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1. Introduction 
 

In recent years, astonishing advances in science and 

technology have motivated researchers towork on 

newstructural materials. Functionally graded materials 

(FGMs) are classified as novel composite materials which 

are widely used in aerospace, nuclear, civil, automotive, 

optical, biomechanical, electronic, chemical, mechanical, 

and shipbuilding industries. By gradually varying the 

volume fraction of constituent materials, their material 

properties exhibit a smooth and continuous change from 

one surface to another, thus eliminating interface problems 

and mitigating thermal stress concentrations. FGMs now 

have been regarded as one of the most promising candidates 

for future intelligent composites in various engineering 

sectors such as aerospace, fast computers, biomedical 

industry, environmental sensors, etc. FGMs may possess a 

number of advantages such as high resistance to 

temperature gradients, significant reduction in residual and 

thermal stresses, and high wear resistance. 

Due to the increased relevance of the FGMs structural 

components in the design of engineering structures, many 

studies have been reported on the static, and vibration 

analyses of functionally graded (FG) beams. Li (2008) 

investigated static bending and transverse vibration of FGM 

Timoshenko beams, in which by introducing a new 

function, the governing equations for bending and vibration 

of FGM beams were decoupled and the deflection, 

rotational angle and the resultant force and moment were 

expressed only in the terms of this new function. Simsek 
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and Kocaturk (2009) have investigated the free and forced 

vibration characteristics of an FG Euler-Bernoulli beam 

under a moving harmonic load. Simsek (2010a) studied the 

free vibration analysis of an FG beam using different higher 

order beam theories. In a recent study, Simsek (2010b) has 

studied the dynamic deflections and the stresses of an FG 

simply-supported beam subjected to a moving mass by 

using Euler-Bernoulli, Timoshenko and the parabolic shear 

deformation beam theory. Thai et al. (2012) has studied the 

bending and free vibration of functionally graded beams 

using various higher-order shear deformation beam 

theories. Hadji et al. (2016) investigated the bending 

analysis of FGM plates using a sinusoidal shear 

deformation theory. Hadji (2017) used a sinusoidal shear 

deformation theory of functionally graded plates. 

In this paper, a refined shear deformation beam theory is 

used to analyze the static characteristic of functionally 

graded beams. The present refined theory is based on 

assumption that the in-plane and transverse displacements 

consist of bending and shear components, in which the 

bending components do not contribute toward shear forces 

and, likewise, the shear components do not contribute 

toward bending moments. The most interesting feature of 

this theory is that it accounts for a parabolic variation of the 

transverse shear strains across the thickness and satisfies the 

zero traction boundary conditions on the top and bottom 

surfaces of the beam without using shear correction factors. 

The material properties of FG beam are assumed to vary 

according to a power law distribution of the volume fraction 

of the constituents. To simplify the governing equations for 

the FG beams, the coordinate system is located at the 

physical neutral surface of the beam. This is due to the fact 

that the stretching - bending coupling in the constitutive 

equations of an FG beam does not exist when the physical 

neutral surface is considered as a coordinate system  
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Fig. 1 The position of middle surface and neutral surface for 

a functionally graded beam 

 

 

(Yahoobi and Feraidoon 2010, Bouremana et al. 2013, 

Klouche Djedid et al. 2014). Thus, the present refined beam 

theory based on the exact position of neutral surface 

together with virtual work principle is employed to extract 

the equilibrium equations of the FG beams. Analytical 

solutions are obtained for simply supported beam, and its 

accuracy is verified by comparing the obtained results with 

those reported in the literature. 

 

 

2. Mathematical formulation 
 

Consider a functionally graded beam with length L and 

rectangular cross section b×h, with b being the width and h 

being the height. Since in functionally graded beams the 

condition of mid-plane symmetry does not exist, the 

stretching and bending equations are coupled. But, if the 

origin of the coordinate system is suitably selected in the 

thickness direction of the FG beam so as to be the neutral 

surface, the analysis of the FG beams can easily be treated 

with the homogenous isotropic beam theories, because the 

stretching and bending equations of the beam are not 

coupled. In order to determine the position of neutral 

surface of FG beams, two different datum planes are 

considered for the measurement of z, namely, zms and zns 

measured from the middle surface and the neutral surface of 

the beam, respectively, as shown in Fig. 1. 

The volume-fraction of ceramic VC is expressed based 

on zms and zns coordinates as 
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Material non-homogeneous properties of a functionally 

graded material beam may be obtained by means of the 

Voigt rule of mixture (Suresh and Mortensen 1998). Thus, 

using Eq. (1), the material non-homogeneous properties of 

FG beam P, as a function of thickness coordinate, become 
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where PM and PC are the corresponding properties of the 

metal and ceramic, respectively, and k is the material 

parameter which takes the value greater or equal to zero. 

Also, the parameter C is the distance of neutral surface from 

the middle surface. In the present work, we assume that the 

elasticity modules E is described by Eq. (2), while Poisson’s 

ratio v, is considered to be constant across the thickness. 

The position of the neutral surface of the FG beam is 

determined to satisfy the first moment with respect to 

Young’s modulus being zero as follows (Ould Larbi et al. 

2013, Bouremana et al. 2013) 
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Consequently, the position of neutral surface can be 

obtained as 
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It is clear that the parameter C is zero for homogeneous 

isotropic beams, as expected. 

 
2.1 Basic assumptions 
 

The assumptions of the present theory are as follows: 

- The origin of the Cartesian coordinate system is taken 

at the neutral surface of the FG beam. 

- The displacements are small in comparison with the 

height of the beam and, therefore, strains involved are 

infinitesimal.  

- The transverse displacement w includes two 

components of bending wb, and shear ws. These 

components are functions of coordinates x, y only. 

)()(),( xwxwzxw sbns   (5) 

- The transverse normal stress σz is negligible in 

comparison with in-plane stresses σx. The axial 

displacement u in x-direction, consists of extension, 

bending, and shear components. 

sb uuuu  0
 (6) 

- The bending component ub is assumed to be similar to 

the displacements given by the classical beam theory. 

Therefore, the expression for ub can be given as 

x

w
zu b

nsb



  (7) 

- The shear component us gives rise, in conjunction with 

ws, to the hyperbolic variation of shear strain γxz 
and 

hence to shear stress τxz through the thickness of the 

beam in such a way that shear stress τxz is zero at the top 

and bottom faces of the beam. Consequently, the 

expression for us can be given as 
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2.2 Kinematics and constitutive equations 
 

Based on the assumptions made in the preceding 

section, the displacement field can be obtained using Eqs. 

(5)-(9) as 

x

w
zf

x

w
zxuzxu s

ns
b

nsns








 )()(),( 0

 (10a) 

)()(),( xwxwzxw sbns   (10b) 

The strains associated with the displacements in Eq. (10) 

are 
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By assuming that the material of FG beam obeys 

Hooke’s law, the stresses in the beam become 
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2.3 Governing equations 
 
The governing equations of equilibrium can be derived 

by using the principle of virtual displacements. The 

principle of virtual work in the present case yields 
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Substituting Eqs. (11) and (12) into Eq. (13) and 

integrating through the thickness of the beam, Eq. (13) can 

be rewritten as 
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where N, Mb, Ms and Q are the stress resultants defined as 
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The governing equations of equilibrium can be derived 

from Eq. (14) by integrating the displacement gradients by 

parts and collecting the coefficients of δu0, δwb and δws, the 

following equations of equilibrium of the functionally 

graded beam are obtained 
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Eq. (16) can be expressed in terms of displacements (u0, 

wb, ws) by using Eqs. (10), (11), (12) and (15) as follows 
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where A11, D11, etc., are the beam stiffness, defined by 

 

 







C
h

C
h

nsnsnsnsns

sss

dzzfzfzzfzQ

HDBDA

2

2

22

11

1111111111

)(),( ),(,,1

,,,,

 
(18a) 

and 

  ,)(
2

2

2

5555 







C
h

C
h

nsns

s dzzgQA  (18b) 

 
 
3. Analytical solution 
 

The equilibrium equations admit the Navier solutions 

for simply supported beams. The variables u0, wb, ws can be 

written by assuming the following variations 
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where Um, Wbm, and Wsm are arbitrary parameters to be 

determined, and λ=mπ/L. The transverse load q is also 

expanded in Fourier series as 
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The coefficients Qm are given below for some typical 

loads. For the case of a sinusoidally distributed load, we 

have 
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and for the case of uniform distributed load, we have 
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Substituting the expansions of u0, wb, ws and q from Eqs. 

(19) and (20) into the equations of motion Eq. (17), the 

analytical solutions can be obtained from the following 

equations 
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4. Numerical results 
 

In this section, various numerical examples are 

presented and discussed to verify the accuracy of the 

present theory in predicting the bending responses of simply 

supported FG beams. The FG beam is taken to be made of 

aluminum and alumina with the following material 

properties: 

Ceramic (PC: Alumina, Al2O3): Ec=380 GPa; v=0.3.  

Metal (PM: Aluminium, Al): Em=70 GPa; v=0.3. 

For convenience the following forms are used: 
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4.1 Comparison of displacement, normal stresses 

and shear stresses 
 

Example 1: 

Table 1 contain non-dimensional Deflection, Normal 

Stresses and Shear Stresses of functionally graded beam 

under uniform load q for power-law index k and span to  

Table 1 Nondimensional displacements and stresses of FG 

beams under uniform load 

k Method 
L/h=5 L/h=20 

u  w  x  
xz  u  w  x  

xz  

0 

Present 0.9397 3.1655 3.8016 0.7310 0.2305 2.8962 15.0128 0.7415 

Ould 

Larbi 

et al. 

(2013) 

0.9406 3.1651 3.8043 0.7489 0.2305 2.8962 15.0136 0.7625 

Hadji 

et al. 

(2014) 

0.9400 3.1654 3.8019 0.7330 0.2305 2.8962 15.0129 0.7437 

1 

Present 2.3036 6.2593 5.8829 0.7310 0.5685 5.8049 23.2050 0.7415 

Ould 

Larbi 

et al. 

(2013) 

2.3052 6.2590 5.8875 0.7489 0.5685 5.8049 23.2063 0.7625 

Hadji 

et al. 

(2014) 

2.3038 6.2594 5.8835 0.7330 0.5685 5.8049 23.2051 0.7437 

2 

Present 3.1129 8.0686 6.8817 0.6683 0.7691 7.4421 27.0987 0.67893 

Ould 

Larbi 

et al. 

(2013) 

3.1146 8.0683 6.8878 0.6870 0.7691 7.4421 27.1005 0.7005 

Hadji 

et al. 

(2014) 

3.1129 8.0677 6.8824 0.6704 0.7691 7.4421 27.0989 0.6812 

5 

Present 3.7097 9.8273 8.1092 0.5881 0.9134 8.8182 31.8124 0.5988 

Ould 

Larbi 

et al. 

(2013) 

3.7128 9.8345 8.1187 0.6084 0.9134 8.8186 31.8151 0.6218 

Hadji 

et al. 

(2014) 

3.7100 9.8281 8.1104 0.5904 0.9134 8.8182 31.8127 0.6013 

10 

Present 3.8859 10.9374 9.7109 0.6443 0.9536 9.6906 38.1379 0.6561 

Ould 

Larbi 

et al. 

(2013) 

3.8898 10.9413 9.7203 0.6640 0.9537 9.6907 38.1408 0.6788 

Hadji 

et al. 

(2014) 

3.8863 10.9381 9.7119 0.6465 0.9536 9.6905 38.1382 0.6586 

 

 

depth ratio L/h. the obtained results are compare with other 

shear deformation theories. (Ould Larbi and Hadji). 

 

Example 2: 

Table 2 and Table 3 contains non-dimensional 

Deflection, Normal Stresses and Shear Stresses of 

functionally graded beam under Sinusoidal Load q0 
for 

power-law index k and span to depth ratio L/h.  

 
4.2 Discussion 
 
4.2.1 Inplane displacement ū 
The variation of inplane displacement ū through the 

thickness of beam is given in Fig. 2, Fig. 3, Fig. 4 and Fig. 

5 for uniform and sinusoidal load for aspect ratio 5 and 20 

for different fraction exponent k. The through thickness 

variation given by the present theory for Ceramic is 

observed to be linear. The inplane displacements obtained 

by the present theory are compared with those of Ould larbi  
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Table 2 Nondimensional displacements and stresses of FG 

beams under sinusoidal load (L/h=5) 

k Method 
L/h=5 

u  w  x  
xz  

0 

Present 0.7250 2.5020 3.0913 0.4755 

Reddy* 0.7251 2.5020 3.0916 0.4769 

Timoshenko** 0.7129 2.5023 3.0396 0.3183 

CBT” 0.7129 2.2693 3.0396 - 

1 

Present 1.7792 4.9458 4.7851 0.4755 

Reddy* 1.7793 4.9458 4.7856 0.5243 

Timoshenko** 1.7588 4.8807 4.6979 0.5376 

CBT” 1.7588 4.5528 4.6979 - 

5 

Present 2.8641 7.7715 6.6047 0.3840 

Reddy* 2.8644 7.7723 6.6057 0.5314 

Timoshenko** 2.8250 7.5056 6.4382 0.9942 

CBT” 2.8250 6.8994 6.4382 - 

10 

Present 2.9986 8.6526 7.9069 0.4208 

Reddy* 2.9989 8.6530 7.9080 0.4236 

Timoshenko** 2.9488 8.3259 7.7189 1.2320 

CBT” 2.9488 7.5754 7.7189 - 

*Results form Ref (Reddy 1984) 

**Results form Ref (Timoshenko 1921)   

“Results form Ref (Euler 1744)  

 

Table 3 Nondimensional displacements and stresses of FG 

beams under sinusoidal load (L/h=20) 

k Method 
L/h=20 

u  w  x  
xz  

0 Present 0.1784 2.2839 12.1715 0.4760 

1 Present 0.4400 4.5774 18.8136 0.4760 

5 Present 0.7068 6.9539 25.7944 0.3847 

10 Present 0.7380 7.6421 30.9227 0.4215 

 

 

et al. (2013), Hadji et al. (2014). The value obtained by 

present theory is in excellent agreement with other theories. 

 

4.2.2 Transverse displacement w  

The variation of central transverse displacement w  for 

aspect ratios 5 and 20 is presented in Table 1 and Table 2 

for beams subjected to uniform load and for beams 

subjected to sinusoidal load in Table 3 and Table 4 for 

various aspect ratios L/h. The value of transverse 

displacement obtained by the present theory is in excellent 

agreement with results of Hadji et al. (2014) and theorie of 

Ould Larbi et al. (2013). The deflections predicted by the 

CPT are less than those given by present shear deformation 

theory; due to the neglect effect of shear deformation. 

 

4.2.3 Inplane normal stress xσ  

The maximum inplane normal stress obtained by the 

present theory is compared with those of Hadji and the 

refined theorie of Ould Larbi. 

The maximum value obtained by present theory is in 

excellent agreement with other theories. As per the Table 1, 

Table 2, Table 3 and Table 4 as the aspect ratio increases, 
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Fig. 2 Through thickness variation of ū for functionally 

graded beam subjected to UDL for aspect ratio (L/h=5) 
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Fig. 3 Through thickness variation of ū for functionally 

graded beam subjected to UDL for aspect ratio (L/h=20) 
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Fig. 4 Through thickness variation of ū for functionally 

graded beam subjected to SSL for aspect ratio (L/h=5) 

 

 

the inplane normal stress also increases for uniform load 

and sinusoidal load for FG beam. 

The present theory gives linear variation of this stress 

through the thickness as shown in Fig.6 for Ceramic and 

Curved for other fraction exponent identical to other refined 

theories. 

 

4.2.4 Transverse shear stress 
xzτ  

For the FG beam the transverse shear stresses are in 

excellent agreement with those obtained by other refined 

theories. The present theory shows exact variation of this 

stress through the thickness as shown in Fig. 10, Fig. 11, 

Fig. 12 and Fig. 13 for ceramic and other fraction exponent  
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Fig. 5 Through thickness variation of ū for functionally 

graded beam subjected to SSL for aspect ratio (L/h=20) 
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Fig. 6 Through thickness variation of x  for functionally 

graded beam subjected to UDL for aspect ratio (L/h=5) 
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Fig. 7 Through thickness variation of x  for functionally 

graded beam subjected to UDL for aspect ratio (L/h=20) 
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Fig. 8 Through thickness variation of x  for functionally 

graded beam subjected to SSL for aspect ratio (L/h=5) 
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Fig. 9 Through thickness variation of x  for functionally 

graded beam subjected to SSL for aspect ratio (L/h=20) 
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Fig. 10 Through thickness variation of xz  for functionally 

graded beam subjected to UDL for aspect ratio (L/h=5) 
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Fig. 11 Through thickness variation of xz  for functionally 

graded beam subjected to UDL for aspect ratio (L/h=20) 
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Fig. 12 Through thickness variation of xz  for functionally 

graded beam subjected to SSL for aspect ratio (L/h=5) 
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Fig. 13 Through thickness variation of xz  for functionally 

graded beam subjected to SSL for aspect ratio (L/h=20) 

 

 

identical to other refined theories which gives the parabolic 

curve under uniform and sinusoidal load. 

 

 

5. Conclusions 
 

A refined hyperbolic shear deformation beam theory is 

proposed to analyze the bending of functionally graded 

beams. The present theory is variationally consistent, uses 

the hyperbolic term to represent the displacement field, 

does not require shear correction factor, and gives rise to 

transverse shear stress variation such that the transverse 

shear stresses vary parabolically across the thickness 

satisfying shear stress free surface conditions. It is based on 

the assumption that the transverse displacements consist of 

bending and shear components in which the bending 

components do not contribute toward shear forces and, 

likewise, the shear components do not contribute toward 

bending moments. Based on the present beam theory and 

the neutral surface concept, the equilibrium equations are 

derived from the principle of virtual work. Numerical 

examples show that the proposed theory gives solutions 

which are almost identical with those obtained using other 

shear deformation theories. 

 
 
References 
 
Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A., Adda Bedia, 

E.A. (2013), “A new first shear deformation beam theory based 

on neutral surface position for functionally graded beams”, Steel 

and Composite Structures, 15(5), 467- 479. 

Euler, L. (1744), Methodus Inveniendi Lineas Curvas Maximi 

Minimive Proprietate Gaudentes, Lausanne and Geneva. 

Hadji, L., Daouadji, T.H., Tounsi, A. and Adda bedia, E.A. (2014), 

“A higher order shear deformation theory for static and free 

vibration of FGM beam”, Steel Compos. Struct., 16(5), 507-519. 

Hadji, L., Zouatnia, N. and Kassoul, A. (2016), “Bending analysis 

of FGM plates using a sinusoidal shear deformation theory”, 

Wind Struct., 23(6), 543-558. 

Hadji, L. (2017), “Analysis of functionally graded plates using a 

sinusoidal shear deformation theory”, Smart Struct. Syst., 19(4), 

441-448. 

Klouche Djedid, I., Benachour, A., Houari, M.S.A., Tounsi, A. and 

Ameur, M. (2014), “A n-order four variable refined theory for 

bending and free vibration of functionally graded plates”, Steel 

Compos. Struct., 17(1), 21-46. 

Li, X.F. (2008), “A unified approach for analyzing static and 

dynamic behaviors of functionally graded Timoshenko and 

Euler-Bernoulli beams”, J. Sound Vib., 318, 1210-1229. 

Ould Larbi, L., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), 

“An efficient shear deformation beam theory based on neutral 

surface position for bending and free vibration of functionally 

graded beams”, Mech. Bas. Des. Struct. Mach., 41, 421-433. 

Reddy, J.N. (1984), “A Simple higher order theory for laminated 

composites plates”, ASME J. Appl. Mech., 51, 745-752. 

Simsek, M. and Kocaturk, T. (2009), “Free and forced vibration of 

a functionally graded beam subjected to a concentrated moving 

harmonic load”, Compos. Struct., 90(4), 465-473. 

Simsek, M. (2010a), “Fundamental frequency analysis of 

functionally graded beams by using different higher-order beam 

theories”, Nucl. Eng. Des., 240(4), 697-705. 

Simsek, M. (2010b), “Vibration analysis of a functionally graded 

beam under a moving mass by using different beam theories”, 

Compos. Struct., 92(4), 904-917. 

Thai, H.T. and Vo, T.P. (2012), “Bending and free vibration of 

functionally graded beams using various higher-order shear 

deformation beam theories”, Int. J. Mech. Sci., 62, 57-66. 

Timoshenko, S.P. (1921), “On the correction for shear of the 

differential equation for transverse vibration of prismatic bars”, 

Phil. Mag. Ser. 6, 46, 744-746. 

Yaghoobi, H. and Yaghoobi, P. (2013), “Buckling analysis of 

sandwich plates with FGM face sheets resting on elastic 

foundation with various boundary conditions: An analytical 

approach”, Meccanica, 48, 2019-2039. 

 

 

PL 

689




