair 

under filtered noise excitation have been discussed in 

(Hasnijeh et al. 2021). They studied the effect of the noise 

spectrum on the probabilistic response for different loading 

cases.  

In addition, other studies used a Polynomial Chaos 

method to study the dynamic response of mechanical 

system. Polynomial chaos method is a popular surrogate 

modeling approach employed in uncertainty quantification 

for a variety of engineering problems (Guerine et al. 
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2018a). The capabilities of polynomial chaos expansion 

have been tested in numerous applications, such as treating 
uncertainties in mechanical dynamic systems. But the 

method cannot solve some problems if the mechanical 

system is complex. 

 A Polynomial chaos expansion approximation for 

dimension-reduction model-based reliability analysis 

method and application to industrial robots have been 

proposed in (Wu et al. 2023). In this article, they proposed a 

new PCE-based surrogate-assisted meth to study the 

interacting variables from original high-dimensional input 

random variables by contribution-degree analysis. Guerine 

et al. studied the dynamic response of a Spur gear system 

with uncertain friction coefficient (Guerine et al. 2018b). 

They proposed a method for considering uncertainties based 

on the projection on polynomial chaos to determine the 

dynamic response of a spur gear system with uncertainty 

associated to friction coefficient on the teeth contact.  

Many studies used a method taking into account the 
uncertainties to ensure the robustness of the analysis (Hu 

and Qui 2010, Wu et al. 2023) and to study the reliability 

for vibration structures taking into account the uncertainties 

(Boudhraa et al. 2021, Arian and Taghvaei 2021, Snoun et 

al. 2020, Wang et al. 2022, Liu et al. 2022, Lindsley and 

Beran 2005, Li and Ghanem 1998, Yu et al. 2024, 

Blanchard et al. 2009, Liu et al. 1986, Muscolino et al. 

1999). 

The main originality of the present paper is that the 

uncertainty of dynamic response of one stage gear 

transmission system with eccentricity defect is considered. 

The main objective is to investigate of the capabilities of the 

proposed method to determine the dynamic response of two 

stage gear transmission system subject to uncertain gear 

parameter. So, an eight degree of freedom system modelling 

the dynamic response of gear transmission system is 

considered. The modelling of gear transmission system is 
presented in Section 2. In the next section, the theoretical 

basis of the polynomial chaos is presented. In Section 4, the 

equations of motion for the eight degrees of freedom are 

presented. Numerical results are presented in Section 5. 

Finally, in Section 6, to conclude, some comments are made 

based on the study carried out in this paper.     

 

 

2. Modelling of one stage gear transmission system 
 

The global dynamic model of the one stage gear system 

in 3D is shown in Fig. 1. This model is composed of two 

blocks (j=1 to 2). Every block (j) is supported by flexible 

bearing which the bending stiffness is 𝑘𝑗
𝑥 and the traction-

compression stiffness is 𝑘𝑗
𝑦
. 

The wheels (11) and (22) characterize respectively the 
motor side and the receiving side. The shafts (j) admit some 

torsional stiffness 𝑘𝑗
𝜃. 

Angular displacements of every wheel are noticed by 

𝜃(𝑖,𝑗) with the indices j=1 to 2 designates the number of the 

block, and i=1 to 2 designate the two wheels of each block. 
Moreover, the linear displacements of the bearing noted by 

𝑥𝑗 and 𝑦𝑗 are measured in the plan which is orthogonal to 

the wheels axis of rotation. 

 

Fig. 1 Global dynamic model of the one stage gear system 

 

 

Fig. 2 Modelling of the mesh stiffness variation 
 

 

In this study, we modelled the gear mesh stiffness 

variation k(t) by a square wave form (Fig. 2). The gear 

mesh stiffness variation can be decomposed in two 

components: an average component noted by kc, and a time 

variant one noted by kv(t) (Walha et al. 2009). 

The extreme values of the mesh stiffness variation are 

defined by 

𝑘
𝑘𝑐

2𝜀𝛼𝑚𝑖𝑛
and 𝑘

2−𝜀𝛼

𝜀𝛼−1
𝑚𝑖𝑛𝑚𝑎𝑥 (1) 

𝜀𝛼  and Te represent respectively the contact ratio and 

mesh period corresponding to the two gear meshes contacts.  

 

 

3. Polynomial Chaos method 
 

In this section, we propose a new methodological 

method based on the projection on polynomial chaos. This 

method consists in projecting the stochastic desired 
solutions on a basis of orthogonal polynomials in which the 

variables are Gaussian orthonormal. The properties of the 

base polynomial are used to generate a linear system of 

equations by means of projection. The resolution of this 

system led to an expansion of the solution on the 

polynomial basis, which can be used to calculate the 

moments of the random solution. With this method, we can 

easily calculate the dynamic response of a mechanical 

system. 

Let us consider a multi-degrees of freedom linear 

system with mass and stiffness matrices [𝑀𝑇] and [𝐾𝑇] 
respectively. The equations of motion describing the forced 

vibration of a linear system are 

[𝑀𝑇]{�̈�𝑇} + [𝐾𝑇]{𝑢𝑇} = {𝑓𝑇} (2) 
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Where {𝑢𝑇} is the nodal displacement vector and {𝑓𝑇 } is 

the external excitation. 

The chaotic polynomials 𝜓𝑚  corresponding to the 

multidimensional Hermite polynomials obtained by the Eq. 

(3) 

𝜓m(𝛼1, . . . , 𝛼P) = (−1)
P𝑒(

1

2
{𝛼}𝑇 {𝛼}) 𝜕

P𝑒
(−
1
2

{𝛼}𝑇 {𝛼})

𝜕𝛼1...𝜕𝛼P
  (3) 

Where {𝛼} is the vector grouping the random variables 

and P is the number of random variables. 

𝑇{𝛼} = ⟨𝛼1. . . 𝛼𝑃⟩ (4) 

The random matrices mass and stiffness [𝑀𝑇] and [𝐾𝑇] 
of the mechanical system can be written as 

[𝑀𝑇] = [𝑀𝑇]0+ [�̃�𝑇] (5) 

[𝐾𝑇] = [𝐾𝑇]0 + [𝐾𝑇] (6) 

The matrices[𝑀𝑇]0 and [𝐾𝑇]0 are deterministic matrices, 

the matrices [�̃�𝑇] and [𝐾𝑇] correspond to the random part 

of the mass and stiffness matrices. 

[�̃�𝑇] and [𝐾𝑇] are rewritten from an expression of type 

Karhunen-Loeve in the following form 

[�̃�𝑇] = ∑ [MT] 𝛼𝑝
P

𝑝=1
  (7) 

[𝐾𝑇] = ∑ [KT] 𝛼𝑝
P

𝑝=1
  (8) 

Where 𝛼𝑝  are independent Gaussian centered reduced 

which may correspond to the first polynomial 𝜓𝑝, while the 

matrices [M
T
] and [K

T
]  are deterministic. 

We set 𝛼0 = 1, we can write then 

[𝑀𝑇] = [MT]0 .∑ 𝛼𝑝
P

𝑝=0
  (9) 

[𝐾𝑇] = [KT]0.∑ 𝛼𝑝
P

𝑝=0
  (10) 

In the same way, we can write for {𝑓𝑇} 

{𝑓𝑇} = {fT
}
0
∑ 𝛼𝑝

P

𝑝=0
  (11) 

The dynamic response is obtained by solving the 

following equation knowing that the initial conditions are 

predefined 

[𝐾𝑒𝑞]{𝑢 (𝑡 + Δ𝑡)} = {𝐹𝑒𝑞} (12) 

Where 

[𝐾𝑒𝑞] = [𝐾𝑇] + 𝑎0[𝑀𝑇] (13) 

{𝐹𝑒𝑞} = {fT(𝑡 + Δ𝑡)} + [MT](𝑎0{𝑢 (𝑡)} +
𝑎1{�̇� (𝑡)} + 𝑎2{�̈� (𝑡)})  

(14) 

Where 

𝑎0 =
1

𝐴Δ𝑡2
, 𝑎1 =

𝐵

𝐴Δ𝑡
 and 𝑎2 =

1

𝐴Δ𝑡
 (15) 

A and B are the parameters of Newmark. 

{𝑢 (𝑡 + Δ𝑡)}  is decomposed on polynomials to P 

Gaussian random variables orthnormales 

{𝑢 (𝑡 + Δ𝑡)} = ∑ ({𝑢 (𝑡 + Δ𝑡)})𝑛𝜓𝑛({𝛼𝑖}𝑖=1
𝑃 )

𝑁

𝑛=0
  (16) 

Where N is the polynomial chaos order. 

[𝐾𝑒𝑞] and {𝐹𝑒𝑞} are written in the following form 

[𝐾𝑒𝑞] = [KT]0.∑ 𝛼𝑝 + 𝛼0. [𝑀𝑇]0
𝑃

𝑝=0
∑ 𝛼𝑝

𝑃

𝑝=0
  (17) 

{𝐹𝑒𝑞} =∑ ({𝑓𝑇(𝑡 + 𝛥𝑡)})
𝑃

𝑝=0
𝛼𝑝 +

∑ [MT] 𝛼𝑝(𝑎0({𝑢𝑇(𝑡)})0 + 𝑎1({�̇�𝑇(𝑡)})0+
𝑃

𝑝=0

𝑎2({�̈�𝑇(𝑡)})0)  

(18) 

Substituting Eqs. (16), (17) and (18) into Eq. (12) and 

forcing the residual to be orthogonal to the space spanned 

by the polynomial chaos 𝜓m yield the following system of 

linear equation 

∑ ∑ [𝐾𝑒𝑞2] {𝑢 }𝑛〈𝛼𝑝   𝜓𝑛   𝜓𝑚〉
𝑁

𝑛=0
=𝑃

𝑝=0

∑ {𝐹𝑒𝑞2}𝑝
〈𝛼𝑝    𝜓𝑚〉

𝑃

𝑝=0
     𝑚= 0,  1,  .  .  .  , 𝑁  

(19) 

Where N is the order of Polynomial Chaos. 

Where ⟨. . ⟩  denotes the inner product defined by the 

mathematical expectation operator 

This algebraic equation can be rewritten in a more 

compact matrix form as 

[
 
 
 
 
[𝐷](00) ⋯ [𝐷](0𝑁)

⋱
⋮ [𝐷](𝑖𝑗) ⋮

⋱
[𝐷](𝑁0) ⋯ [𝐷](𝑁𝑁)]

 
 
 
 

 

{
 
 

 
 
({𝑢 (𝑡 + Δ𝑡)})0

                ⋮
({𝑢 (𝑡 + Δ𝑡)})𝑗

                ⋮
({𝑢 (𝑡 + Δ𝑡)})𝑁}

 
 

 
 

=

{
 
 

 
 
{𝑓}(0)

      ⋮
{𝑓}(𝑗)

      ⋮
{𝑓}(𝑁)}

 
 

 
 

  

(20) 

Where 

[𝐷](𝑖𝑗) =∑ [𝐾𝑒𝑞2] 〈𝛼𝑝   𝜓𝑖    𝜓𝑗〉
𝑃

𝑝=0
  (21) 

{𝑓}(𝑗) =∑ {𝐹𝑒𝑞2} 〈𝛼𝑝    𝜓𝑗〉
𝑃

𝑝=0
  (22) 

After resolution of the algebraic system (20), the mean 

values and the variances of the dynamic response are given 
by the following relationships 

𝐸[{𝑢 }] =
1

𝑁
∑ ({𝑢 (𝑡 + 𝛥𝑡)})𝑁
𝑛=0

𝑛
  (23) 

𝑉𝑎𝑟[{𝑢 }] = ∑ (({𝑢 (𝑡 + 𝛥𝑡)})𝑛)
2(𝜓𝑗)

2𝑁

𝑛=0
  (24) 

 

 

4. Equation of motion 
 

The equation of motion describing the dynamic behavior 
of our system (Fig. 1) is obtained by applying Lagrange 

formulation and is given by 

𝑚 �̈�1 + 𝑘1
𝑥  𝑥1 + sin(𝛼)  𝑘(𝑡)  〈𝐿 〉{𝑢(𝑡)} = 0 (25) 

𝑚 �̈�1 + 𝑘1
𝑦

 𝑦1 + cos(𝛼)  𝑘(𝑡)  〈𝐿 〉{𝑢(𝑡)} = 0 (26) 

65



 

Ahmed Guerine, Ali El Hafidi and Philippe Leclaire 

 

Table 1 System parameters 

Material: 42CrMo4 =7860 Kg/m3 

Motor torque Cm=200 N.m 

Bearing stiffness 𝑘𝑗
𝑥=107 N/m     𝑘𝑗

𝑦
=107 N/m 

Torsional stiffness of the shaft 𝑘𝑗
𝜃=105 Nm/rad 

Number of teeth Z(12)=40, Z(21)=50 

Module of teeth Module=4 mm 

Contact ratio  =1.7341 

The pressure angle =20° 

 

 

𝑚 �̈�2 + 𝑘2
𝑥  𝑥2 − sin(𝛼)  𝑘(𝑡)  〈𝐿 〉{𝑢(𝑡)} = 0 (27) 

𝑚 �̈�2 + 𝑘2
𝑦

 𝑦2 − cos(𝛼)  𝑘(𝑡)  〈𝐿 〉{𝑢(𝑡)} = 0 (28) 

𝐼�̈�(1,1) + 𝑘1
𝜃(𝜃(1,1) − 𝜃(1,2)) = 𝐶𝑚 (29) 

𝐼   �̈�(1,2) − 𝑘1
𝜃   (𝜃(1,1) − 𝜃(1,2))  +

𝑟(1,2)
𝑏  𝑘(𝑡)  〈𝐿 〉  {𝑢(𝑡)} = 0  

(30) 

𝐼   �̈�(2,1) + 𝑘2
𝜃   (𝜃(2,1) − 𝜃(2,2))  −

𝑟(2,1)
𝑏  𝑘(𝑡)  〈𝐿 〉  {𝑢(𝑡)} = 0  

(31) 

𝐼�̈�(2,2) + 𝑘2
𝜃(𝜃(2,1) − 𝜃(2,2)) = 0  (32) 

Where I is the moment of inertia of the wheels. 

Where 〈𝐿 〉 is defined by 

〈𝐿 〉 = [𝑠𝑖𝑛(𝛼) − 𝑠𝑖𝑛(𝛼) cos(𝛼) −

cos(𝛼)       0 𝑟(1,2)
𝑏  − 𝑟(2,1)

𝑏  0]  
(33) 

𝑟(1,2)
𝑏 , 𝑟(2,1)

𝑏  represent the base gears radius. α is the 

pressure angle.  

{𝑢(𝑡)} is the vector of the model generalized 

coordinates, it is in the form 

{𝑢(𝑡)} = [𝑥1 𝑦1 𝑥2 𝑦2       𝜃(1,1) 𝜃(1,2) 𝜃(2,1) 

𝜃(2,2)]
𝑇

  
(34) 

 

 

5. Numerical simulation 
 

The technological and dimensional features of the one-

stage gear transmission system are summarized in the Table 

1. 

 

5.1 Dynamic response with eccentricity defect 
 

An eccentricity is theoretically the distance between the 

geometric and rotating axis of the gear. In this paper, Fig. 4 
represents the case of an eccentricity on the gear (12) 

belonging to the first train of the two-stage gear system. O12 

and G12 represent respectively the rotational and geometric 

centers of the gear (12). The eccentricity defect is defined 

by the parameter e12, which represents the distance between 

the axis, and by a phase λ12 to specify the initial position. 

An eccentricity defect causes additively teeth deflection 

on their own line of action. The deflection δ1(t) is then 

added with a transmission error e12(t) definite by 

 

Fig. 4 Eccentricity defect 

 

 

Fig. 5 Transmission error signal of the eccentricity defect 

 

 

Fig. 6 Time response of the eccentricity defect external 

force 〈𝐹𝑒𝑐𝑐(𝑡)〉 
 

 

e12(t)=E12. sin(2.π.fe.t- λ12) (35) 

fe represents the frequency of rotation of the gear (12). 

Fig. 5 shows the transmission error signal for two 

eccentricity amplitude defects. To analyze the really 

consequences of the defect on the dynamic behavior of the 

model, we study two values of eccentricity: E12=100 μm 

and E12=400 μm.  

We can assimilate the effect of the eccentricity defect by 

an external force 

〈𝐹𝑒𝑐𝑐(𝑡)〉=k(t). e12(t) 〈𝐿 〉 (36) 

Fig. 6 shows the time response of the eccentricity defect 

external force.   

To analyze the really consequences of the defect on the 

dynamic response of the model, we study two values of 

eccentricity: E12=100 μm and E12=300 μm. 

Fig. 7 shows the time dynamic displacement of the first 
and second bearings following x direction. It appears a new  

E12=400 µm 
E12=100 µm 

E12=400 µm 

E12=100 µm 
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Fig. 7 Time dynamic displacement of the first and second 

bearings following x direction 

 

 

period in the signal. This periodicity will be detected on all 

dynamic responses of all model degrees of freedom. 

 

5.2 Dynamic response with uncertain eccentricity 
defect 
 

In this section numerical results are presented for the 
new method formulations derived in the Section 3. The 

polynomial chaos (PC) results are compared with Monte 

Carlo (MC) simulations with 100000 simulations. 

The eccentricity defect is defined by 

𝑒12 = 𝑒120 + 𝜎𝑒12𝜉 (37) 

Where ξ is a zero mean value Gaussian random variable, 

𝑒120  is the mean value and 𝜎𝑒12  is the standard deviation of 

this parameter. 

The mean value of the dynamic component of the linear 

displacement of the first bearing in two directions x and y 

have been calculated by the polynomial chaos method. The 

obtained results are compared with those given by the 

Monte Carlo simulations with 100000 simulations. The 

results are plotted in Figs. 8 and 9. 

These figures show that the obtained solutions oscillate 

around the Monte Carlo simulations reference solution. It 

can be seen that for small standard deviation 𝜎𝑒12=1%, the  

 
Fig. 8.1 Mean value of x1(t) for 𝜎𝑒12=1% 

 

 
Fig. 8.2 Mean value of x1(t)for  𝜎𝑒12=3% 

 

 
Fig. 9.1 Mean value of y1(t) for 𝜎𝑒12=1% 

 

 
Fig. 9.2 Mean value of y1(t) for 𝜎𝑒12=3% 

 

 

polynomial chaos solutions in third order polynomial (N=3) 

provides a very good accuracy as compared with the Monte 
Carlo simulations. When the standard deviation of the  
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Fig. 10.1 Mean value of x2(t) for 𝜎𝑒12=7% 

 

 

uncertain parameter increases, the error increases. Because 

the amplitude of the displacement of the bearings increases. 

So, the difference between the Monte Carlo method results 

and the Polynomial Chaos method results increase.  

The mean value and standard deviation of the dynamic 

component of the linear displacement of the second bearing 
in direction x obtained with different orders of polynomial 

chaos N=1, N=3 and N=5 are presented in Fig. 10 for 

𝜎𝑒12 =7% in order to check the capabilities of the 

polynomial chaos approach in the analysis of the dynamic 

behavior of spur gear system. 

The polynomial chaos results are compared with Monte 

Carlo simulation with 100000 simulations. It is evident 

from these figures that N=1 case clearly does not have 

enough chaos terms to represent the output. As N increases, 

the results seem to become better, and with N=5, the 

dynamic response of the linear displacement of the second 

bearing with polynomial chaos values almost exactly match 

with the Monte Carlo simulation results. The uncertainty of 

the radius parameter affects the amplitude of the system 

responses. It can be noted that the amplitudes of the mean 

values and the standard deviation are approximated more 

accurately with N=5 than the first and the third order 

polynomial.  

 
 

6. Conclusions 
 

An approach based on the polynomial chaos method has 

been proposed to study the dynamic response of one stage 

gear transmission system with eccentricity defect. A 

complete study of the dynamic analysis has been carried out 

for an eight degree of freedom model describing one stage 

gear transmission system characterised by an uncertain 

eccentricity defect. The polynomial chaos method has been 

used to determine the dynamic response of gear 

transmission system. The advantage of the polynomial 

chaos method is that only a small number of simulations are 

required to extract the dynamic response of gear 

transmission system. The polynomial chaos method has 

demonstrated excellent computation efficiency compared to 

the Monte Carlo method. This efficiency is more clearly 

 
Fig. 10.2 Standard deviation of x2(t) for 𝜎𝑒12=7% 

 

 

seen in the case for small standard deviation 𝜎𝑒12=1% that 

the polynomial chaos results provides a very good accuracy 

as compared with the Monte Carlo method. The main 

results of the present study show that the polynomial chaos 

may be an efficient tool to consider the dispersions of 

eccentricity defect in the dynamic behavior study of gear 

transmission system.   
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