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1. Introduction 

 
The probabilistic framework for the fragility analysis of 

structures needs to include or reduce various uncertainty 

sources. These uncertainties are classified as two primary 

categories, specifically aleatoric and epistemic. Aleatoric 

uncertainty refers to that which is inherently random, or 

stems from the unpredictable nature of events, and thus can 

only be managed and not reduced. In contrast, epistemic 

uncertainty is that which is due to a lack of knowledge, and 

stems from incomplete data, ignorance, or modeling 

assumptions, and thus can be generally reduced with the 

acquisition of additional information and understanding 

(Ellingwood and Wen 2005). Aleatoric uncertainties are 

associated with the variability in the material properties of 

structural  components,  earthquake  source,  wave 

propagation,  and  soil  conditions.  Especially,  the 

randomness in ground motion characteristics can be 

addressed by choosing a ground motion set consisting of a 

sufficient number of earthquake records that are compatible 

with the seismic hazard at the site of interest. One of 

earthquake-related uncertainties is the randomness due to 
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the directionality of the incoming seismic wave (orientation 

of the wave propagation with respect to the bridge 

alignment axis). This uncertainty is typically regarded as 

not important although the direction of earthquakes 

significantly affects the response of bridge components 

(Taskari and Sextos 2015).  

Recently, a few studies have been conducted to examine 

the effect of ground motion directionality on seismic 

demands and bridge fragilities. Nielson (2005) and Padgett 

(2007) performed a sensitive analysis for the directionality 

effect on seismic demands for various classes of non-

skewed bridges in the Central and Southern United States 

(CSUS) by considering only two cases: the incidence angle 

of 0° and 90°. Torbol and Shinozuka (2012) examined the 

sensitivity of column fragilities for a non-skewed bridge by 

changing the earthquake incidence angle, ranging from 0° 

to 90° with an increment of 15°. The results revealed that 

the median of fragility curves has a 22~62% variation 

between the strongest and weakest direction, regardless of 

damage state. Taskari and Sexos (2015) developed multi-

angle, multi-damage fragility curves for a non-skewed 

bridge to examine the impact of the direction of seismic 

excitations on component demands. These authors applied 

stronger and weaker horizontal motions to the longitudinal 

and transverse axis, respectively, and then rotated the 

excitation angle ranging from 0° to 180° with a step of 15°. 

The results indicated that the ground motion directionality 

significantly affects component fragilities depending on the 

system and damage mode. Contrary to the results of the 

above studies, Mackie et al. (2011) indicated the negligible  
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effect of the incidence angle of seismic loads on the mean 

ensemble response of bridge components for non-skewed 

bridges subjected to a sufficiently large number of records. 

Following their work, Ramanathan (2012) did not treat the 

incidence angle as a major source of uncertainty in 

developing fragility curves for various bridge classes with 

non-skewed and symmetric geometry. Rather, this author 

randomly applied the fault-normal and fault-parallel 

components of the ground motion along the longitudinal 

and transverse axes of the bridges. 

Previous studies indicated that the presence of skewness 

increases excessive in-plain rotation, increasing the 

potential of pounding and superstructure unseating, one of 

critical failure modes (Sullivan and Nielson 2010, Kaviani 

et al. 2014, Yang et al. 2015, Ramanathan et al. 2015, Seo 

and Linzell 2012, 2013a, 2013b, Roger and Seo 2016). 

Additionally, Torbol and Shinozuka (2012) stated that a 

larger variation in the median of fragility curves due to 

ground motion directionality is expected for irregular 

structures.  However,  the  effect  of  ground  motion 

directionality is not yet fully understood for skewed 

bridges. Few studies on the effect of ground motion 

directionality on fragilities of skewed bridges have been 

conducted (Deepu et al. 2014, Bhatnagar and Banerjee 

2015). Deepu et al. (2014) examined the impact of ground 

motion directionality on fragilities of column and deck 

unseating for skewed bridges. However, their work 

accounted for only two cases, as done by Nielson (2005); 

(1) the first and second earthquake components are applied 

along the longitudinal and transverse, respectively, direction 

of the bridges; and (2) two earthquake components are 

interchanged for application in the longitudinal and 

transverse direction. Bhatnagar and Banerjee (2015) derived 

 

 

column fragilities for various bridge models modified with 

different skew angles (from 0° to 50° with an increment of 

10°) based on a representative skewed bridge with different 

levels of earthquake incidence angle (0° to 180° with an 

increment of 15°). The results indicated that the maximum 

rotation of columns does not exhibit any distinct trend with 

varying skew angles and incidence angles. However, the 

above studies have dealt with one or two components such 

as column and deck unseating for a bridge type. 

From the review of previous studies mentioned above, 

none of researchers examine the effect of ground motion 

directionality on the fragility of multiple bridge components 

and system coupled with the consideration of different 

bridge types such as skewed bridges. To present the 

potential effect of ground motion directionality on the 

fragility of skewed bridges, two four-span reinforced 

concrete (RC) box-girder bridges with typical 

configurations of California highway bridges are selected as 

representative bridges and modeled in OpenSees (McKenna 

2011). For the bridges, a set of bridge models are extended 

in accordance with a skew angle of 0° to 60° with an 

increment of 15°. The upper limit of skew angle is selected 

as 60° because bridges on the straight alignments with 

support skews exceeding this degree is modeled by using a 

grillage or shell modeling scheme (Caltrans 2014). All 

bridge models are subjected to a suite of ground motions 

with possible earthquake incidence angles that can be 

imposed to the selected bridges. Component and system 

fragility characteristics for skewed bridges are compared as 

a function of earthquake incidence angle. Finally, a 

recommendation to account for the randomness due to the 

ground motion directionality in the fragility assessment is 

made in the absence of the predetermined earthquake 

 

Fig. 1 Plan and elevation of representative bridges: (a) BRIDGE-I and (b) BRIDGE-S 
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incidence angle. This research is one of studies examining 

significant important parameters presented in Mangalathu et 

al. (2016) for probabilistic seismic risk assessments.  

 

 

2. Description and numerical modeling of bridges 
 

2.1 Description of representative bridges 
 

To examine the effect of ground motion directionality on 

bridge fragilities, this research selects two single-frame 

four-span RC box-girder bridges designed or constructed in 

California prior to 1971: an integral abutment bridge 

(hereafter, called BRIDGE-I) and a seat-type abutment 

bridge (hereafter, BRIDGE-S). The two bridges are selected 

to examine which abutment type is sensitive to earthquake 

incidence angle. The plan and elevation of these bridges are 

illustrated in Fig. 1. Both bridges have two-column bents. 

BRIDGE-I has interior (column) bents with shallow 

foundations, while BRIDGE-S has interior bents with deep 

foundations. BRIDGE-S has elastomeric bearing pads on a  

 

 

seat width of 457 mm. In addition, the bridges have circular 

columns, abutments with deep foundations, the concrete 

compressive strength of 27.6 MPa, and the yield strength of 

reinforcement of 331 MPa (Grade 40). 

The selected bridges are called representative bridges, 

which are used to develop the bridge model matrix based on 

the skew angle (α). To isolate the impact of earthquake 

incidence angle (θ) on the seismic performance of skewed 

bridges from all other impacts due to bridge components, 

cross-sectional properties and structural geometry for all 

bridges in the model matrix is assumed to be the same as 

the associated representative bridge, although in reality, 

bridges with different skew angles may have different 

cross-sectional properties and structural (system and 

component) geometry. 

 

2.2 Description of representative bridges 
 

On the basis of the bridge information shown in Fig. 1, 

the concrete bridges are modeled accounting for the elastic 

or inelastic behavior of multiple bridge components. Fig. 2  

 

 
 

 

Fig. 2 Numerical model of bridge components 
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illustrates the numerical model of multiple components in 

the bridges built in OpenSees (McKenna 2011). The 

multiple components included here are decks, columns, 

abutments, and/or expansion joints. 

Rayleigh damping of 5%, a typical value for concrete 

structures, is adopted in dynamic analyses for the first and 

second vibration modes. 

Each deck is modeled as a spine with eight elastic beam-

column elements along the centerline of the bridges. Per 

Caltrans (2013a), their effective flexural stiffness for RC 

decks is 0.625 times the gross stiffness to reflect cracking, 

assuming that the deck has moderately reinforced sections. 

The torsional rigidity for the cellular deck is computed 

using the rational shear flow theory. To represent the 

diaphragms and expansion joints, the transverse beam 

elements are modeled using rigid and massless elements. 

The mass density of concrete is assumed to be 2400 kg/m
3
. 

This density is then increased by 10% to account for 

additional mass on the bridge due to components such as 

railing. 

The inelastic response of columns is modeled using nine 

fiber-type displacement-based beam-column elements along 

with rigid links at the deck-column and footing-column 

connections. In the fiber sections, the Hysteretic material 

model is used to simulate the longitudinal reinforcement 

with a hardening factor of 0.008, and the Concrete04 

material model (Mander et al. 1988) is used to include the 

tensile behavior of unconfined and confined concrete. The 

column-footing connection is differently modeled according 

to their reinforcing details; BRIDGE-I is assumed to be 

fixed at the column base, but BRIDGE-S is assumed to be 

pinned at the base. Additonally, to account for the bar-slip 

of longitudinal reinforcement in columns, a rotational bar-

slip spring is included using a zero-length rotational spring 

at the ends of the columns. To simulate this response, the 

elastic rotational stiffness by Elwood and Eberhard (2009) 

is selected. In this model, the bond stress is assumed to be 

uniform (adopted as 0.8fc
0.5

, where fc is the concrete 

compressive strength in MPa). Thus, the zero-length bar-

slip rotational spring is adopted for the top and bottom of 

columns with the fixed-base connection and only for the top 

columns with pin-base connection. Additionally, the 

potential of column shear failure is initially checked by 

comparing the displacement-based shear strength model 

developed by Kowalsky and Priestley (2000) and the 

pushover curve, as shown in Fig. 3. The columns in 

BRIDGE-I are regarded as double-bending ones for both 

 

 

longitudinal and transverse directions while the columns in 

BRIDGE-S are considered single-bending ones for both 

directions. This comparison indicates that no shear failure 

occurs for all bridge types. Thus, this research does not 

include the shear failure model. Instead, the effective 

stiffness of columns based on the elasticity theory is 

employed to account for elastic shear deformations. The 

translational and rotational masses are lumped at the nodes 

of the column elements. The shallow foundations for 

BRIDGE-I are modeled using elastic translational and 

rotational springs following the recommendation of ASCE 

41-13 (2014). On the other hand, the pile foundations for 

BRIDGE-S are also modeled using lumped linear 

translational and rotational springs. The effective horizontal 

stiffness per pile is assumed as 14 kN/mm for concrete piles 

(Ramanathan 2012). The effective rotational stiffnesses for 

a pile group are estimated using the geometry of the piles 

and the vertical stiffness of a pile, which is calculated based 

on its allowable (axial) design capacity following the 

recommendations of Caltrans (2013b). In addition, the 

translational and rotational mass of the pile caps are lumped 

at the column-footing connection. 

Each abutment is simulated using five zero-length 

nonlinear elements to capture the inelastic response for the 

bridge alignment axis (longitudinal) and for its 

perpendicular axis (transverse). The longitudinal response 

consists of passive and active actions. The passive and 

active resistances are assumed to be provided by the 

composite action of soil and piles, and piles alone, 

respectively. The transverse resistance is assumed to be 

provided by the piles. The hyperbolic soil model of 

Shamsabadi et al. (2010) is used to simulate the abutment 

backwall soil in the passive action, while the trilinear spring 

model in Jeon et al. (2016) is used to simulate the pile 

response by using the translational stiffness of the pile. 

Moreover, the soil and pile springs are rotated with respect 

to the abutment skew. To model this abutment skew, the 

hyperbolic soil model of Shamsabadi et al. (2010) is 

modified assuming that the direction of the backfill passive 

pressure is perpendicular to the backwall. Following the 

work of Kaviani et al. (2014), the stiffness/strength 

variation factor for a given skew angle can be computed as 

0.3·tan(α)/tan(60°). Here, the largest skew angle considered 

is 60°, and the coefficient 0.3 refers to the maximum 

stiffness/strength variation. In addition, translational and 

rotational masses of the abutments are lumped at the 

transverse beam nodes on the abutments. 

 
Fig. 3 Initial check of column shear failure potential 
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The modeling of expansion joints is applicable only for 

BRIDGE-S. An expansion joint at the deck-abutment 

connection is composed of explicit components (bearings 

and shear keys) and implicit components (pounding 

between the deck and abutment). To capture this composite 

behavior, an expansion joint model is developed by 

combining component response models; each expansion 

joint has five elastomeric bearing elements (longitudinal 

and transverse), five pounding elements (longitudinal), and 

one shear key element (transverse). The nonlinear response 

of elastomeric bearings is simulated using an elastic-

perfectly plastic model with a shear modulus of 1.14 MPa 

recommended by Caltrans (2013a). The initial stiffness is 

calculated as the product of the shear modulus and the pad 

area (254 mm×406 mm) divided by the bearing height (38 

mm). The yield force is calculated by multiplying the 

normal force (obtained from gravity load analysis) acting on 

the bearing with the coefficient of friction of the pad (here, 

0.4). Additionally, the pounding effect is simulated using a 

nonlinear compression element with the gap based on the 

model of Muthukumar and DesRoches (2006). This bridge 

has two external shear keys per abutment to prevent 

excessive transverse movement of decks. The nonlinear 

response of an external shear key is simulated on the basis 

of experimental results by Silva et al. (2009). The shear key 

is approximated using a tri-linear material model with a gap 

of 13 mm. The maximum force is estimated as 2520 kN 

using a strut-and-tie model. The associated displacement is 

the gap plus 5 mm. The yield force is assumed to be 80% of 

the maximum force and the associated displacement is the 

gap plus 32 mm. The maximum displacement is the gap 

plus 160 mm and the corresponding force is zero. 

 

 

3. Seismic fragility modeling and ground motion 
directionality 
 

3.1 Seismic fragility modeling 
 

A seismic fragility curve, defined as the probability of a 

bridge exceeding a specific limit state given a certain 

ground motion intensity measure (IM), plays a significant 

role in the seismic risk assessment of a transportation 

network. A fragility function is typically calculated through 

the convolution of a seismic demand model, called a 

probabilistic seismic demand model (PSDM), with a 

capacity-based limit state model. Under the assumption that 

both demand and limit state models follow a lognormal 

distribution, the fragility function for a component (Pf,comp) 

can be computed as 
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where D and C are the seismic demand and structural 

capacity, respectively; SD and βD|IM are the median and 

dispersion, respectively, of the seismic demand conditioned 

on the IM (SD is called the median demand model); SC and 

βC are the median value and dispersion, respectively, of the 

structural capacity; and Φ[•] is the cumulative normal 

distribution function. The median demand of the PSDM can 

be obtained through a linear regression analysis for ln(D)-

ln(IM) pairs 
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where a and b are the regression coefficients. From the 

regression analysis, the dispersion of the model (βD|IM) can 

be expressed as 

     


N

i DiNIMD Sd
1

2

2
1

| lnln        (3) 

where di is the ith realization of the demands obtained from 

dynamic analyses and N is the number of dynamic analyses. 

Substituting Eq. (2) with Eq. (1) and rearranging the 

formulation, Eq. (1) can be rewritten as 
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where   baSCcomp /lnln   and bCIMDcomp /22

|    

are the median and dispersion, respectively, of the 

component fragility curve for a specific limit state. 

The bridge system fragility is developed by using a joint 

probabilistic seismic demand model (JPSDM). This 

approach implies that there is some level of correlation 

between individual component demands for a given ground 

motion, and thus the system demand simply becomes the 

joint demand on the individual components. The JPSDM is 

developed in the log-transformed space by using the 

transformed marginal distribution of individual components 

and developing the covariance matrix through the 

evaluation of the correlation coefficients between the 

transformed demands. Given the limit state models and the 

JPSDM, the probability of the system failure is calculated 

across various ranges of IM through Monte Carlo 

simulation by adopting the reliability of a series system (if 

any one of the components fails, the system fails). In this 

simulation, the realizations of the demand and capacity are 

compared to calculate the probabilities of reaching the limit 

states of individual components. Finally, the results of the 

integration are in the form of the median and dispersion 

characterizing the bridge system fragility (Pf,sys) through a 

regression analysis:  
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where λsys and βsys are the median and dispersion, 

respectively, of the system fragility curve for a specific limit 

state. 

 

3.2 Seismic fragility implementation 
 

This research employs the cloud approach, which uses 

unscaled ground motions, to account for realistic ground 

motions in the development of fragility curves. 

Additionally, this research does not account for the 

uncertainty in material properties because (1 ) the 

contribution from this source to the overall uncertainty is 

found to be small compared to the effect of the variability in 

the ground motions (Ellingwood et al. 2007, Jeon et al.  
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Table 1 Limit state models of EDPs 

Component 

LS1 

(slight) 

LS2 

(moderate) 

LS3 

(extensive) 

LS4 

(complete) 

SC βC SC βC SC βC SC βC 

Column drift (%), θc 0.7 0.35 1.5 0.35 2.5 0.35 5 0.35 

Abutment 

displacement 

(mm) 

Passive, δp 76 0.35 254 0.35 – – – – 

Active, δa 38 0.35 102 0.35 – – – – 

Transverse, 

δt 
25 0.35 102 0.35 – – – – 

Unseating displacement, 

δu (mm) 
– – – – 152 0.35 305 0.35 

Bearing displacement, 

δb (mm) 
25 0.35 102 0.35 – – – – 

 

 

2015) and (2) this research only accounts for the impact of 

earthquake incidence angle on the bridge response, 

excluding the impacts from other uncertainty sources. 

The geometric mean of peak ground accelerations of 

horizontal components (hereafter, PGA=(PGAX·PGAZ)
0.5

) 

is selected as the intensity measure, which is widely used in 

the fragility assessment of the bridges (Nielson 2005, 

Padgett 2007, Jeon et al. 2016). Also, the vertical 

component, one of orthogonal components of an earthquake 

is not included in the current study. To reflect the 

vulnerability of multiple components, the peak response of 

the components (so-called engineering demand parameters, 

EDPs) are recorded in dynamic analyses. These responses 

include the column drift (θc in %), unseating deformation 

related to superstructure collapse (δu in mm), and bearing 

deformation (δb in mm) as well as passive and active, and 

transverse abutment deformations (δp, δa, and δt in mm). For 

the selected EDPs, limit state models also follow a two-

parameter lognormal distribution (median SC and dispersion 

βC) and are summarized in Table 1. This study uses various 

limit state models for the column proposed by Dutta and 

Mander (1998), and for the abutment actions, unseating, 

and elastomeric bearings proposed by Ramanathan (2012). 

For all EDPs, the dispersion βC is assumed to be 0.35. The 

columns and deck unseating are regarded as primary 

components related to global collapse, while others are 

referred to as secondary components. 

 

3.3 Ground motion directionality 
 

The orientation of two horizontal (orthogonal) 

components of an earthquake applied to bridges is defined 

in Fig. 4. This research defines the earthquake incidence 

angle (θ) as the angle between the fault-parallel component 

(EQP) and the global X-direction. In this research, θ is 

rotated while maintaining original bridge models (without 

the rotation transformation). This figure shows the 

orthogonal ground motions (EQP and EQN) and associated 

transformed ground motions (EQX and EQZ) imposed as 

input motions for dynamic analyses. Since, the bridge 

models are associated with the global axes (X- and Z-

directions), the transformed ground motions are determined 

by the decomposition of fault-parallel (EQP) and fault-

normal (EQN) ground motions. Based on the structural 

geometry such as the configuration of components, 

columns’ locations, and the reinforcement arrangement in  

 

Fig. 4 Definition of earthquake incidence angle 

 

 

Fig. 5 Response spectra of 320 ground motions: (a) 

response spectra and (b) histogram of PGAs 

 

 

the column section, the fragility assessment of the bridges 

are performed for the interval 0°≤θ<180° with an increment 

of 15°, since the seismic demand of their bridge 

components subjected to the earthquake with θ are the same 

as that under earthquake with θ + 180°. 

The ground motion suite must include a wide range of 

IMs representative of seismic hazard at the area of interest. 

To achieve this goal, this research adopts the ground motion 

suite used by Ramanathan (2012). This ground motion suite 

includes the ground motion suite developed by Baker et al. 

(2011) (160-pair motions) plus the Baker’s suite scaled by 

2.0 (160-pair motions). The Baker’s ground motion suite 

was developed as part of the PEER Transportation Research 

Program to analyze a variety of structural and geotechnical 

systems potentially located in active seismic regions such as 

California. The scale factor 2.0 was selected to reflect some 

high seismic zones in California. Fig. 5 shows the response 

spectra and PGA distribution for the expanded ground 

motion set without rotation transformation along with its 

mean and median response spectrum. Here, the spectral 

accelerations (Sa) and PGAs are the geometric mean of 

those of two horizontal ground motions. In preparation for 

the unknown direction of future seismic events and for 

convenience, all of strike-parallel and strike-normal 

components are initially applied to the global X and Z 

directions, respectively. These orthogonal components are 

then simultaneously rotated with respect to an earthquake 

incidence angle. 

 

 

4. Effect of ground motion directionality on bridge 
fragility characteristics 
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Based on the monitored results for the numerical models 

of the bridges modified with five levels of skew angle (α), 

the PSDM of bridge components is developed using Eqs. 

 

 

 

(2) and (3). Then, using the PSDMs and the capacity-based 

limit state models, component fragility curves for all 

combination of earthquake incidence angle (θ) and skew 

 
(a) Median value of fragility curves 

 
(b) Dispersion of fragility curves 

Fig. 6 Comparison of fragility characteristics for BRIDGE-I with respect to incidence angle 

 
(a) Median value of fragility curves 

 
(b) Dispersion of fragility curves 

Fig. 7 Comparison of fragility characteristics for BRIDGE-S with respect to incidence angle 
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angle (α) of the two bridge types are computed.  

Accordingly, joint PSDM and Monte Carlo simulation are 

introduced to develop their associated system fragility 

curves. The effect of θ on fragilities of the bridges is 

examined in terms of the variability of two fragility 

parameters, median and dispersion of fragility curves (λ and 

β). Here, the median value of a fragility curve is called the 

median PGA (in g), which is defined as the PGA at a 50% 

probability of reaching a specific limit state. Figs. 6 and 7 

compare the median value and dispersion of system and 

component fragility curves for the two bridge types across 

multiple limit states with various levels of θ. Note that the 

angle corresponding to the minimum median PGA is the 

most vulnerable case among all θs examined. 

For BRIDGE-I (Fig. 6(a)), as the limit state is higher, θ 

increases the variation in the median PGA for the system 

and all components. This is due to the fact that the nonlinear 

response of components increases the dispersion of their 

seismic demand (βD|IM). For the system and columns, θ does 

not significantly affect the median PGA in that the 

difference between the maximum and minimum median 

PGAs is 4~9%, and their coefficient of variation (COV) is 

0.013~0.018, 0.018~0.024, 0.022~0.026, and 0.027~0.031 

for LS1 through LS4, respectively. Also, the median PGAs 

for the system and columns yield a similar value at the same 

limit state regardless of α. For the passive abutment action, 

θ considerably increases the COV of the median PGA, and 

the difference between the maximum and minimum median 

PGAs is 12~21% for LS1 and 18~30% for LS2. Also, the 

variation in the median PGA monotonically increases with 

the increase of α. For example, in the case of LS1, the COV 

of the median PGA increases from 0.054 to 0.083 for the 

bridges with α=0° to 60°. For the active abutment action, θ 

significantly increases the median PGA (0.027~0.036 for 

LS1 and 0.045~0.065 for LS2). The COV of the median 

PGA is almost constant for 0°≤α≤30°, but it is significantly 

reduced with the increase of α beyond α=45°. For example, 

in the case of LS2, the COV of the median PGA is 0.065 for 

α=30° and 0.045 for α=60°. The COV of the median PGA 

for the transverse abutment action is not affected by α, 

maintaining the COV of 0.013~0.016 for LS1 and the COV 

of 0.030~0.032 for LS2. θ minimally affects the variation of 

the median PGA in that the difference between the 

maximum and minimum median PGAs is 4% for LS1 and 

9% for LS2. A relative small variation of COV for the 

median PGA of the system is attributed to the fact that the 

columns and transverse abutment actions having smaller 

COVs of their median PGA dominate the system 

vulnerability. As shown in Fig. 6(b), θ results in a higher 

variation in the dispersion of the fragility curves for the 

passive and active abutment actions than that for the 

system, column, and transverse abutment action. 

Additionally, the dispersion of the fragility curves for the 

passive and active abutment actions is minimally fluctuated 

by α in that the difference between maximum and minimum 

dispersions of the fragility curves is 10% for the passive 

action and 6% for the active action. In these EDPs, the 

higher and lower dispersion variations occur at α=30°, and 

α=60°, respectively. 

For BRIDGE-S (Fig. 7(a)), θ does not have any 

relationship with the limit state for the system in terms of 

the variation in the median PGA. The highest variation in 

the median PGA occurs at LS1, while the lowest variation 

occurs at LS2. As the limit state becomes higher, the COV 

of the median PGA increases for the column, passive and 

active abutment actions, and deck unseating at the same 

degree of α, but the COV of median PGA decreases for the 

transverse abutment action and bearing at the same degree 

of α except for α=60°. The effect of θ on the variation in the 

median PGA for the system and column is less significant 

than that for BRIDGE-I, irrespective of α. The difference 

between the maximum and minimum median PGAs is 

2~8% for the system and 2~7% for the column. 

Additionally, θ has a more significant effect on the three 

abutment actions and deck unseating. For example, for the 

passive action, the COV of median PGA is 0.015~0.025 at 

LS1 and 0.025~0.039 at LS2, and the difference between the 

maximum and minimum median PGAs is 4~10%. For the 

active action, the COV of median PGA is 0.024~0.148 at 

LS1 and 0.024~0.113 at LS2, and the difference between the 

maximum and minimum median PGAs at LS2 ranges from 

6% for α=60° to 45% for α=15°. In the case of the 

dispersion of fragility curves presented in Fig. 7(b), only the 

variation in the dispersion of the unseating is monotonically 

reduced with the increase of α. The three abutment actions 

and deck unseating have a relatively higher COV of the 

dispersion than the system, column, and bearing. This is 

associated with their increased demand dispersion (βD|IM) 

due to the higher record-to-record variability of ground 

motion intensity. 

In conclusion, θ more significantly affects the fragilities 

for the integral abutment bridge than the seat-type abutment 

bridge. This might be the difference in load transfer 

mechanism due to the presence of bearings in seat-type 

abutments. The integral abutment directly engages the 

backfill soil during earthquakes while the seat-type 

abutment provides a bearing support to the superstructure. 

In other words, the seat-type abutment allows the 

superstructure movement independent of the abutment 

while the integral abutment does not. Thus, the earthquake 

incidence angle affects the abutment response for both 

bridge types, but the abutment response completely 

influences the superstructure by the presence of expansion 

joints. θ has a minimal effect on the fragilities of the system 

and column for all the bridges, but more significantly 

influences on the fragilities of the abutment actions. Finally, 

for the two bridge types, the incidence angle indicating the 

most vulnerable case typically varies with components, 

skew angles, and limit states. This is associated with 

different values of two characteristics (median demand and 

demand dispersion) of PSDMs under different conditions 

(different statistical errors resulting from the overall trend 

of linear regression from demand data). 

 

 

5. Comparison of fragility results with previous 
studies 
 

As mentioned in Introduction, the Torbol and Shinozuka 

(2012) study only developed column fragility curves for a  
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non-skewed integral abutment bridge for the influence of 

earthquake incidence angle. The results indicated that the 

earthquake incidence angle significantly affects the median 

value of fragility curves. However, it is observed from this 

research that the earthquake incidence has no or little 

impact on the median value of column fragilities for all 

bridge types. This would be due to the difference of 

modeling techniques (especially the lack of accounting for 

the abutment and use of different ground motions). Taskari 

and Sextos (2015) compared the median of column fragility 

curves for a non-skewed seat-type abutment bridge with 

respect to earthquake incidence angle. The results revealed 

that the median difference between the most and least 

vulnerable columns is 33~45%. On the other hand, for the 

same type of bridge in this study, the column vulnerability 

slightly changes due to the earthquake incidence angle (Fig. 

7). This might be mainly associated with the use of different 

ground motion suite and use of different intensity measure 

(square root of sum of squares of two horizontal PGAs). 

Bhatnagar and Banerjee (2015) compared the median value 

of column fragility curves of a seat-type abutment bridge 

with different skew angles. Here, the COV of median values 

due to the earthquake incidence angle are compared for the 

same bridge type used in this research. Their COV is 0.04 

(minor damage) to 0.14 (severe damage) for the work of 

Bhatnagar and Banerjee (2015) while the COVs are almost 

constant regardless of incidence angle, skew angle, and 

limit state for this research. For both studies, the COV of 

median values associated with the earthquake incidence 

angle is not directly related to the skew angle. In summary, 

the previous studies highlighted the importance of 

earthquake incidence angle for column fragilities. However, 

the results observed from this research indicate that this 

effect is negligible. Moreover, because the previous studies 

compared only column fragilities with different earthquake 

incidence angles, other components, especially abutments 

affected by the earthquake incidence angle observed in this 

research, cannot be compared. Additionally, the previous 

studies mentioned above did not directly address the effect 

 

 

of ground motion directionality on the dispersion of 

fragilities. 

 

 

6. Randomness due to ground motion directionality 
in fragility assessment 
 

In the absence of the predetermined incidence angle of 

earthquakes, the ground motion directionality can be treated 

as a random variable to develop bridge fragility curves. This 

could be practically used for computing failure probabilities 

of bridges against future earthquakes. Nielson (2005) 

assumed the incidence angle as a uniform distribution with 

[0°, 360°] to assess the fragility of bridge classes in the 

CSUS, and Ramanathan (2012) treated the effect of ground 

motion directionality as a random variable following a 

Bernoulli distribution to develop the fragility of bridge 

classes in California. In the Bernoulli distribution, “0” 

indicates that the fault-normal and fault-parallel 

components of a ground motion are applied along the 

longitudinal and transverse directions of the bridges, while 

“1” indicates that two components are interchanged for 

application in the longitudinal and transverse directions. 

This research examines which distribution provides a better 

or more practical estimation of fragility curves. For the 

uniform and Bernoulli distributions, 320 realizations for the 

ground motion directionality are sampled using the Latin 

Hypercube sampling technique, and each realization is 

randomly paired with an earthquake in the ground motion 

suite. Fig. 8 shows the comparison of system fragility 

curves for the non-skewed and skewed bridges. 

Additionally, the fragility curves from the random variable 

assumptions are compared with the upper bound fragility 

curves. The upper bound corresponds to the maximum 

failure probability at each IM for all incidence angles 

examined. For all bridges, the uniform distribution-based 

fragility curves are typically closer to the upper bound 

fragility curves and more conservative than the Bernoulli 

distribution-based fragility curves, irrespective of skew 

 
Fig. 8 System fragility curves with different treatments of earthquake incidence angle 
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angle. Thus, if the earthquake incidence angle is uncertain, 

the uniform distribution of the incidence angle is more 

appropriate to assess the seismic vulnerability of these types 

of bridges. Only system-level fragility of the bridges is 

addressed in this section, but the component fragility curves 

are found to have the same trend. However, these results are 

not definitive, and thus other bridge types or bridge systems 

should be investigated to examine the effect of incidence 

angle. 

 

 

7. Conclusions 
 

This paper describes the effect of earthquake incidence 

angle (θ) on seismic demands and fragilities of skewed 

concrete bridges. For this purpose, three four-span bridges 

are selected, which have typical configurations in 

California; an integral abutment bridge (BRIDGE-I) and a 

seat-type abutment bridge (BRIDGE-S). To achieve this 

goal, the two bridges are modeled in OpenSees (McKenna 

2011), and various degrees of incidence angle (0°≤θ<180° 

with an increment of 15°) are selected:. Additionally, the 

bridge models are modified with five levels of skew angle 

(0°≤α≤60° with an increment of 15°) to examine the impact 

of θ on the response of skewed bridges. For all bridge 

models, their demand models and fragilities are developed 

using a traditional fragility modeling approach and the 

resulting conclusions are drawn in the following: 

 As α increases, θ significantly affects the 

vulnerability of the passive and active abutment action 

for BRIDGE-I and the vulnerability of the transverse 

abutment action for BRIDGE-S. Typically, θ minimally 

influences the vulnerability of the system and columns, 

regardless of α. 

 The effect of θ on the bridge vulnerability is closely 

related to the abutment type. The median demands and 

fragilities for BRIDGE-I are more significantly affected 

by θ than those for BRIDGE-S. Additionally, θ has little 

influence on the demand dispersion for all components 

of all bridge types. 

 For all bridge types, θ resulting in the highest 

median demands and failure probabilities generally 

varies with components, skew angles, and limit states. 

Additionally, if θ is uncertain, the uniform distribution 

of the incidence angle can be chosen for the selected 

bridges. Therefore, it is recommended that the uniform 

distribution be used for practical applications. To ascertain 

this observation, the consideration of the randomness due to 

the directionality in fragility assessment will be examined 

for other bridges or bridge systems in future work. 
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