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1. Introduction 
 

One of the important tasks of structural health 

monitoring (SHM) is to identify the state of the structures 

and detect structural damage for the reliability and safety of 

structures. When a structure is damaged, such as cracking in 

a certain structural element, the stiffness of the damaged 

component is usually reduced. So, the variations of 

structural parameters could indicate the structural damage 

(Zhong et al. 2003, Yang et al. 2007, Jiang et al. 2011, Li 

and Chen 2013, Zhang et al. 2015, Lin and  Liang 2015, Yu 

and Zhu 2015). In the past decades, various approaches in 

time domain analyses have been developed such as the 

methods of least-squares estimation (Yang et al. 2004, 

2005), sequential nonlinear least-squares estimation (Yang 

et al. 2006), the finite element model updating and 

structural damage identification based on OMAX data 

(operational modal analysis with eXogenous forces) 

(Reynders et al. 2010), response surface metamodels for 

structural damage identification (Rutherforda et al. 2005, 

Fang et al. 2011), the two-stage Kalman estimation 

approach for the identification of nonlinear structural 

parameters (Lei et al. 2015). However, these approaches are 

only applicable when the information of external inputs to 
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structures is available. In practice, it is difficult or even 

impossible to directly measure all external inputs on the 

structures. The information of external inputs is important 

in SHM. So, it is necessary to develop algorithms for the 

structural damage detection with unknown external inputs. 

There have been some approaches for simultaneous 

identification of structural damage and unknown external 

inputs, e.g., numerical iterative procedures based on the 

classical least squares estimation or extended Kalman filter 

for identification of the constant structural parameters 

(Wang et al. 1994, 1997, Ling et al. 2004 ), the recursive 

least squares estimation with unknown inputs (RLSE-UI) 

approach for damage identification of structures (Yang et al. 

2007), the adaptive quadratic sum-squares error with 

unknown inputs (AQSSE-UI) for the detection of structural 

damage (Huang et al. 2010). However, the derivations of 

these approaches are quite involved, e.g., the mathematical 

derivations of the refereed RLSE-UI by Yang et al. (2007) 

were presented in both the paper txt and the Appendix with 

many page spaces， but the final recursive estimation 

expressions are analogous to those of the parameter Kalman 

filter (PKF) (Li et al. 2002), which implies the direct 

extension of the conventional PKF for simultaneous 

identification of structural damage and unknown external 

inputs. 

Detection of structural damage in civil engineering 

always involves uncertainties from environment 

measurement noise, modeling error, and uncertainties in 

structures. These errors and uncertainties can result in 

mistake or low accuracy in damage detection. So, the 

uncertainties in structures limit the successful use of those 
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deterministic damage detection methods. Some approaches 

with consideration of the uncertainties have been developed 

for structural damage detection. There are two main 

methods: Bayesian model updating damage detection 

methods and stochastic finite element model updating 

methods.  

The main idea of Bayesian method is that the probability 

distribution of model parameters are assumed given, 

uncertain parameters are updated by the measurement 

signals, and the posterior probability distribution of 

structural parameters can be obtained. Then, the probability 

and extent of damage could be detected by the comparisons 

of the probability distribution of undamaged model and 

damaged model. Comprehensive Bayesian model updating 

was presented by Beck et al. (1998) and some recent works 

have been conducted by Hao et al. (2015), Mustafa et al. 

(2015), Sun et al. (2015), etc. Stochastic finite element 

model updating methods is another very popular technique 

for uncertainty propagation. The probability distribution of 

structural parameters is obtained by the stochastic 

simulation of test data and model parameter perturbation, 

and the prior probability distribution of structural 

parameters is updated by measurement data. A statistical 

method for the structural damage detection based on the 

measured acceleration response considering the 

uncertainties in measurement noise was presented by Li and 

Law (2008). A new stochastic damage detection method 

was proposed by Xu and Zhang (2011) for building 

structures with parametric uncertainties.  

However, these approaches above are applicable when 

the information of external inputs to structures is available. 

Therefore, it is necessary to develop algorithms with 

consideration of the uncertainties in structures for the 

structural damage detection with unknown external inputs.  

In this paper, a parametric Kalman filter with unknown 

inputs (PKF-UI) is proposed for the simultaneous 

identification of structural parameters and the unmeasured 

external inputs. Analytical recursive formulations of the 

proposed PKF-UI are derived based on the conventional 

PKF. Such a straightforward derivation and formulation of 

PKF-UI is not available in the literature. Then, the proposed 

PKF-UI is utilized for probabilistic damage detection of 

structures by considering the uncertainties of structural 

parameters. Structural damage index and the damage 

probability are derived from the statistical values of the 

identified structural parameters of intact and damaged 

structure. Some numerical examples are used to validate the 

proposed method. 

 

 

2. A brief review of the conventional PKF 
 

The equation of motion of an n-DOF linear time-

invariant structure can be expressed as 

 (t) (t), (t) (t)  Mx F x x θ f  (1) 

where (t)x , (t)x and x(t) are n-dimensional vectors of 

structural acceleration, velocity and displacement, 

respectively, θ is a m-dimensional time-invariant parametric 

vector involving unknown parameters to be estimated, 

 (t), (t)F x x θ  is a force vector which can be linear or 

nonlinear function of the displacements, velocities and the 

structural parameters, f(t) is a p-dimensional external inputs 

vector, and η is the corresponding influence matrix 

associated with the external inputs f(t). 

The observation equation can be expressed as 

 (t) (t), (t) + (t)  y = x x  (2) 

in which (t) = (t) (t)y f Mx , φ [ ] is the observation 

matrix composed of the system response vectors, and υ(t) is 

a measurement noise vector, which is assumed a Gaussian 

white noise vector with zero mean and a covariance matrix 

R(t). 

The discrete equation for the observation equation in Eq. 

(2) is expressed by 

k+1 k+1 k+1 1k   y  (3) 

in which yk+1 
is the measured response vector at time 

t=(k+1)Δt and Δt is the sampling time step. 

Based on the conventional PKF approach, the estimation 

value of the unknown parametric vector at time t=(k+1)Δt is 

given by 

1 1 11 1
ˆ ˆ ˆ( )k k kk k k k k k   

     K y  (4) 

where
1 1

ˆ
k k 

 and ˆ
k k

 denote the estimated values of θ at 

time t=(k+1)Δt and t=kΔt, respectively, and K is the Kalman 

gain matrices given by 

T T 1

1 1 k+1 1 11 1
( )k k k kk k k k



    
 P P  K R  (5) 

in which 1k+ k
P

 
is the covariance matrix of estimation error 

of the estimated 1k k
 . The recursive estimation of 

covariance matrix of error is given by  

 1 11 1
ˆ

k kk k k k  
  P I K P  (6) 

In the above procedure, it is assumed that external input 

vector f(t) is known, which is the limitation of the 

conventional PKF. 

 

 

3. The direct extension of PKF to PKF-UI 
 
When external inputs to the above n-DOF structure are 

unknown, the equation of motion is rewritten by 

 (t) (t), (t) (t)u u  Mx F x x θ f  (7) 

where fu(t) is an unmeasured p-dimensional external inputs 

vector, and ηu is the corresponding influence matrix 

associated with the unknown external input vector fu(t). 
 
3.1 PKF-UI with linear observation equation 
 
If the observation equation associated with the equation 

of motion in Eq .(7) is expressed as a linear equation by 

 (t) (t), (t) + (t) + (t)u u   y = x x f  (8) 
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in which (t) = (t)y Mx  

The discrete equation for the above linear observation 

equation can be rewritten as 

k+1 +1 +1 1 1+ u u

k k k k     y f  (9) 

Analogous to the procedure of the conventional PKF, 

the estimation value of the unknown parametric vector at 

time t=(k+1)Δt is given by 

1 1 11 1 1 1
ˆ ˆ ˆ ˆ( )u u

k k kk k k k k k k k     
       K y f  (10) 

where
1 1

ˆ u

k k 
f denotes the estimated values of unknown 

external input vector f
u
(t)at time t=(k+1)Δt. Kk+1 

is the 

Kalman gain matrix at time t=(k+1)Δt. 

Under the condition that the number of response 

measurements is not less than that of unknown external 

inputs, 
1 1

ˆ u

k k 
f  can be estimated by minimizing the 

following error vector as 

1 1 1 +1 1 1 1
ˆ ˆu u

k+ k+ k k k k k
=    

    y f  (11) 

By inserting the expression of 
+1 1

ˆ
k k
 in Eq. (10) into 

the above error vector in Eq. (11), Δk+1 
can be rewritten as 

  
 

1 k+1 +1 +1 k+1

k+1 +1 1 1

ˆ

ˆ          

I

I

k+ l k k k k

u u

l k k k 

  

 

K y

K f

   

 
 (12) 

Then, 1 1
ˆ u

k k 
f can be estimated from above Eq. (12) by 

the least-squares estimation as 

  1

1 1 k+1 +1 +1 k+11 1
ˆ ˆ=u uT

k k l k kk k k k



  
    f S R I K y  (13) 

where  
1

1

1 1 k+1 +1

uT u

k k l k




 
     S R I K   

The error of the estimated
1 1

ˆ u

k k 
f can be evaluated by

 

  
11 1 1 1

1

+1 1 k+1 +1 k+1 1

ˆˆ =

ˆ= +

u u

kk k k k

uT

k k l k kk k

   



 





f
e f f

S R I K e v
  

 (14) 

in which ˆˆ
kk k k k

   e
 

Based on Eq. (10) and Eq. (13), it is known that the 

error 1 1
ˆ

k k 


e can be estimated by 

11 1 1 1

1 k+1 11 1

ˆˆ =

ˆ ˆ ˆ+ +

kk k k k

u

k kk k k k k k

   

  



 f

e

= e K e e v（ ）



 

 

 
 (15) 

By inserting 
1 1

ˆ
k k 

f
e in Eq. (14) into Eq. (15), 

1 1
ˆ

k k 


e

 
can be expressed by 

  

 

1

1 1 1 k+1 +1 k+11 1

1

1 1 1 k+1 +1 1

ˆ ˆ=

            

u uT

l k k k l kk k k k

u uT

k l k k l k k



   



   

 

    

e I K S R I K e

K I S R I K v

    

  
 (16) 

and the error covariance matrix
1 1

ˆ
k k 

P


can be estimated by 

  

   

 

 

1

1 1 1 k+1 +1 k+11 1

1

+1 k+1 1 1 1 k+1

1

1 1 1 k+1 +1 1

T
1

1 1 k+1 +1

ˆ ˆ=

           

           

u uT

l k k k kk k k k

TT u uT

k l k k k

u uT

k l k k l k k

u uT

l k k l k



   



  



   



 

 

 

   

   

P I K S R I K P

I K I K S R

           + K I S R I K R

I S R I K

    

   

  

  

 (17) 

To minimize the error covariance matrix
1 1

ˆ
k k 

P


, Kalman 

gain matrix Kk+1 should be selected as 

T T 1

1 1 k+1 1 1
ˆ ˆ( )k k k kk k k k

  

    P P  K R  (18) 

Then, the estimation of 
1 1

ˆ
k k 


P in Eq. (17) can be 

simplified as 

  1

1 1 1 k+1 +1 k+11 1
ˆ ˆ= u uT

l k k k kk k k k



   
 P I K S R I K P

      (19) 

From the above derivation of proposed PKF-UI, it is 

noted that the analytical recursive formulations of the 

proposed PKF-UI is the direct extension of the conventional 

PKF. 

 
3.2 PKF-UI with nonlinear observation equation 
 
When the observation equation is nonlinear, it can be 

expressed as 

 (t) , (t), (t), (t) + (t)u y = h x x f  (20) 

in which (t) = (t)y Mx , h ( ) is a nonlinear function of 

structural response vectors, structural parameters and the 

unknown external inputs. The discrete form of the above 

observation equation is expressed as 

 k+1 k+1 k+1 k+1k+1
, , , +u y = h x x f  (21) 

The nonlinear function  
k+1k+1 k+1, , , u

h x x f can be 

expanded at ˆ
k|k

 
and

 
ˆ u

k|kf
 

by the Taylor series expansion 

to the first order as 

 
k+1k+1 k+1

k+1 k+1 1 1

, , ,

ˆ ˆ ˆ ˆ= ( , , , ) ( ) ( )

u

u u u u

k k+k k k k k k k k   

h x x f

h x x f f f



    
 (22) 

in which 

+1 +1 +1
1

ˆ ˆ
+1

( , , , )k k k

u
k k k kk



 





； 






u

k

uf f

h x x f
 

(23a) 

+1 +1 +1

ˆ ˆ+1
+1

( , , , )k k k

uk
k k k kk

 





； ； 




u

u

u

uf f

h x x f

f

 

(23b) 

Based on linearized observation equation in Eq. (22), 

structural unknown parametric vector can be recursively 

estimated by the conventional PKF as follows 

1 1 k+1 k+11 1

1 1

ˆ ˆ ˆ ˆ( , , , )

ˆ ˆ             ( )

u

k kk k k k k k k k

u u u

k k k k

  

 

  


 


K y h x x f

f f

  


 (24) 
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Under the condition that the number of response 

measurements is not less than the number of unknown 

external inputs,
1 1

ˆ u

k k 
f  can be estimated by minimizing the 

following error vector as 

1 1 k+1 k+1

1 1 1 1 1

ˆ ˆ( , , , )

ˆ ˆ ˆ ˆ         ( ) ( )

u

k+ k+ k k k k

u u u

k k+ k k k k+ k k k

=

  



   

y h x x f

f f

 

   
 (25) 

By inserting the expression of 1 1
ˆ
k k 

 in Eq. (24) into the 

above error vector, Δk+1 can be expressed as 

  
 

1 k+1 +1 +1 k+1 k+1

k+1 +1 1 1

ˆ ˆ ˆ( , , , )

ˆ          

I

I

u u u

k+ l k k k k k k k k

u u

l k k+ k

   

 

K y h x x f f

K f

   

 
 (26) 

Then, 1 1
ˆ u

k+ k 
f

 
can be estimated from Eq. (26) by the 

least-squares estimation as 

 

 

1

1 1 k+1 +11 1

+1 k+1 k+1

ˆ =

ˆ ˆ ˆ           ( , , , )

u uT

k k l kk k

u u u

k k k k k k k



  


 

f S R I K

y h x x f f

 

 
 (27) 

in which  
1

1

1 1 k+1 +1

uT u

k k l k




 
   S R I K  

 
Based on Eqs. (24)-(27), the error vectors 

1 1
ˆ

k k 

f
e and 

1 1
ˆ

k k 
e


, the error covariance matrices
+1 1

ˆ
k k 

f
P and

1 1
ˆ

k k 
P


 , 

and the Kalman gain matrix Kk+1 
can be derived as the same 

as those in Eqs. (14)-(19). 

In summary, the derivation of the proposed PKF-UI is 

completely based on the conventional PKF. The recursive 

procedures of the proposed PKF-UI are analogous to those 

of the conventional PKF. The flowchart of the proposed 

PKF-UI is shown in Fig. 1. Therefore, the proposed PKF-UI 

is a direct extension of the conventional PKF, which 

simplifies the complex derivations in previous last-squares 

estimation with unknown inputs (Yang et al. 2007). 

 

 

4. Probabilistic damage detection of structures with 
uncertainties based on PKF-UI 

 

Structural uncertainties are inevitable for civil 

infrastructures, it is necessary to develop approaches for 

probabilistic damage detection of structures.  

It is assumed that the probability distribution of 

uncertain parametric vector Θ is obtained when the 

information of the uncertain parameters is sufficient. Then, 

the estimation of ˆ
k k


 

and ˆ u

k k
f

 
can be expanded at the 

corresponding mean value  of uncertain parameters
 

by 

Taylor series expansion to the first order as (Li and Law 

2008, Law and Li 2010) 

k

ˆ ( )ˆ ˆ( )= ( ) | ( )k

k


 


=


 

 


   


 (28a) 

ˆ ( )ˆ ˆ( ) ( ) | ( )
u

u u k

k k


  


=

f
f f

 


   

  
(28b) 

where ˆ ( )k  and ˆ ( )u

kf  denote the identified structural 

identified parametric vector and unknown external inputs 

with the mean value  of the uncertain parameters, 

respectively, which can be obtained by the proposed PKF-

UI. 
ˆ ( )

|k


=







and 

ˆ ( )
|

u

k


=

f
 




 are the sensitivity 

matrix of the estimated ˆ
k k

 and ˆ u

k k
f with respect to the 

uncertain structural parametric vector Θ, which can be 

estimated by central difference approach.  

Based on Eq.(28a), the probability density functions of 

unknown structural parametric vector θ
 

can be achieved 

when probability distribution of the uncertain parametric 

vector Θ is known. 

A confidence level of the i
th

 identified structural 

parameter )u

i  in undamaged structural model is 1−αi 

(i=1,2,…,m), i.e. 

i iProb( ) ) 1u

iL       (29) 

where Li is lower bound of confidence interval for the i
th

 

identified structural parameter )u

i  . 

Then, the probabilities of damage existence (PDE) for 

the i
th

 identified structural parameter )D

i  is defined by 

(Wang et al. 2014) 

iPDE Prob( ) )D

i i L    (30) 

where )D

i   denotes the i
th

 identified structural 

parameter in the damaged structural model. 

Finally, structural damage extent (DE) for the i
th

 

identified structural parameter is defined by (Zhang et al. 

2011)  

u

u

) )
DE 100%

)

D

i i

i

i

 




 

 



 
 (31) 

 
 

5. Numerical example validations 
 
Some numerical examples are used to validate the 

proposed method. Two scenarios of linear observation 

equations and nonlinear observation equations are discussed 

in the following two examples, respectively. 

 
5.1 Example 1: Probabilistic damage detection of a 

shear frame with uncertainty of mass density 
 
A 10-story shear frame building shown in Fig. 2 is used 

as a numerical example to evaluate the proposed method. 

The deterministic parameters of the building are story 

stiffness as: ki=[2.713, 2.685, 2.657, 2.648, 2.639, 2.629, 

2.604, 2.589, 2.576, 2.558]×10
5
 N/m, (i=1,2,…,10).  

The density of structural material is considered as a 

random variable with a normal distribution with mean value 

ρ0=7850 kg/m
3
 and the standard deviation σ of 7% of the 

mean value. So, the mass of floor calculated by mean value 

ρ0 are mi(ρ0)=[67.96, 65.49, 63.08, 62.59, 61.92, 60.49, 

59.92, 58.42, 57.48, 56.84] kg (i=1,2,…,10). 
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Fig. 2 A 10-storey shear building under unknown input of 

ground excitation 

 

 

The frame is subjected to an unknown input of ground 

excitation in the K-T spectrum with the spectral density 

 

 

function in the form as 

2 2

02

2 2 2

1 4 ( )

( )

1 ( ) 4 ( )

g

g

g

g

g

S S







 


 




 
  

  

 
(32) 

in which ωg, ξg 
and S0 are the characteristic parameters of 

the ground motion. These parameters are selected as ωg 

=15.0 rad/s, ξg=0.6, S0=4.64×10
-4 

m
2
/rads

3
. The time 

duration of the simulated acceleration is 15s and the 

sampling frequency is 1000Hz. All the velocity and 

displacement and acceleration measurements at each floor 

are polluted by white noises with 5% noise-to-signal ratio in 

root mean square (rms).  

Rayleigh damping is adopted with C=αM+βK, where α 

and β are two unknown coefficients of Rayleigh damping. 

The unknown parametric vector to be identified in this 

example is θ= 1 2 1 2, , , , , , , ,
T

n nk k k k k k    (n=10). The 

unknown input of ground excitation in K-T spectrum will 

also be identified.  

Two structural damage patterns are considered herein. In 

the damage pattern A, the stiffness of the 3
th

 story is 

reduced by 10%. In the damage pattern B, both the stiffness  

 

Fig. 1 The flowchart of the proposed PKF-UI 
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Estimation of parameters and unknown inputs with linear observation equation
 

 

  

Estimation of parameters and unknown inputs with nonlinear observation 

equation  
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(a) Damage probability of each story for pattern A 

 
(b) Damage probability of each story for pattern B 

Fig. 3 Damage probability of each story for pattern A and 

pattern B 

 

 

of the 4
th

 story and the 7
th

 story are reduced by 10% and 

15%, respectively.  

In this numerical example, the observation equation is a 

linear one expressed as 

 
k+1 k+1 k+1 1 1

1 1 1 1

+

       = +

u u

k k
u u

k k k k 
 

   

 

   

y f

M K x Kx f

   

 
 (33) 

 

 

 
(a) PDF of the 1

st
 story 

 
(b) PDF of the 3th story 

Fig. 4 Probability density functions of some story for 

damage pattern A 

 

 

in which 

  1 1

k+1

1 1 1

[ ]

( )
      

k k

k k k

   

 

 

  





  

   
  

M K x Kx

K K
Mx x x




  

 (34) 

The identified story stiffness ki(ρ) is also a random  
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Fig. 5 Probability density functions of some story for damage pattern B 
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variable. Based on Eq. (28a), ki(ρ)
 
can be expanded at the 

mean value ρ0
 
by the Taylor series expansion to the first 

order as 

0

0 0( ) ( ) ( )i
i i

k
k k

 

   





  


 (35) 

in which 

0

ik

 







is estimated by method of central 

differences as: 

0

0 0( ) ( )
,

2

i i ik k k

 

   

 


    


 
( i =1,…,n, n=10) (36) 

Probability density functions of each story ki(ρ) can be 

 

 

 

 

achieved by Eq. (35) when probability distribution of 

density ρ is known. The confidence level of all the 

identified structural parameter is 1−αi=95%. 

The damage probability of each story for pattern A and 

pattern B are shown in Fig. 3(a) and 3(b), respectively. As 

seen from these figures, the damage probability of the 

damaged story is clearly higher than that of other stories. 

The probability density functions of some story ki(ρ)for 

damage pattern A and pattern B are shown in Fig. 4 and Fig. 

5, respectively. In these figures, the probability density 

functions of the damaged story changes obviously. 

The comparison of identified mean value of ground 

acceleration and exact value are shown in Fig. 6. It is 

clearly shown that the identified acceleration is closed to 

the exact value. 

 

Fig. 6 Comparison of identified mean value of ground acceleration and exact value 

Table 1 Undamaged and damaged structural parameters, DE and PDE for pattern A 

Story 

No. 

Undamaged 

Stiffness (N/m) 

Identified mean value of 

undamaged stiffness (N/m) 

Error 

(%) 

Damaged 

Stiffness (N/m) 

Identified mean value 

 of damaged stiffness (N/m) 

Error 

(%) 

DE 

(%) 

PDE 

(%) 

1 271300 271307 0.003 271300 271191 -0.04 0.04 5.14 

2 268500 268502 0.001 268500 268604 0.039 -0.04 5.13 

3 265700 265722 0.008 239130 239043 -0.036 10.04 97.09 

4 264800 264806 0.002 264800 264905 0.040 -0.04 5.14 

5 263900 263897 -0.001 263900 264021 0.046 -0.05 5.09 

6 262900 262930 0.011 262900 262812 -0.033 0.04 5.15 

7 260400 260434 0.013 260400 260307 -0.036 0.05 5.16 

8 258900 258810 -0.035 258900 258803 -0.038 0.00 5.01 

9 257600 257508 -0.036 257600 257789 0.073 -0.11 5.12 

10 255800 255665 -0.053 255800 255525 -0.107 0.05 5.18 

Table 2 Undamaged and damaged structural parameters, DE and PDE for pattern B 

Story 

No. 

Undamaged 

Stiffness (N/m) 

Identified mean value of 

undamaged stiffness (N/m) 

Error 

(%) 

Damaged 

Stiffness (N/m) 

Identified mean value of 

damaged stiffness (N/m) 

Error 

(%) 

DE 

(%) 

PDE 

(%) 

1 271300 271307 0.003 271300 271386 0.032 -0.03 5.12 

2 268500 268502 0.001 268500 268417 -0.031 0.03 5.11 

3 265700 265722 0.008 265700 265778 0.030 -0.02 5.13 

4 264800 264806 0.002 238320 238240 -0.034 10.03 97.07 

5 263900 263897 -0.001 263900 263957 0.021 -0.02 5.07 

6 262900 262930 0.011 262900 262973 0.027 -0.02 5.13 

7 260400 260434 0.013 221340 221275 -0.029 15.04 99.00 

8 258900 258810 -0.035 258900 258829 -0.027 -0.01 4.98 

9 257600 257508 -0.036 257600 257450 -0.058 0.02 5.08 

10 255800 255665 -0.053 255800 255587 -0.083 0.03 5.10 
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The Identified mean value of undamaged and damaged 

story stiffness, damage extent (DE) and damage probability 

(PDE) of each story for pattern A and pattern B are listed in 

Table 1 and Table 2, respectively. 

 
5.2 Example 2: probabilistic damage detection of a 

shear frame with uncertainty of damping ratio 
 
A 10-story shear building with uncertainty of damping 

ratio is used as a numerical example to evaluate the 

effectiveness of the proposed method. The deterministic 

parameters of the building are the floor mass and story 

stiffness as: mi=[67.955, 65.485, 63.079, 62.591, 61.918, 

60.485, 59.922, 58.418, 57.484, 56.837]×10 kg,
 
ki=[2.713, 

2.685, 2.657, 2.648, 2.639, 2.629, 2.604, 2.589, 2.576, 

2.558]× 10
4
 N/m (i=1,2,…,10). 

The first damping ratio ζ1 
and the second damping ratio 

ζ2 are selected as independent random variables and 

approximated as lognormal distributions with mean values 

and the standard deviations are 1 =1.0%  1 =20% 1  

and 2 =2.14%  2 =20% 2  respectively. 

The frame is also subjected to the same unknown input 

of ground excitation in the K-T spectrum as shown in 

example 1. All the velocity and displacement and 

acceleration measurements at each story are polluted by 

white noises with 5% noise-to-signal ratio in root mean 

square (rms). 

Rayleigh damping is adopted, C=αM+βK where α and β
 

are two coefficients of Rayleigh damping, which are the 

implicit functions of the identified parametric vector 

θ={k1,k2,…,kn}
T
. The unknown input of ground excitation in 

K-T spectrum will also be estimated, structural damage is 

assumed as the reduction of the 3
th

 story stiffness by 10%.  

In this numerical example, the observation equation is a 

nonlinear one expressed as 

 
 

k+1 k+1 k+1 k+1k+1

1 1 1 1

, , , +

      

u

u u

k k k k          

y = h x x f

M K x Kx f v

 


 (37) 

where α and β are two coefficients of Rayleigh damping 

defined by 

2 1

11 2

2 2
22 1

2 1

2
1 1

 
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  
 

 
           

  

 (38) 

ω1 
and ω2 are the first and second natural frequencies of the 

building, respectively. 

Then based on Eq. (23) 

1 k+1 k+1 k+1 k+1k

 


   
        

   
Mx Kx x x

 


   
 (39) 

where 
1

2

=




 
 
 

ω , the value of 


  
and 



  
can be 

worked out as 

 

 

2 2 2 3

2 1 2 1 2 1

2 2 2 3 2 2 2
21 2 1 2 1 2 1

22

( ) 2

    
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    
   
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 (40) 
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(41) 

Because of 

2( )j j  K M 0
 

( j  1,2) (42) 

where ,1 ,2 ,10=[ , , , ]T

j j j j  Φ , both sides of the Eq.(42) are 

made partial derivative by θi, and left multiplied by T

j . 

Then 

2
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jT

j j j

i i i



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K M
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in which 
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(45) 

Based on Eq. (44) 
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2 2 2
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(47) 

Eventually, the value of φk+1 
can be gain by substituting 

Eqs. (40), (41) and (47) to Eq. (39).  

The identified story stiffness ki(ζ1, ζ2) is also a random 

variable. Based on Eq. (28a), ki(ζ1, ζ2) could be expanded at 

the mean value 1  
and 2  by the Taylor series expansion 

to the first order as 

1 2 1 2 1 1

1 11
2 2

2 2
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 (48) 

In which 
1 11
2 2

ik

 
 

 







 

and 
1 12
2 2

ik

 
 

 






 could be 

calculated by method of central differences.  

Probability density functions of each story ki(ζ1, ζ2) can 

be achieved by Eq. (48) when probability distribution of ζ1 

and ζ2 are known . The confidence level in this example is 

the same as the example 1. 

The damage probability of each story is shown in Fig. 7. 

Obviously, the damage probability of damaged story is 

clearly higher than that of other story. The comparison of 

identified mean value of ground acceleration and exact 

value are shown in Fig. 8. It is clear that the identified mean 

value of ground acceleration is closed to the exact value. 
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Fig. 7 Damage probability of each story 

 

 

The identified mean value of undamaged and damaged 

story stiffness, damage extent (DE) and damage probability 

(PDE) of each story are listed in Table 3. It is clear that the 

stiffness of damaged story is significantly reduced and close 

to the exact value. 

 

 

6. Conclusions 
 

In this paper, probabilistic damage detection of 

structures with uncertainties under unknown excitations is 

investigated based on a proposed parametric Kalman filter 

with unknown inputs (PKF-UI) for the simultaneous 

identification of structural parameters and the unmeasured 

external inputs. The proposed PKF-UI is a direct extension 

of the conventional PKF with all analytical recursive 

formulations analogously derived. Two scenarios of linear 

 

 

 

observation equations and nonlinear observation equations 

are discussed, respectively. Such a straightforward 

derivation and formulation of PKF-UI is not available in the 

literature. 

The proposed PKF-UI is utilized for probabilistic 

damage detection of structures under unknown excitations 

by considering the uncertainties of structural parameters. 

Structural damage index and the damage probability are 

given from the statistical values of the identified structural 

parameters of intact and damaged structure. Some 

numerical examples have validated the good performances 

of proposed method in the probabilistic damage detection of 

structures with uncertainties under unknown excitations. 
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Fig. 8 Comparison of identified mean value of ground acceleration and exact value 
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