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1. Introduction 

 

Extensive interest has been stimulated among the 

researchers since Van Run et al. (1974) demonstrated the 

effective coupling properties of magneto-electro-elastic 

(MEE) materials for the first time. These typical materials 

develop the electric polarization and magnetization with the 

application of external magnetic field and electric field, 

respectively. Further, a significant interaction of the 

mechanical field with the electric and magnetic fields can 

also be noticed. More interestingly, they exhibit magneto-

electric effect which is generally absent in the monolithic 

piezoelectric and piezomagnetic materials. Thus, the 

obtained magneto-electric effect through the elastic field 

results into the complete magneto-electro-elastic coupling. 

It promotes energy conversion between mechanical, 

electrical, magnetic and thermal fields which makes it 

adaptable for potential engineering applications such as 

sensors, actuators, energy harvesters, structural health 

monitors, non-volatile memories, photovoltaic etc. More 

frequently, precise performance of MEE structures is 

expected in harsh environmental conditions like thermal 

environment. Meanwhile, in the thermal environment, the 

MEE materials exhibit pyroeffects which refers to the added 

coupling between thermo-magnetic fields and thermo-

electric fields.  The presence of temperature leads to a 

vigorous change in the behaviour of MEE structures in 

terms of stresses, displacements, and potentials. Hence, it is 

crucial to evaluate the multiphysics behaviour of MEE 

structures in various thermal environments. 

The drastic developments in the material science 
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technology and increased utilization of MEE materials in 

smart structures have paved way for numerous research 

works on investigating the coupled response of MEE 

structures. In this regard, various computational methods 

are being exploited to determine the free vibration and static 

behaviour of MEE structures. It includes analytical 

approach, state space approach, discrete singular 

convolution (DSC), differential quadrature (DQ) methods 

etc. Pan and Heyliger (2002, 2003) derived an exact 

solution in the 3D domain to tackle the problem of free 

vibration and bending characteristics of MEE laminates. 

Using layerwise modeling approach, finite element (FE) 

solutions were presented (Lage et al. 2004, Phoenix et al. 

2009) with respect to 2-D plate theories. Although, 

layerwise modeling yields higher accuracy, as the number 

of layer increases it leads to increased computational costs. 

For the magneto-electric coupled state, it is predicted that 

the elastic waves transverse comparatively slower than 

magneto-electric waves. Hence, the quasi-static 

approximation of the corresponding fields has to be 

considered. With the assumption of quasi-static state, 

Kuang (2011) studied the coupled behaviour of thin MEE 

plate, using first order shear deformation theory (FSDT). 

Meanwhile, to overcome the hurdles of layerwise 

modeling, equivalent single layer theories were proposed in 

conjunction with quasi-static approximations (Moita et al. 

2009, Milazzo et al. 2009, Milazzo 2012, Milazzo and 

Orlando 2012). In addition, Alaimo et al. (2014) formulated 

multilayered MEE plate model to examine the large 

deflections in the MEE plate. In this regard, they used FE 

method together with FSDT. Sladek (2013), Xue et al. 

(2011) analysed the large deflections of homogeneous MEE 

plate using Petrov-Galerkin method and Bubnov-Galerkin 

method, respectively. Huang et al. (2010) investigated the 

static behaviour of functionally graded (FG) MEE beam 

subjected to sinusoidal loading. Buchanan (2004) has 
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studied the behaviour of layered versus multiphase 

magneto-electro-elastic infinite long plate composites by FE 

method. By using potential functions, Wang and Shen 

(2002) presented a general solution for 3D problems related 

to MEE media. Ramirez et al. (2006) examined the free 

vibration problem of the 2D MEE plates. Hosseini and Dini 

(2015) presented an analytical solution to investigate the 

magneto-thermo-elastic response of FG cylinder. 

Mahieddine and Quali (2008) presented a FE formulation of 

a beam with the piezoelectric patch. Razavi and Shooshtari 

(2015) considered von-Karman nonlinear strains and FSDT 

to study the nonlinear free vibration of MEE plates. Daga et 

al. (2009) investigated the transient dynamic response of 

MEE beam. Kattimani and Ray (2014a, b) analysed the 

active control geometrically nonlinear vibrations of MEE 

plates and doubly curved shells. They also extended their 

study for the FG MEE plates (2015). Free vibration 

characteristics of FG MEE plates were studied by Bhangale 

et al. (2006) with the aid of semi analytical FE procedure. 

Few researchers exploited the state space approach in order 

to evaluate the coupled response of MEE structures (Chen 

et al. 2005, Wang et al. 2003, Chen et al. 2007). Further, 

Xin and Hu (2015) evaluated the natural frequencies of the 

layered MEE beams by semi analytical state space 

approach.  

In recent years, the research community is motivated to 

explore the behaviour of nanostructures. Using non-local 

theory in conjunction with Timoshenko beam theory, the 

frequency characteristics of MEE nanobeam was 

investigated by Ke and Wang (2014). Similarly, Ke et al. 

(2014) investigated the free vibrations of MEE nano plate 

with the help of Kirchhoff plate theory. Li et al. (2014) 

examined the effect of the elastic foundation on buckling 

and free vibration of MEE nanoplate through nonlocal 

Mindlin theory. Meanwhile, considering the influence of 

thermal environment, Ebrahimi and Barati (2016a, b) 

analysed the free vibration behaviour magneto-electro-

thermo-elastic (METE) nanobeams. Ebrahimi and Jafari 

(2016) evaluated the thermo-mechanical vibrations of 

porous FG beam in the thermal environment. The forced 

vibration behaviour of METE nanobeams was studied by 

Ansari et al. (2015) by using von Karman nonlinearity. 

Barati and Shahverdi (2016) explored the effect of linear 

and non-linear temperature distribution on the thermal 

vibration of FG nonlocal plates. Further, many works have 

been reported on analyzing the nano and micro structures 

using DSC and DQ techniques. Based on strain gradient 

theory Akgöz and Civalek (2013, 2015) developed a new 

size dependant beam model and evaluated the bending and 

buckling behaviour of micro beams embedded in the elastic 

medium. They extended their investigation to study the 

buckling behaviour of linearly tapered micro columns using 

Bernoulli- Euler beam theory. Civalek et al. (2009) 

investigated the buckling analysis of Kirchhoff plate using 

DSC technique. Akgöz and Civalek (2015) used DSC 

approach and evaluated the bending response of FG 

microbeams, in conjunction with different beam theories. 

Civalek et al. (2009) studied the static analysis of carbon 

nanotubes in association with the Bernoulli-Euler beam 

theory. Kaghazian et al. (2017) solved the natural frequency 

problem of piezoelectric nanobeam using DQ technique.  

Abundant research has been devoted in analyzing the 

behaviour of MEE structures exposed to the thermal 

environment. Among them, Sunar et al. (2002) proposed a 

finite element formulation for fully coupled 

thermopiezomagnetic continuum. Kumaravel et al. (2007) 

figured out the effect of temperature loads on the free 

vibration and linear buckling of the MEE beam. Taking into 

consideration, the influence of pyroeffects, Kondaiah et al. 

(2012, 2013) investigated the static behavior of MEE beams 

and plates subjected to a uniform temperature. Using FSDT 

Badri and Kayiem (2013) evaluated the coupled response of 

magneto-thermo-electro-elastic (MTEE) plates.  

From the comprehensive literature survey, it is revealed 

that only a few articles have been reported on the static 

analysis of MEE beam in the thermal environment. To be 

specific, no attempt has been made on analyzing the 

influence of different temperature profiles on the static 

parameters of a multilayered MEE beam using FE method. 

In addition, it is noteworthy to mention that in contrast with 

other computational techniques, the 3D FE method can 

model the coupled physical system more accurately. The 

application of 3D elements would enable the representation 

of governing equations in all three axes, achieving accurate 

results. Also, geometric, constitutive and loading 

assumptions required for dimensionality reduction are 

avoided. Since the loading conditions in the real working 

environment are very likely to be 3D, the boundary 

conditions on both forces and displacements can be 

realistically treated. Therefore, 3D FE models represent 

more realistic geometric refinements and they are 

considered to be more reliable. Hence, through this article,  
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an attempt has been made to develop a 3D FE formulation 

to study the static behaviour of the multilayered MEE beam 

in the different thermal environment. A parametric study is 

also carried out to evaluate the influence of the stacking 

sequence, temperature profiles on the displacements, 

potentials and the stresses.  

 

 

2. Problem description 
 

Assume a magneto-electro-elastic (MEE) beam made of 

Barium Titanate (BaTiO3) and Cobalt Ferric oxide 

(CoFe2O4). The x, y and z axes of the Cartesian coordinate 

adjoin the length L, width w and thickness h, respectively, 

as depicted in Fig. 1. In the present analysis, two 

conventional stacking sequences are considered. They are 

BFB MEE beam and FBF MEE beam, where B denotes 

purely piezoelectric phase and F denotes purely 

piezomagnetic phase. In BFB MEE beam, the top and 

bottom layers are made of purely piezoelectric phase 

(BaTiO3) and middle layer is composed of purely 

piezomagnetic phase (CoFe2O4), as shown in Fig. 1(a). 

Analogously, in FBF MEE beam, the top and bottom layers 

are purely piezomagnetic phase, whereas the middle layer is 

purely piezoelectric phase as illustrated in Fig. 1(b). The 

boundary conditions employed for the cantilever MEE 

beam is given by 

𝑢 =  𝑣 = 𝑤 = 𝜙 = 𝜓 = 0  at   𝑥 = 0 

𝑢 =  𝑣 = 𝑤 = 𝜙 = 𝜓 ≠ 0   at 𝑥 = 𝐿     (1) 

 

2.1 Constitutive equations 
 

The linearly coupled constitutive relation of the MEE 

solid can be represented as follows 
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f f f f f
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(2) 

where, *𝜎𝑘+ , *𝐷𝑘+  and  *𝐵𝑘+ , denotes the stress tensor, 

electric displacement and the magnetic flux, respectively; 

0𝐶𝑉𝑓
𝑘 1, 0𝑒𝑉𝑓

𝑘 1, 0𝑞𝑉𝑓
𝑘 1, and 2𝛼𝑉𝑓

𝑘 3
 

are the elastic co-efficient 

matrix, piezoelectric coefficient matrix, magnetostrictive 

coefficient matrix and thermal expansion co-efficient 

matrix, respectively; 0𝜂𝑉𝑓
𝑘 1 , 0𝑚𝑉𝑓

𝑘 1 , 2𝑝𝑉𝑓
𝑘 3 , 2𝜏𝑉𝑓

𝑘 3  and 

0𝜇𝑉𝑓
𝑘 1  are the dielectric constant, electromagnetic 

coefficient, pyroelectric constant, pyromagnetic constant 

and magnetic permeability constant, respectively; *𝜀𝑘+ , 

*𝛦𝑘+ and *𝐻𝑘+ are the linear strain tensor, electric field 

and magnetic field, respectively. The temperature change is 

denoted by ΔT. In the above terms k represents the layer 

number and the subscript Vf denotes the volume fraction of 

BaTiO3 and CoFe2O4 corresponding to the k
th

 layer. 

The non-zero components of various tensors appearing 

in Eq. (2) can be shown as follows 

11 12 131 1 1

12 11 132 2 2

13 13 333 3 3

4423 23

4413 13

6612 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

c c c T

c c c T

c c c T

c

c

c

  

  

  

 

 

 

       
      

      
         

       
      
      
      
           

31 31

31 31

1 1

33 33

2 2

15 15

3 3

15 15

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

e q

e q
E H

e q
E H

e q
E H

e q

    
    
       
        
        

       
       

    
     

11 12 131 1 1

12 11 132 2 2

13 13 333 3 3

4423 23

4413 13

6612 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

c c c T

c c c T

c c c T

c

c

c

  

  

  

 

 

 

       
      

      
         

       
      
      
      
           

31 31

31 31

1 1

33 33

2 2

15 15

3 3

15 15

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

e q

e q
E H

e q
E H

e q
E H

e q

    
    
       
        
        

       
       

    
      

(3.a) 

131

231

1 11 1 11 1 1

333

2 11 2 11 2 2

2315

3 33 3 33 3 3

1315

12

0 0

0 0
0 0 0 0

0 0
0 0 0 0

0 0
0 0 0 0

0 0

0 0 0

T
e

e
D E m H p

e
D E m H p

e
D E m H p

e
















  
  
             
              

                 
                         

  
    

T



 

  

131

231

1 11 1 11 1 1

333

2 11 2 11 2 2

2315

3 33 3 33 3 3

1315

12

0 0

0 0
0 0 0 0

0 0
0 0 0 0

0 0
0 0 0 0

0 0

0 0 0

T
e

e
D E m H p

e
D E m H p

e
D E m H p

e
















  
  
             
              

                 
                         

  
    

T

  

(3b) 

131

231

1 11 1 11 1 1

333

2 11 2 11 2 2

2315

3 33 3 33 3 3

1315

12

0 0

0 0
0 0 0 0

0 0
0 0 0 0

0 0
0 0 0 0

0 0

0 0 0

T
q

q
B m E H

q
B m E H

q
B m E H

q




 


 


 





  
  
             
              

                 
                         

  
    

T



  

   

131

231

1 11 1 11 1 1

333

2 11 2 11 2 2

2315

3 33 3 33 3 3

1315

12

0 0

0 0
0 0 0 0

0 0
0 0 0 0

0 0
0 0 0 0

0 0

0 0 0

T
q

q
B m E H

q
B m E H

q
B m E H

q




 


 


 





  
  
             
              

                 
                         

  
    

T



 

(3c) 

 

2.2 Finite element formulation 
 

A relationship can be established between generalized 

vectors (*𝑑𝑡+, *𝜙+ and *𝜓+) and nodal vectors with the aid 

of shape function matrices as follows 
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where, the different shape function matrices are represented 

by
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   1 2 8  ,  t t t t ti i tN N N N N n I  , 

   1 2 8 1 2 8  , N n n n N n n n
         

 (5) 

in which, ni  is the natural coordinate shape function 

associated with the i
th 

node of the element; ‘It’ is the identity 

matrix; ,𝑁𝑡-  ,  [𝑁𝜙]  and [𝑁𝜓]  are the shape function 

matrices, respectively. The linear relation between the 

electric field and the electric potential can be expressed as 

𝐸 = −∇𝜙                  (6a) 

Similarly, the magnetic field and the magnetic potential

 is related as 

The strain vector, electric field vector and magnetic field 

vector of the system is expressed in terms of the nodal 

displacement, nodal electric potential and nodal magnetic 

potential, respectively as follows 
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The strain vector, electric field vector and magnetic field 

vector of the system is expressed in terms of the nodal 

displacement, nodal electric potential and nodal magnetic 

potential, respectively as follows 
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where, Lt, Lψ and Lϕ are the differential operators and the 

sub matrices are generally expressed as 
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where, i=1, 2, 3,...,8 represents the node number 

 

2.3 Equations of motion 
 

The governing equations of motion of MEE beam in 

thermal environment are derived by adopting minimization 

of the total potential energy principle as follows (Kattimani 

and Ray 2015) 
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(9) 

where, k =1, 2, 3, … , N denotes the layer number. Ω
k
 and A 

denotes the volume and area, respectively of the k
th  

  

layer. {Fsurface}, {Fbody} and {Fconc} are the surface force, the 

body force and the point load acting on the beam. The 

electric and magnetic charge densities are represented by Q
ϕ
 

and Q
ψ
, respectively. By substituting Eq. (2) in the Eq. (9)

 we obtain 
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(10) 

Further, upon substituting Eq (7) into Eq. (10) we get 
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Simplification of Eq. (11) yields 
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in which, ,𝐾𝑡𝑡
𝑒 -, ,𝐾𝑡𝜙

𝑒 -, ,𝐾𝑡𝜓
𝑒 -, ,𝐾𝜙𝜙

𝑒 -, ,𝐾𝜓𝜓
𝑒 - and ,𝐾𝜙𝜓

𝑒 - 

are the elemental elastic stiffness matrix, electro-elastic 

coupling stiffness matrix, magneto-elastic coupling stiffness 

matrix, electric stiffness matrix, magnetic stiffness matrix 

and electro-magnetic stiffness matrix, respectively. 
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Analogously, the various elemental load vectors 

described in Eq. (12) are the elemental mechanical load 

vector *𝐹𝑚
𝑒+, the elemental thermal load vector *𝐹𝑡ℎ

𝑒 +, the 

elemental electric charge load vector *𝐹𝜙
𝑒}, the elemental 

magnetic current load vector *𝐹𝜓
𝑒+ , the elemental 

pyroelectric load vector *𝐹𝑝.𝑒
𝑒 +, the elemental pyromagnetic 

load vector *𝐹𝑝.𝑚
𝑒 +. These load vectors are given by 
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    (14) 

The Eq. (12) can be condensed by eliminating the 

electric and magnetic potentials to obtain Eq. (15). Further, 

thermal displacements are obtained by solving Eq. (15). 

,𝐾𝑒𝑞- *𝑢+ = *𝐹𝑒𝑞+               (15) 

Later, *𝜙+ and *𝜓+ are computed from Eq. (12) as 

follows 
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(16) 

The component matrices and the equivalent force vector 

for the Eq. (15) and Eq. (16) are as follows 
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3. Results and discussion 
 

In this section, the static response of conventional three 

layered MEE beam exposed to different in-plane and 

through-thickness temperature loads is investigated. In this 

regard, the FE formulation derived in the preceding section 

is used. The FE model of the cantilever MEE beam is 

developed using 3D eight noded brick element. Through the 

numerical examples, the variation of displacements, electric 

and magnetic potential and stresses are evaluated along the 

beam length. The study is extended to analyse the influence 

of various temperature profiles on the variation of static 

parameters across the MEE beam thickness. Further, 

parametric studies are performed to examine the effect of 

stacking sequence. 

 

3.1 Validation of the present FE model 
 

The credibility of the proposed FE formulation is 

justified by solving a numerical case considered by 

Kondaiah et al. (2012) using the present formulation. To 

account this problem, the multilayered MEE beam is 

reduced to homogeneous MEE beam (Kondaiah et al. 

(2012) ) by assigning all the three layers of MEE beam with 

the material properties corresponding to Vf =0.5 BaTiO3, as 

tabulated in Table 1. The beam geometry, thermal loading 

and the boundary conditions are maintained identical to 

Kondaiah et al. (2012). From Fig. 2, it is found that the 

convergence of the transverse z- direction displacement Uw 

with the mesh refinement is good. Hence, for the further 

studies, a FE mesh with 12 elements and 10 elements in the 

thickness and length direction respectively is considered. 

The results depicted in Figs. 3(a)-(d) reveal that the 

proposed FE formulation is in good agreement with 

Kondaiah et al. (2012). Hence the correctness of the FE 

formulation is verified.  

 

3.2 Effect of stacking sequence 
 

In this section, the effect of stacking sequence i.e., BFB 

MEE beam and FBF MEE beam on the direct quantities and 

the stresses along the beam length and thickness are 

investigated. The material properties tabulated in Table 1 

are used. The magneto-electro-elastic (MEE) beam  

485



 

M. Vinyas and S.C. Kattimani 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 2 Convergence of transverse displacement 

component Uw 

 

 
(a) 

Fig. 3 Validation of (a) longitudinal x-direction Ux (b) 

electric potential ϕ (c) magnetic potential ψ (d) normal 

stress-σx 
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Table 1 Material properties corresponding to different volume fraction Vf of BaTiO3–CoFe2O4 (Kondaiah et al. 2012) 

Material property Material constants 0 Vf 0.2 Vf 0.4 Vf 0.5 Vf 0.6 Vf 0.8 Vf 1 Vf 

Elastic constants 

(GPa) 

C11=C22 286 250 225 220 200 175 166 

C12 173 146 125 120 110 100 77 

C13=C23 170 145 125 120 110 100 78 

C33 269.5 240 220 215 190 170 162 

C44=C55 45.3 45 45 45 45 50 43 

C66 56.5 52 50 50 45 37.5 44.5 

Piezoelectric constants 

(C/m2) 

e31 0 -2 -3 -3.5 -3.5 -4 -4.4 

e33 0 4 7 9.0 11 14 18.6 

e15 0 0 0 0 0 0 11.6 

Dielectric constant 

(10-9 C2/Nm2) 

ε11=ε22 0.08 0.33 0.8 0.85 0.9 1 11.2 

ε33 0.093 2.5 5 6.3 7.5 10 12.6 

Magnetic permeability 

(10-4 Ns2/C2) 

μ11=μ22 -5.9 -3.9 -2.5 -2.0 -1.5 -0.8 0.05 

μ33 1.57 1.33 1 0.9 0.75 0.5 0.1 

Piezomagnetic constants 

(N/Am) 

q31 580 410 300 350 200 100 0 

q33 700 550 380 320 260 120 0 

q15 560 340 220 200 180 80 0 

Magneto-electric constant 

(10-12Ns/VC) 

m11=m22 0 2.8 4.8 5.5 6 6.8 0 

m33 0 2000 2750 2600 2500 1500 0 

Pyroelectric constant 

(10-7 C/m2K) 
p2 0 -3.5 -6.5 -7.8 -9 -10.8 0 

Pyromagnetic constant 

(10-5 C/m2K) 
τ2 0 -36 -28 -23 -18 -8.5 0 

Thermal expansion 

coefficient (10-6 K-1) 

α1= α2 10 10.8 11.8 12.3 12.9 14.1 15.7 

α3 10 9.3 8.6 8.2 7.8 7.2 6.4 

Density (kg/m3) ρ 5300 5400 5500 5550 5600 5700 5800 
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subjected to a uniform temperature rise of 100 K is 

considered for the analysis. From Figs. 4(a)-(c) it may be 

observed that BFB stacked MEE beam experiences a higher 

magnitude of longitudinal x-direction displacement 

component Ux and longitudinal y-direction displacement 

component Uv,  whereas the transverse z-direction 

displacement component Uw is higher for FBF stacked 

MEE beam. Likewise, from Figs. 4(d) and (e) it may be 

observed that the BFB and FBF MEE beams have a 

predominant effect on the electric and magnetic potential, 

 

 

 

respectively. It may be attributed to the number of layers of 

BaTiO3 and CoFe2O4 present in the layup. 

Figs. 5(a)-(c) illustrate the variations of the normal 

stresses σx, σy and σz, respectively. The MEE beam with FBF 

stacking sequence has a higher stress magnitude than BFB 

MEE beam. Further, for both the stacking sequence the 

maximum values of the stresses are observed near the 

clamped end. The normal stresses of the BFB MEE beam 

remains almost constant over the beam span, whereas a 

noticeable discrepancies exists for the FBF MEE beam. The 

   
(a) (b) (c) 

  
(d) (e) 

Fig. 4 Effect of stacking sequence on displacement components and potentials (a) Ux (b) Uv (c) Uw (d) ϕ (e) ψ 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 5 Effect of stacking sequence on normal stress and shear stress (a) σx (b) σy (c) σz (d) τxz (e) τxy (f) τyz 
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shear stresses τxy and τxz follow a similar trend of variation 

for both BFB and FBF MEE beam as depicted in Figs. 5(d)-

(e). From Fig. 5(f) a slightly higher magnitude of τyz may be 

noticed that FBF MEE beam. 

 

3.3 Effect of various temperature profiles 
 
The various one dimensional temperature profiles 

varying along the length of the multilayered MEE beam is 

considered for the analysis. They are as follows: 

 

 

 

3.3.1 Uniform temperature profile  
The temperature of the MEE beam is uniformly raised 

from a reference temperature of T0 to the final temperature 

of Tmax. For the ease of calculation T0 is assumed to be 0 K. 

The general temperature variation relation can be written as 

𝛥𝑇 = 𝑇𝑚𝑎𝑥 − 𝑇0              (18) 

 

3.3.2 Half-Sine temperature profile  
The MEE beam is analysed for the half-sine temperature 

   
(a) (b) (c) 

  
(d) (e) 

Fig. 6 Effect of different temperature profiles on displacements and potentials (a) Ux (b) Uv (c) Uw (d) ϕ (e) ψ 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 7 Effect of different temperature profiles on normal and shear stresses (a) σx (b) σy (c) σz (d) τxz (e) τxy (f) τyz. 

488



 

Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam 

loading. The temperature of the beam is assumed to vary 

along the length of the beam resembling a half sine wave. 

The temperature variation can be represented as 

𝛥𝑇 = 𝑇𝑚𝑎𝑥  *sin  (
𝜋𝑥

𝐿
)+       0 ≤ 𝑥 ≤ 𝐿      (19) 

in which, L is the span length of the beam, x is the point of 

investigation. 

 
3.3.3 Linearly varying temperature profile 
In this case, the temperature varies linearly along the 

beam length. Ti is the initial temperature at the left end of 

the beam. The general equation is as follows 

𝛥𝑇 = *𝑇𝑚𝑎𝑥+ 𝑥 + *𝑇𝑖+       0 ≤  𝑥 ≤  𝐿     (20) 

The influence of the in-plane temperature profiles on the 

direct quantities (displacements and potential) and the 

stresses of the MEE beam are analysed and elucidated in 

Figs. 6 and 7, respectively. It is observed that the difference 

in the characteristic behavior of the BFB and FBF MEE 

beam remains invariant irrespective of the temperature 

profiles (as discussed in the previous section). Hence for the 

sake of brevity only the variations of the direct quantities 

and stresses related to the BFB MEE beam is presented. It 

may be observed from Table 2 that for all the temperature 

profiles, the maximum electric and magnetic potential is 

witnessed for BFB and FBF stacked MEE beam, 

respectively. This is obvious due to the number of pure 

piezoelectric and piezomagnetic phase present in the 

respective stacking sequence. From Fig. 6(a) it may be 

noticed that for all the temperature profiles maximum 

displacement component Ux is observed at the free end of 

the cantilever MEE beam. Meanwhile, Uv and Uw follow a 

similar trend of variation as shown in Figs. 6(b) and (c). 

Maximum values of these displacement components are 

witnessed at the region near the clamped end for the 

uniform temperature loading, whereas for sinusoidal and 

linear temperature profile it is noticed at the midspan and 

the free end of the MEE beam, respectively. The electric 

and magnetic potential distribution is represented by Fig. 

6(d) and Fig. 6(e), respectively. Among the in-plane 

temperature profiles considered, the maximum magnitude 

of these potentials is obtained for the uniform temperature 

loading. The electric potential varies linearly along the 

beam length for linear temperature profile. For the MEE 

beam subjected to sinusoidal temperature loading, the 

electric potential is maximum at the midspan of the beam. 

This may be due to the maximum value of the temperature 

acting at the corresponding region of the beam. 

The numerical study is extended to investigate the cross- 

 

 

Table 2 Effect of various in-plane temperature loads on the 

maximum electric potential (𝜙max) and maximum magnetic 

potential 𝜓maxof BFB and FBF MEE beam 

In-plane 

temperature profile 

     (kV)      (A) 

BFB FBF BFB FBF 

Uniform -7.9 -3.1 -474.2 -528.3 

Sinusoidal -6.8 -2.2 -218.2 -236.6 

Linear -7.0 -2.4 -201.6 -220.4 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 8 Comparison of displacement components and 

potentials (a) Ux (b) Uv (c) Uw (d) ϕ (e) ψ of the BFB and 

FBF MEE beams subjected to uniform temperature load 
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Table 3 Effect of various in-plane temperature loads on the 

maximum values of through-thickness normal and shear 

stress of BFB and FBF MEE beam 

In-plane 

temperature 

profile 

Stacking 

sequence 

σx ×102 

(MPa) 

σy ×102 

(MPa) 

σz  

(MPa) 

τxz 

(MPa) 

τxy 

(MPa) 

τyz 

(MPa) 

Uniform 
BFB 3.81 3.76 3.23×102 -0.35 -0.17 -0.26 

FBF 6.73 6.74 6.23×102 0.65 0.35 -0.42 

Sinusoidal 
BFB 3.67 3.5 3.03 -1.04 -2.31 0.26 

FBF 6.6 6.2 5.71 -1.22 -2.57 0.38 

Linear 
BFB 2.35 2.4 2.03×102 0.48 2.45 -0.36 

FBF 4.28 4.3 3.97×102 0.85 2.86 4.01 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9 Through thickness variation of normal and shear 

stresses (a) σx (b) τxy (c) τxz  (d) τyz of the MEE beam 

subjected to uniform temperature load 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10 Through thickness variation of normal and shear 

stresses (a) σx (b) τxy (c) τxz (d) τyz of the MEE beam 

subjected to sinusoidal temperature load 

 

 

thickness variations (evaluated at the midspan x=L/2) of the 

direct quantities and the stresses of MEE beam, subjected to 

in-plane temperature distribution. For the sake of brevity, 

the variation of the direct quantities (displacements and 

potentials) corresponding to the multilayered MEE beam 

subjected to uniform temperature rise of 100 K is alone 

presented, whereas the stress distribution is plotted for the 

for all the temperature profile. Figs. 8(a)-(e) illustrate the 

comparative study of the direct quantities between BFB and 

FBF stacking sequence of the MEE beam. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11 Through thickness variation of normal and shear 

stresses (a) σx (b) τxy (c) τxz (d) τyz of the MEE beam 

subjected to linear temperature load 

 

 

Further, it is observed that irrespective of the 

temperature profiles, the normal stresses σy and σz varies 

similar to the normal stress σx. This holds good for both the 

stacking sequence considered i.e., BFB and FBF. Hence the 

schematic variation of σx alone is presented in this study, 

whereas the comparative study of the maximum values of 

all the normal and shear stresses is carried out for both the 

stacking sequence and are tabulated in Table 3. From Fig. 

9(a) it may be seen that the stress σx has a higher magnitude 

for FBF MEE beam and it is maximum at the middle layer 

of the beam for both the stacking sequence. The shear 

stresses τxz and τyz varies symmetrically about the mid layer 

of the MEE beam as shown in Figs. 9(c) and (d) 

respectively. The slope drastically changes near the 

interface of the piezoelectric and piezomagnetic material. 

Further, it varies almost linearly along the mid section of 

the beam consisting of pure piezomagnetic material. 

Additionally, the influence of the sinusoidal and linear 

temperature profile on the stresses of the MEE beam is 

investigated. Figs. 10(a)-(d) show the variation of σx, τxy, τxz 

and τyz respectively of the MEE beam subjected to 

sinusoidal temperature profile. From Fig. 10(a) it can be 

observed that the variation of the normal stress σx follows a 

similar trend of variation as that of the MEE beam subjected 

to uniform temperature load (Fig. 9(a)). Further, a smooth 

variation in the τxz and τyz is noticed along the beam 

thickness as depicted in Figs. 10(c) and (d). 

Likewise, Figs. 11(a)-(d) show the variation of σx, τxy, τxz 

and τyz respectively of the MEE beam subjected to linear 

temperature profile. 

 

3.5 Temperature profile varying along the beam 
thickness 

 

In this study, the MEE beam subjected to different 

through- thickness varying temperature load is analyzed. 

The various temperature profiles considered are as follows: 

 

3.5.1 Uniform Temperature profile 
The temperature throughout the thickness is considered 

to be uniform. In general, the temperature profile can be 

represented as 

∆𝑇 = 𝑇𝑚𝑎𝑥 − 𝑇𝑟𝑒𝑓               (21)                                                        

In this study, the Tmax and the Tref is assumed to be 100 K 

and 0 K, respectively. 

 
3.5.2 Linear Temperature profile 
The MEE beam is exposed to the temperature 

distribution varying linearly across the beam thickness 

according to the relation 

𝛥𝑇 = 𝑇𝑖 + 𝑇𝑚𝑎𝑥(𝑧/ℎ)            (22) 

where, Ti is the temperature of the bottom layer, Tmax is the 

maximum temperature attainable and z is the distance of the 

point of interest from the bottom of the beam. 

 
3.5.3 Bi-triangular temperature profile 
For MEE beam subjected to bi-triangular profile, the 

temperature fields vary through the thickness as follows 

𝛥𝑇 = 𝑇𝑚𝑎𝑥(1 − 𝑧)        0 ≤ 𝑧 ≤ ℎ/2 

𝛥𝑇 = 𝑇𝑚𝑎𝑥  (𝑧)                ℎ/2 ≤ 𝑧 ≤ ℎ     (23) 

 

3.5.4 Parabolic temperature profile 
The temperature field when MEE beam exposed to 

parabolic temperature rise can be defined as  

𝛥𝑇 = 𝑇𝑚𝑎𝑥 {1 − .
𝑧

ℎ
/
2

}        0 ≤ 𝑧 ≤ ℎ     (24) 
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Table 4 Effect of various cross-thickness temperature loads 

on through-thickness variation of the normal and shear 

stress of BFB and FBF MEE beam 

In-plane 

temperature 

profile 

Stacking 

sequence 

σx× 102 

(MPa) 

σy× 102 

(MPa) 

σz×102 

(MPa) 

τxz 

(MPa) 

τxy 

(MPa) 

τyz 

(MPa) 

Uniform 
BFB 3.7 3.8 3.2 -0.33 -0.16 0.1 

FBF 6.5 6.5 5.9 0.46 -0.4 1.72 

Linear 
BFB 4.4 4.3 3.8 21.8 -0.11 26.1 

FBF 6.5 6.6 6.1 20.0 -0.3 23.5 

Parabolic 
BFB 3.4 3.5 3.1 19.6 -0.06 29.8 

FBF 4.5 4.7 4.2 18.0 -0.2 26.7 

Bi-

triangular 

BFB 3.3 3.6 3.1 -0.18 -0.12 22.2 

FBF 5.9 6.1 5.9 0.36 -0.3 19.7 

 

Table 5 Effect of various cross-thickness temperature loads 

on the maximum electric potential (ϕ) and the maximum 

magnetic potential (ψ) of various types of MEE beam 

Through-thickness 

temperature profile 

𝜙max (kV) 𝜓max (A) 

BFB FBF BFB FBF 

Uniform 21.4 -7.7 656.2 723.1 

Linear -22.6 -10.8 -498.6 -582.3 

Parabolic -15.7 -8.3 -333.7 -365.8 

Bi-triangular -16.4 5.6 409.7 532.3 

 

 

The effect of the temperature profiles mentioned in Eqs. 

(21)-(24) on the direct quantities and the stresses of the 

BFB-MEE beam are plotted in Figs. 16(a)-(g), respectively. 

Further, Table 4 correlates the maximum normal and shear 

stresses developed for BFB and FBF stacked MEE beam 

under different cross-thickness temperature profiles. From 

 

 

Fig. 16(a) negligible variation in the longitudinal x- 

direction displacement component Ux throughout the 

thickness of the beam may be observed for the uniform and 

the bi-triangular temperature profile, whereas for the linear 

temperature profiles it varies according to the temperature 

distribution. Irrespective of the temperature profile, the 

maximum value of Ux is observed at the top layer of the 

MEE beam. From Fig. 16(b) it can be witnessed that the Uv 

is maximum at the top layer of the MEE beam for the linear 

and the parabolic temperature profiles whereas, the uniform 

temperature profile shows almost a constant variation 

through the thickness. The bi-triangular temperature profile 

follows a symmetric trend of variation with minimum Uv at 

the middle layer of the beam, which can be attributed to the 

temperature distribution. Fig. 16(c) displays the transverse 

z-direction displacement component. The variation of the 

electric and magnetic potentials of the BFB MEE beam is 

elucidated in Figs. 16(d) and (e) respectively. Further, Figs. 

17(a) and (b) displays the variation of electric displacement 

components Dx and Dz, respectively. Analogously, 17(c) and 

(d) depicts the magnetic flux density components Bx and Bz, 

respectively. 

The cross thickness stresses σx, τxy, τyz and τxz for the 

various temperature profiles considered are illustrated in 

Figs. 18(a)-(d), respectively. The maximum normal stress σx 

is observed at the top layer for the parabolic and linear 

temperature profile, whereas it is minimum at the middle 

layer for the bi-triangular temperature profile. For all the 

temperature profiles, the shear stress τxy varies 

symmetrically across the middle layer of the beam as 

elucidated in Fig. 18(b). From Fig. 18(c) it may be observed 

that the shear stress τyz is negligible for the uniform 

temperature profile and its maximum value is observed for 

the parabolically varying temperature. 

   
(a) (b) (c) 

  
(d) (e) 

Fig. 16 Effect of various through thickness varying temperature profiles on displacements and potentials (a) Ux (b) Uv (c) Uw 

(d) ϕ (e) ψ of the BFB-MEE beam 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 17 Effect of various through thickness varying 

temperature profiles on (a) electric displacement Dx (b) 

electric displacement Dz (c) magnetic flux density Bx (d) 

magnetic flux density Bz of the BFB-MEE beam 

 

 

4. Conclusions 
 

In the present article, the static behaviour of a 

conventional multilayered magneto-electro-elastic (MEE) 

beam exposed to different thermal loads is investigated. In 

this regard, the governing equations of motion are derived 

from finite element (FE) method, by employing the 

minimum total potential energy principle and coupled 

constitutive equations of MEE material. The condensation  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 18 Effect of various through thickness varying 

temperature profiles on normal and shear stresses (a) σx (b) 

τxy (c) τyz (d) τxz of the BFB- MEE beam 

 

 

technique is used to solve the global FE equations of 

motion. Also, in order to show the validity of the proposed 

FE formulation, the obtained results are compared with the 

results reported in the literature. Further, a detailed 

parametric study is carried out to investigate the effects of 

stacking sequence, in-plane and through thickness 

temperature profiles on the static parameters of MEE beam. 

The numerical study reveals that stacking sequence has a 

significant effect on the displacements and potentials of 

MEE beam. The x- direction displacement component Ux 
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and y- direction displacement component Uv is observed to 

be maximum for BFB MEE beam. This can be attributed to 

the reduced stiffness of piezoelectric phase as a result of 

lesser elastic stiffness co-efficients. The electric potential 

along the beam length is higher for BFB MEE beam. The 

reason may be due to the presence of more number of pure 

piezoelectric layers. Analogously, the magnetic potential is 

more for FBF MEE beam. Also, it is notable that the 

stacking sequence has an insignificant effect on the 

variation of shear stresses along the beam length. It is 

evident from the results that among the different 

temperature profiles considered, the uniform temperature 

raise is witnessed to have a significant influence on the 

static behavior of MEE beam. Further, it is also obsreved 

that the direct quantities are maximum at the region where 

the highest temperature of the corresponding temperature 

profile appears. It is believed that the results from the 

present analysis assist in precise designing of MEE 

structures in various thermal environments.  
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