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1. Introduction 

 

Cracks present a serious threat to proper performance of 

structures. It is an important means to ensure the safety of 

structure through taking some remedial measures or 

evaluating the bearing capacity of the structural residual 

load as soon as possible whenever cracks appear. The 

structural dynamic characteristics such as natural 

frequencies and mode shapes will be changed due to the 

presence of cracks, which means that the dynamic 

characteristics have great potential for the diagnosis of 

cracks. The non-uniform continuous Timoshenko beam 

carrying various concentrated elements (such as linear 

springs, point masses and spring-mass systems, etc.) are 

widely used in the field of mechanical, civil engineering 

and so on. Thus, it is of great significance to study the free 

vibration analysis of a non-uniform continuous Timoshenko 

beam carrying an arbitrary number of spring-mass systems. 

Some studies have been performed to analyze the 

vibration characteristic of Timoshenko beams carrying 

various concentrated elements by several researchers and 
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some corresponding research papers have been published. 

Rossi et al. (1993) studied the free vibration of a single span 

uniform Timoshenko beam carrying a spring-mass system 

which acts as a dynamic absorber cancelling out the motion 

at the point of attach. Wu and Chen (2001) obtained the 

exact natural frequencies and mode shapes of a uniform 

Timoshenko beam with various boundary conditions and 

carrying multiple spring-mass systems with the presented 

numerical assembly technique. Wang et al. (2007) studied 

the natural frequencies and mode shapes of a uniform 

Timoshenko beam carrying multiple intermediate spring-

mass systems with the effects of shear deformation and 

rotatory inertia. Yesilce et al. (2008) studied the free 

vibration of a uniform multi-span Timoshenko beam 

carrying multiple spring mass systems by using scant 

method. Lin (2009) utilized the numerical assembly method 

to determine the exact natural frequencies and mode shapes 

of the uniform multi-span Timoshenko beam carrying a 

number of various concentrated elements including spring-

mass systems etc. Yesilce and Demirdag (2008) obtained 

the frequency values and mode shapes of the multi-span 

uniform Timoshenko beam carrying multiple spring-mass 

systems with the axial force effect. Wu and Chang (2013) 

studied the exact natural frequencies and associated mode 

shapes for an axial-loaded multi-step Timoshenko beam 

carrying various concentrated elements by using continuous 

mass transfer matrix method. EI-Sayed et al. (2016) dealt 

with the analysis of the vibration of an axially loaded beam 

system carrying ends consisting of non-concentrated tip 

masses and three spring-two mass sub-systems. From above 

literature review, one sees that most investigations were 

concentrated on intact uniform Timoshenko beams, 
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however, the problems regarding free vibration of cracked 

non-uniform continuous Timoshenko beam carrying various 

concentrated elements are very rare. 

During the last decades, the vibration behavior of 

cracked simple beam has been investigated by many 

researchers. And various kinds of analytical, semi-analytical 

and numerical methods have been employed to solve the 

problem of a cracked simple beam (Zheng and Fan 2001, 

Khiem and Lien 2001, Torabi et al. 2014, Mazanoglu et al. 

2009, Zheng and Ji 2012). Kisa et al. (1998) studied the 

vibrational characteristics of a cracked uniform Timoshenko 

beam by integrating the finite element method and 

component mode synthesis. Finite element method was also 

used by Viola et al. (2001) to model the damaged structure. 

A new finite spectral element of a cracked uniform 

Timoshenko beam was introduced by Krawczuk et al. 

(2003) for modal and elastic wave propagation analysis. Lin 

(2004) obtained the characteristic equation of a simply 

supported uniform Timoshenko beam with an open crack by 

using the analytical transfer matrix method. By the use of 

the energy approach, Swamidas et al. (2004) predicted the 

effect of crack size and location on the natural frequencies 

of cracked uniform simply supported Timoshenko beam. 

Loya et al. (2006) obtained the natural frequencies of 

uniform Timoshenko beams with a crack by the 

perturbation method. All the above studies considered only 

one crack on the Timoshenko beam. 

The case that Timoshenko beam has more than one 

crack was considered in the study of Zheng and Fan (2001). 

They obtained the natural frequencies of a Timoshenko 

beam which can have non-uniform cross-sectional areas 

with an arbitrary number of transverse open cracks and 

point-spring supports by using modified Fourier series. Li 

(2003) also established the frequency equation for a 

uniform Timoshenko beam with any kind of two end 

supports and an arbitrary number of cracks from a second-

order determinant. Aydin (2007) presented an efficient 

analytical approach to determine the vibrational frequencies 

and mode shape functions of axially-loaded uniform 

Timoshenko beams with an arbitrary number of cracks. 

From the above literature analysis, it can be seen that the 

study of the free vibration of cracked Timoshenko beam 

carrying spring-mass systems has not yet been involved. 

In this paper, a method is presented for free vibration 

analysis of cracked continuous Timoshenko beam carrying 

arbitrary number spring-mass systems, which is available to 

any form of the variable cross section. In this method, the 

transfer matrix method and numerical assembly technique 

are used to construct the characteristic equation of the 

whole vibration system. According to the characteristic 

equation, the natural frequencies and mode shapes of 

cracked non-uniform continuous Timoshenko beam are 

obtained by using the half-interval method and Runge-Kutta 

method. By this method the influence of crack on the 

transverse vibration mode shapes and the rotational mode 

shapes is discussed, and the effects of the parameters of 

crack and spring-mass system on the non-uniform 

continuous Timoshenko beam are discussed. The results of 

the discussion have certain reference value for the design 

and crack diagnosis of this type structure. 

2. Differential equation of a non-uniform Timoshenko 
beam 

 

The motion equations of a non-uniform Timoshenko 

beam can be expressed as 
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where M(x,t), Q(x,t) are the bending moment and shear 

force at axial coordinate x and time t, respectively; ρ is 

density of material; I(x), A(x) are the moment of inertia and 

area of the cross-sectional area at axial coordinate x, 

respectively; φ(x,t), Y(x,t) are the rotation due to pure 

bending and transverse deflection at axial coordinate x and 

time t, respectively. 

Based on Timoshenko beam theory, it has 
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where E is Young’s modulus, G is shear modulus, k is a 

constant related to the shape of the cross section, for a 

rectangular cross section, k can be taken as 5/6. 

Assuming the whole vibration system performs a 

harmonic free vibration, it has 
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where ω is the natural circular frequency of the Timoshenko 

beam and 1j . 

The substitution of Eqs. (5a)-(5d) into Eqs. (1)-(4) gives 
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Let    TxQxMxxYxZ )()()()()(  , Eqs. (6)-(9) 

can be written as 
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The specific form of the coefficient matrix [U(x)] is 
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(11) 

By using {Z(0)}, the vector of undetermined coefficients 

at the left boundary of beam can be expressed as 

           TQMYZ 00000 
. 

By using the transfer matrix method, it has 

    )0()()( ZxTxZ 
 (12) 

where [T(x)] is the transfer matrix, it shows the transfer 

relationship of undetermined coefficients between any 

position of the beam and the left boundary. 

The substitution of Eq. (12) into Eq. (10) gives 
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(13) 

For Eq. (13), the transfer matrix [T(x)] in any position 

also can be obtained by using Runge-Kutta method 

(Kahaner et al. 1989, Dormand and Prince 1980), which is 

derived and given in Appendix A. As can be seen from Eq. 

(12), the initial value of Runge-Kutta method is an identity 

matrix. 

 

 

3. Solutions of natural frequency and mode shape 
 

The sketch of a continuous Timoshenko beam with an 

arbitrary number of cracks, S spring-mass systems and T 

pinned supports which has variable cross-sections is shown 

in Fig. 1. The continuous beam is divided into N=T+S-1 

segments by T pinned supports and S spring-mass systems. 

 

 

For convenience, two kinds of coordinates are unified as 

one shown in Fig. 1. The positions of the pinned support 

and spring-mass system are defined by x(r) ((r)=1~T), x[p] 

([p]=1~S)，respectively. The symbols of 1, 2, 3,···, j-1, j, 

j+1···, N-1, N above the x-axis refer to the numbering of 

segments, while the symbols of (1), (2),···, (r),···, (T-1), (T) 

and those of [1], [2],···, [p-1], [p], [p+1],···, [S] below the 

x-axis refer to the numbering of pinned supports and spring-

mass systems, respectively. It should be noted that the 

numbering of pinned supports and spring-mass systems are 

enclosed in parentheses () and [], respectively. The 

numbering of segments is without any parentheses. There is 

an association among the numbering of segments, pinned 

supports and spring-mass systems. As seen in Fig. 1, the 

number of the jth segment is j=[p]+(r-1). 

Taking the jth segment as an example to illustrate the 

transfer relationship of undetermined coefficients in the 

same segment, assuming that the jth segment has r cracks 

and it is divided into (r+1) sub-segment by the cracks in 

Fig. 2, the symbols of 
1

jsb , 
2

jsb ,···, 1e
s j

b , 
e
s j

b , 1e
s j

b ,···, 

1r
s j

b  refer to the numbering of (r+1) sub-segments of the 

jth segment, and their lengths are 
1

jsl , 
2

jsl ,···, 
1e

s j
l , 

e
s j

l , 

1e
s j

l ,···, 
1r

s j
l . 

 

 

 

Fig. 2 Equivalent model of the jth segment 

 

Fig. 1 Sketch of a continuous Timoshenko beam carried by S spring-mass systems and T pinned supports with any 

number of cracks 
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. Assuming the natural circular frequency of the cracked 

continuous Timoshenko beam carrying spring-mass systems 

is  , according to Eq. (12), the undetermined coefficient 

of the transfer relationship in sub-segment 
e
sjb  can be 

obtained 
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where )]([ e
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T   is identical to the meaning of [T(x)] in Eq. 

(12), it is determined by replacing ω of [U(x)] with   in 

Eq. (13). 
e
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A model of massless extensional spring and rotational 

spring is adopted to describe the local flexibility induced by 

cracks in this paper. In the eth crack location of the jth 

segment, there is the discontinuities of the transverse 

deflection and rotational angle due to bending. 
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where 
e
s j

SC  is the local flexibility constant of the 

extensional spring in the eth crack location of the jth 

segment, 
e
s j

MC  is the local flexibility constant of the 

rotational spring in the eth crack location of the jth segment. 
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where h is the height of the beam, 
e

s j
SF  and 

e

s j
MF  are 

functions depending on the relative crack deep 
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a  is the absolute depth of the eth 

crack in jth segment) and the cross-section geometry. For a 

rectangular-sectional beam, )(e
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SF  can be expressed as 

(Valiente et al. 1990) 
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And the )(e

s j
MF  can be written as (Tada et al. 1985) 
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Using the equilibrium conditions of moment and shear 

in the eth crack location of the jth segment, it has 
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Eqs. (16), (17), (22), (23) are written as a matrix, it has 
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where   Re
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G

,
 is the transfer matrix of the undetermined 

coefficient between the left side and right side at the eth 

crack location of the jth segment. 
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According to Eqs. (15) and (24), it can obtain the 

transfer relationship of undetermined coefficients between 

the right side of the last sub-segment (sub-segment 1r
s j

b ) 

and the left side of the first sub-segment (sub-segment 1

jsb ) 

in the jth segment by using the recursive method. 
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For convenience, the undetermined coefficient vector of 
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the last sub-segment right side in the jth segment is written 

as  last

s j
Z , the undetermined coefficient vector of the first 

sub-segment left side in the jth segment is written as 

  first

s j
Z , it has 
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Eq. (26) also can be expressed as 
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The equation of motion of the pth spring-mass system is 
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where v[P] is the transverse deflection of the point-mass in 

the pth spring-mass system, y[P] is the transverse deflection 

of the segment with the pth spring-mass system. 

The spring-mass system performs a simple harmonic 

free vibration in the equilibrium position, it has 
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where V[P] is the vibration amplitude of the v[P]. 

The substitution of Eqs. (5a) and (31) into Eq. (30), it 

has 
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As seen in Fig. 1, the location of the spring-mass system 

is the right side of the (j-1)th segment, it is also the left side 

of the jth segment. Assuming that there is a crack at the 

location of the pth spring-mass system, the local flexibility 

constant of the extensional spring at the location of the 

crack is written as SC[p], the local flexibility constant of 

rotational spring is written as MC[p]. There are the 

discontinuities of the transverse deflection located at the 

spring-mass system due to the crack. In this case, the 

average of transverse deflection of the left and right sides is 

used instead of the transverse deflection of this position. It 

has 
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The substitution of Eq. (33) into Eq. (32), it has 
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According to the discontinuous condition of the 

transverse deflection and rotation due to the crack at the 

position of the pth spring-mass system, it has 
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If no cracks exist at the position of the pth spring-mass 

system, we can think that the crack depth is equal to zero, it 

has 

  0PSC ,   0PMC . 

Using the equilibrium conditions of moment and shear 

at the location of the pth spring-mass system, it has 
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Eqs. (34)-(38) are written as matrix form, it has 

    0}]{[ PP uH
 (39) 

where 

  

 

 

 

 
   

 




































000
2

000
2

10001000

010000100

00100010

00010001

2

2

p

pp

p

p

p

p

p

k
mk

k

m

MC

SC

H





 

       
  

 

 

 

 
   

 




































000
2

000
2

10001000

010000100

00100010

00010001

2

2

p

pp

p

p

p

p

p

k
mk

k

m

MC

SC

H





 

(40) 

  
 

 

 
  Tfirst

s

first

s

first

s

first

sp

last

s

last

s

last

s

last

s

first

s

p

last

s

p jjjjjjjj

j

j

QMYVQMY

Z

V

Z

u 
1111

1
























 

   
  

 

 

 
  Tfirst

s

first

s

first

s

first

sp

last

s

last

s

last

s

last

s

first

s

p

last

s

p jjjjjjjj

j

j

QMYVQMY

Z

V

Z

u 
1111

1























 

Substituting Eq. (29) into Eq. (39), it has 

    0}]{[ pp uH  (41) 
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where [0] is zero element matrix of 4×4, diag[I] is Diagonal 

matrix of 4×4 with all the diagonal elements are 1. 
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where, 
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(44) 

where the symbol of [p] refers to the numbering of spring-

mass system, the symbol of (r-1) refers to the numbering of 

pinned point which is closest to the pth spring-mass system 

in the range from the left side of continuous beam to the pth 

spring-mass system. As seen in Fig .1, the rth pinned 

support is located at the right side of the jth segment and it 

is also located at the left side of the (j+1)th segment. 

Assuming that there is a crack at that location, the local 

flexibility constant of rotational spring is written as MCr. If 

no cracks exist at the location, we can think that the crack 

depth is equal to zero, it has MCr=0. 

At the location of the rth pinned support, the transverse 

deflection is equal to zero, it has 
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The rotational angle is discontinuous caused by a crack, 

it has 
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Using the equilibrium conditions of moment in the rth 

pinned support location, it has 
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Eqs. (45)-(48) are written as matrix form, it has 
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Substituting Eq. (29) into Eq. (49), it has 
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 ][ rH  is the matrix of 4×8, it has 
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(53) 

where 

      
   
      
    




















1,5'

2,245'

1,25'

2,2245'

rpn

rrpn

rpm

rrpm

 

(54) 

where the symbol of (r) refers to the numbering of pinned 

support, the symbol of [p] refers to the numbering of 

spring-mass system which is closest to the rth pinned 

support in the range from the left side of continuous beam 

to the rth pinned support as seen in Fig. 1. 

According to the left boundary condition of the 

continuous beam, it has 
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According to the right boundary condition of the 

continuous beam, it has 
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Substituting Eq. (29) into Eq. (61), it has 
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 ][ TH  is the matrix of 2×4, it has 
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For a cracked continuous Timoshenko beam with S 

spring-mass systems and T pinned supports, it has N 

(N=T+S-1) segments. There are four undetermined 

coefficients for each segment, and there are 4N 

undetermined coefficients for all N segments, which are 

expressed as 
first

s
Y

1
, 

first
s1

 , 
first

s
M

1
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first
s

Q
1

,···, 
first

s j
Y , 

first
s j

 , 
first

s j
M , 

first
s j

Q ,···, 
first

s N
Y , 

first
sN

 , 
first

s N
M , 

first
sN

Q

, respectively. There is one undetermined coefficient for 

each spring-mass system, and there are S undetermined 

coefficients for all S spring-mass systems, which are 

expressed as V[1], ···, V[p],···, V[s]. Therefore, the total 

vibration system has 4N+S=5S+4T-4 undetermined 

coefficients. Each spring-mass system gives five equations 

and S spring-mass systems give 5S equations. Each 

intermediate support has four equations and the total 

number of equations about all the intermediate support is 

4[(r)-2]. Besides, the right boundary conditions and the left 

boundary conditions contain two equations, respectively. 

Then, total number of equations is 5S+4T-4. 

The associated coefficient matrices are given by  ][ PH , 

 ][ rH ,  ][ 1H ,  ][ TH  from Eqs. (41), (51), (57) and (63). 

And each element’s identification number of coefficient 

matrix has been in top side and right side of each matrix. 

Therefore, using the numerical assembly technique as done 

by the conventional finite element method one may obtain a 

matrix equation for all undetermined coefficients of the 

entire beam. 

   0uH
 (67) 

Non-trivial solution of Eq. (67) requires that 

0H
 (68) 

The natural frequencies and mode shapes of a cracked 

non-uniform continuous Timoshenko beam carrying 

arbitrary number spring-mass systems are obtained from 

overall matrix by the combination with half-interval method 

and Runge-Kutta method. The calculation steps are as 

follows: 

(1) Given an initial value Ω0 of the circular frequency, it 

is required that the initial circular frequency is less than the 

1st natural circular frequency of the cracked non-uniform 

continuous Timoshenko beam. 

(2) Substituting Ω0 into Eq. (27), the transfer matrix at 

the right end of each segment is obtained by the Runge-

Kutta method. Form a matrix [H(Ω0)], and calculate the 

determinant value, let D0=|H(Ω0)|, Ω1=Ω0+△Ω, in which 

△Ω is the increment of Ω0. D1=|H(Ω1)| can be obtained by 

repeating the same calculation. If D0 and D1 are the 

opposite sign. The 1st natural circular frequency of non-

uniform Timoshenko beam is in the interval (Ω0, Ω1). If D0 

and D1 are the same sign, then let Ω0=Ω1, Ω1=Ω0+△Ω. An 

interval of the 1st natural circular frequency of non-uniform 

Timoshenko beam can be determined by repeating the 

calculation process of step 2. The increment should be small 

enough in order to ensure that there only have the 1st 

natural circular frequency in an interval (e.g., △Ω=0.5). 

(3) Ω1 in the interval of the 1st natural circular 

frequency is considered as the initial value of natural 

circular frequency. According to Step2, an interval of the 

2nd natural circular frequency of non-uniform Timoshenko 

beam also can be obtained. The interval of the lower natural 

circular frequencies of non-uniform Timoshenko beam can 

be obtained by using similar calculation procedure, 

respectively. 

(4) According to an interval of a certain natural circular 

frequency, the accurate value of the natural circular 

frequency of the non-uniform Timoshenko beam can be 

obtained by using half-interval method. Substituting the 

accurate value of the natural circular frequency into Eq. 

(27), the transfer matrix at the right end of each segment 

can be obtained by using Runge-Kutta method. The matrix 

[H] is reformed. The vector of the undetermined coefficient 

{u}is obtained by using Eq. (67), and the modal shapes can 

be obtained according to the vector of the undetermined 

coefficient.  

 

 

4. Numerical results and discussions 
 

Unless particularly mentioned, all the numerical results 

of this paper are obtained based on the non-uniform 

continuous Timoshenko beam with the following given 

data: rectangular cross section with uniform width of 0.3m 

and linearly or parabolically varying height, Young’s 

modulus E=3.25×10
10

Pa, mass density ρ=2500kg/m
3
, 

Poisson’s ratio v=0.3.  
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Table 1 The first three order natural frequencies of the 

wedge beam 

Boundary 

conditions 

Crack 

depth a 

(mm) 

Frequency 

order 

Proposed 

method 

(rad/s) ω1 

Torabi’s 

method 

(rad/s) ω2 

%100
1

21 






×100% 

Clamped-

clamped 

5 

1st 71200.7051 71131.9396 0.0966 

2nd 142914.2303 142841.9323 0.0506 

3rd 228537.4451 228406.3484 0.0574 

10 

1st 68381.3086 67820.7010 0.8198 

2nd 131261.7188 130797.0663 0.3540 

3rd 202773.4375 202086.0856 0.3390 

cantilever 

5 

1st 23347.2600 23342.0330 0.0224 

2nd 80380.6534 80324.2396 0.0702 

3rd 159633.4953 159523.7890 0.0687 

10 

1st 20210.3252 20219.2900 -0.0444 

2nd 71105.7510 70748.6654 0.5022 

3rd 138399.5781 137639.4550 0.5492 

 

 

Fig. 3 A two-span pinned-pinned Timoshenko beam with 

two cracks and one spring-mass system 

 
 
4.1 Reliability of the proposed method 
 

4.1.1 Cracked wedge Timoshenko beam without 
spring-mass system 

Torabi et al. (2014) obtained the natural frequencies of 

cracked wedge Timoshenko beam without spring mass 

systems using the differential quadrature element method 

(DQEM). Material properties of the wedge beam are: 

Young’s modulus E=210 GPa, material mass density 

ρ=7860 kg/m
3 

and Poisson ratio v=0.3. Geometric 

parameters of the wedge beam are left side height, 

h0=50mm, right side height, h1=25 mm, thickness b=10 mm 

and length, L=100 mm. 

Torabi considered two cases of the crack depth (a=5 

mm, 10 mm), three equal depth cracks at different positions 

(x1=25 mm, x2=50 mm, x3=75 mm), and two kind of 

boundary conditions (clamped-clamped and cantilever) in 

the process of calculating the natural frequencies. 

For the convenience of comparative analysis, the first 

three order natural frequencies of the wedge beam are 

calculated by the proposed method under the condition of 

the same crack location, crack depth and boundary 

conditions (Table 1). As can been seen from Table 1, the 

results obtained by proposed method in this paper are in 

good agreement with the results obtained by the Torabi’s 

method, which reveals the validity and reliability of the 

method presented in this paper 

 

 

Fig. 4 FEM model of a two-span pinned-pinned 

Timoshenko beam with two cracks and one 

spring-mass system 

 

 
(a) RFSC for the first natural frequency 

 
(b) RFSC for the second natural frequency 

Fig. 5 Change ratio for natural frequency with respect to 

relative crack depth 

 
 
4.1.2 Two span Timoshenko beam with two cracks 

and one spring-mass system 
The second example (shown in Fig. 3) is a two-span 

continuous Timoshenko beam with a variable cross section. 

The height of the beam varies linearly and the height 

hA=hC=hE=0.7m, hB=hD=0.5m. The beam with one spring-

mass system and two cracks which have the same depth. 

For the parameters of spring-mass system, point mass is 

1500kg and spring coefficient is 2×10
6
N/m. The lowest two 

natural frequencies of the two-span continuous beam with 

respect to the different relative crack depths are calculated 

by the proposed method and FEM, respectively. 

Finite element analysis is carried out by ANSYS 

software. A 2D-FEM model of the non-uniform 

Timoshenko beam is built with 8-node PLANE183 

elements. Each element of PLANE183 has the length of 

0.1m and the width of 0.1m. Therefore, there are 860 

PLANE183 elements. Spring and mass are built by 

COMBINE14 and MASS21, respectively. The change ratio 

for natural frequency is defined by Eq. (69) and the results 

are presented in Fig. 5. 
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where 


 is the natural frequency of cracked beam with 

spring-mass systems, ω0 is the natural frequency of intact 

Timoshenko beam without spring-mass systems. 

As can be seen from Fig. 5, when relative crack depth is 

0% (i.e., this is an intact beam), the lowest two natural 

frequencies of continuous Timoshenko beam increase by 

the influence of spring-mass system, in which the change of 

the first natural frequency is more significant than that of 

the second one. This is because the spring-mass system is 

located at different points with respect to the lowest two 

mode shapes. Then the lowest two natural frequencies of 

continuous Timoshenko beam decrease with relative crack 

depth increasing. It’s also seen that the good agreement 

between the results of presented method and FEM is 

achieved and the validity and reliability of the proposed 

method is verified.  

 

4.2 A three-span cracked continuous Timoshenko 
beam with variable cross section carrying one spring-
mass system 

A three-span cracked continuous Timoshenko beam 

carrying one spring-mass system is shown in Fig. 6. The 

height of the beam in each span varies parabolically and the 

height hA=hC=hE=hG=0.7 m, hB=hD=hF=0.5 m. For the 

parameters of spring-mass system, point mass is 1500 kg 

and spring coefficient is 2×10
6
 N/m. The relative depths of 

three cracks are 30%. Natural frequencies and associated 

mode shapes for four cases are calculated by the proposed 

method, i.e., 

Case I: Intact beam without spring-mass system; 

Case II: Intact beam with one spring-mass system; 

Case III: Cracked beam without spring-mass system; 

Case IV: Cracked beam with one spring-mass system. 

The first three natural frequencies for these cases are 

shown in Table 2 and the associated mode shapes are 

plotted in Fig. 7. 

It can be seen from Table 2 that: (1) For Cases I and II, 

the first two natural frequencies have more variations, and 

the changes of 3rd natural frequencies are not obvious. This 

is because the spring-mass system is located at different 

 

 

 

Fig. 6 A three-span cracked continuous Timoshenko beam 

with variable cross section carrying one spring-mass system 

 

Table 2 The lowest three natural frequencies for four cases, 

respectively 

Cases 1st (rad/s) 2nd (rad/s) 3rd (rad/s) 

Case I 161.5705 206.7160 382.7652 

Case II 163.7750 209.0126 382.9788 

Case III 150.4670 200.5637 367.3904 

Case IV 152.4713 203.0942 367.6712 
 

 
(a) 1st normalized mode shape (Y) 

 
(b) 2nd normalized mode shape (Y) 

 
(c) 3rd normalized mode shape (Y) 

 
(d) 1st normalized mode shape (φ) 

 
(e) 2nd normalized mode shape (φ) 

 
(f) 3rd normalized mode shape (φ) 

Fig. 7 The lowest three mode shapes for four cases 
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points with respect to the lowest three mode shapes; (2) For 

comparison of Cases I and III, there are bigger differences 

for the lowest three natural frequencies. It lies that one 

crack occurs in each span and then cracks are located at 

peaks or troughs of the lowest three mode shapes all the 

time. (3) The variation between Cases I and IV is less than 

that between Cases I and III, because there are the effects of 

spring-mass systems and cracks on natural frequencies of 

continuous Timoshenko beam, in which spring-mass 

systems lead to the increase of natural frequencies of 

continuous Timoshenko beam, on the contrary, cracks make 

natural frequencies decrease. 

In Fig. 7, it is seen that the lowest three mode shapes of 

continuous beam have changed due to spring-mass systems 

and cracks, in which the lowest three mode shapes of φ 

have more obvious changes than the lowest three mode 

shapes of Y. The slopes of mode shapes are not consistent at 

left and right sides of crack due to the jump of slope caused 

by crack. 

 

4.3 Influences of parameters of spring-mass system 
and crack on natural frequencies of continuous 
Timoshenko beam with variable cross section 

 

In order to demonstrate the effects of parameters of 

spring-mass systems and cracks on natural frequencies of 

continuous Timoshenko beam with variable cross section, a 

two-span continuous Timoshenko beam with variable cross-

section studied is shown in Fig. 8. The height of the beam in 

each span varies parabolically and the height hA=hC=hE=0.7 

m, hB=hD=0.5 m. The parameters mainly refer to positions 

and natural frequencies (i.e., various combinations of point 

masses and spring constants) for spring-mass system, and 

positions and relative depth for crack, respectively. 

For intact continuous Timoshenko beam without spring-

mass system, the first natural frequency is 146.9718rad/s 

and the second one is 253.1410rad/s, the associated mode 

shapes are shown in Fig. 9. 

4.3.1 Position of spring-mass system 
Change ratio for natural frequency caused by spring-

mass system is defined by Eq. (70). 
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(70) 

where ωs is natural frequency of intact Timoshenko beam 

with spring-mass system. 

The position of spring-mass system changes from 0.5 m 

to 11.5 m distance from the left end of continuous 

Timoshenko beam with variable cross beam by a step of 0.5 

m as shown in Fig. 10. RFS with respect to different  

 

 

 

Fig. 8 A two-span continuous Timoshenko beam with 

variable cross section 
 

 
(a) 1st normalized mode shape 

 
(b) 2nd normalized mode shape 

Fig. 9 The lowest two mode shapes for intact continuous 

Timoshenko beam without spring-mass system 

 

 

Fig. 10 Schematic diagram of changing position for spring-

mass system 

 

 

Fig. 11 Change ratios for natural frequency with respect to 

different positions of spring-mass system 

 

 

positions of spring-mass system is calculated by the 

proposed method and the results are presented in Fig. 11. 

As can be seen from Fig. 11, RFS reaches the largest 

value when spring-mass system is located at peak or trough 

of the associated mode shape, while the value of RFS is 

zero for spring-mass system located at zero point for this 

mode and it is evident that spring-mass system has little 

influence on the associated natural frequency.  
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Table 3 The effect of different parameters of spring-mass 

system on natural frequency of continuous Timoshenko 

beam 

Systems 

Spring-mass system Continuous beam 

Parameter 
Natural 

frequency 

(rad/s) 

1st modal 2nd modal 

Point 

mass 

(kg) 

Spring 

coefficient 

(N/m) 

Natural 

frequency 

(rad/s) 

RFS 

(%) 

Natural 

frequency 

(rad/s) 

RFS 

(%) 

System 

I 
2000 4×106 44.7214 152.9683 4.0800 256.9069 1.4877 

System 

II 
1500 4×106 51.6398 153.1449 4.2002 256.9496 1.5045 

System 

III 
1500 4×106 63.2456 153.5397 4.4688 257.0320 1.5371 

System 

IV 
150 4×106 163.2993 133.4314 -9.2129 259.2995 2.4328 

System 

V 
150 6×106 200.0000 138.1446 -6.0061 266.4559 5.2599 

System 

VI 
150 1×107 258.1989 140.3532 -4.5033 229.6154 -9.2935 

System 

VII 
150 1.2×107 282.8427 140.7624 -4.2249 234.6748 -7.2948 

 

 

4.3.2 Natural frequency of spring-mass system 
In order to demonstrate the effect of natural frequency 

of spring-mass system on the continuous Timoshenko beam 

with variable cross section, a two-span continuous 

Timoshenko beam with one spring-mass system located at 

3m distance from the left end is studied and calculated by 

the proposed method, in which seven kinds of spring-mass 

system with different natural frequencies (various 

combinations of point masses and spring constants) are 

adopted, respectively. The parameters of these spring-mass 

systems and the calculated RFS of the first two natural 

frequencies are listed in Table 3. 

From Table 3, it can be seen that RFS for systems I, II 

and III are positive which indicates that natural frequency 

of continuous Timoshenko beam induced by these systems 

increase. For systems IV and V, RFS of 1st natural 

frequencies are negative and RFS of 2nd natural frequencies 

are positive. It means that the first natural frequency 

decrease and the second one increase due to spring-mass 

system. Besides, RFS of the lowest two natural frequencies 

are negative due to spring-mass systems, which mean that 

spring-mass system leads to the decrease of natural 

frequencies. Based on the above analysis, it can be 

concluded the qualitative judgment rule of how spring-mass 

system influences natural frequency of continuous 

Timoshenko beam, and the procedure is as follows: 

For comparison of ωs and i

0  (i.e., natural frequency 

of spring-mass system and continuous Timoshenko beam), 
i

s 0  , RFS of the ith natural frequency is negative; 

i

s 0  , RFS is positive. 

For systems I, II and III, RFS of 2nd natural frequencies 

are smaller than of 1st ones. This is because compared with 

natural frequency of spring-mass system, the difference of 

the 2nd natural frequency of continuous Timoshenko beam 

is larger than that of the 1st one, i.e., the natural frequency 

of spring-mass system is more close to the first one of 

continuous Timoshenko beam. In addition, RFS of the 

lowest two natural frequencies increases with the increasing 

of natural frequency of spring-mass system. This is because 

the natural frequency of spring-mass system is close to that 

of continuous Timoshenko beam. Thus, we can see that 

when the difference between natural frequencies of spring-

mass system and continuous Timoshenko beam is smaller, 

the influence of spring-mass on beam is more obvious. It 

can be also obtained from comparison between systems IV 

and V or VI and VII. Thus, when natural frequency of 

spring-mass system is close to one of natural frequencies of 

continuous Timoshenko beam, the influence of spring-mass 

system on corresponding natural frequency is more obvious. 

 

4.3.3 Position and relative depth of crack 
Change ratio for natural frequency caused by crack is 

defined by Eq. (71). 
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(71) 

where ωc is natural frequency of cracked beam. 

The position of crack changes from 0.5 m to 11.5 m 

distance from the left end of beam by a step of 0.5 m as 

shown in Fig. 12. RFC with respect to different positions of 

crack is calculated by the proposed method and the results 

are presented in Fig. 13. 

As can be seen in Fig. 13, RFC of the first natural 

frequency has the same change rule as RFS, i.e., RFC 

reaches the largest value when crack is located at peak or 

trough of the associated mode shape, while the value of 

RFC is the smallest for crack located at zero point for this 

mode. For RFC of the second natural frequency, the value is 

close to zero when crack is located at 4m or 8m distance 

from the left; while crack is located at intermediate support, 

value of RFC reaches the lowest point, and at this time, 

crack has the most influence on the second natural 

frequency of continuous Timoshenko beam with variable 

cross section. This is because for the second mode shape, 

 

 

 

Fig. 12 Schematic diagram of changing position for crack 

 

 

Fig. 13 Change ratios for natural frequency with respect to 

different positions of crack 
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(a) RFC for crack located at 3 m distance from the left end 

of beam 

 
(b) RFC for crack located at 6m distance from the left end 

of beam 

Fig. 14 Change ratios for natural frequency with respect to 

relative crack depth 

 

 

the bending moment of intermediate support is the largest 

and those located at 4m and 8m are close to zero. 

The lowest two natural frequencies for two cases which 

crack is located at 3m and 6m distance from the left end 

respectively are calculated by the proposed method, and the 

associated change ratios with respect to relative crack depth 

are presented in Fig. 14. 

As can be seen from Fig. 14, RFC of the first two 

natural frequencies decreases nonlinearly with the 

increasing of relative crack depth for crack located at 3m 

distance from the left end. RFC of 1st natural frequency is 

zero while the crack is located at 6m distance from the left 

end (i.e., crack is at the intermediate support), and that of 

2nd decreases nonlinearly with the increasing of relative 

crack depth. This is because the beam at the intermediate 

support can rotate freely in the first mode i.e., the bending 

moment is equal to zero; however, as for the second mode, 

the beam at the intermediate support couldn’t rotate freely, 

which indicates that there is a bending moment at this point. 

Therefore, based on the above analysis, the present of crack 

will lead to the change of modal properties if the bending 

moment of crack position is not equal to zero; while the 

bending moment of crack position is zero, crack has little 

effect on the associated modal properties.  

 

 

5. Conclusions 
 

This paper presents an approach for the free vibration 

analysis of cracked non-uniform continuous Timoshenko 

beam with an arbitrary number of spring-mass systems. 

Firstly, the beam is considered to be divided into several 

segments, and the transfer relationship of the undetermined 

coefficients in a segment is built. Then, the equations of 

motion of spring-mass systems and the compatibility 

conditions at intermediate supports are used to establish the 

characteristic equation of the continuous Timoshenko beam 

with any number of cracks and spring-mass systems. 

Finally, a previous method (DQEM) and FEM is used to 

validate the proposed method. The dynamic characteristics 

of a three-span cracked non-uniform continuous 

Timoshenko beam carrying one spring-mass system are 

calculated and the effects of parameters for cracks and 

spring-mass systems on natural frequencies of non-uniform 

continuous Timoshenko beams are studied. 

Based on the numerical results, the following 

conclusions are drawn: 

(1) In this paper, an analytical approach for the free 

vibration analysis of a cracked non-uniform continuous 

Timoshenko beam with any number spring-mass 

systems is presented which is applicable for any variant 

cross-section beam. And it is found that the agreement 

between the calculated results and other methods 

(DQEM and FEM) results is good, which verifies the 

validity and reliability of the proposed method.  

(2) The first three mode shapes of φ have more obvious 

changes than the first three mode shapes of Y. The 

spring-mass systems located at intermediate supports 

have no influence on natural frequencies of non-uniform 

continuous Timoshenko beams. However, the influences 

of cracks located at intermediate supports on natural 

frequencies of beams depend on whether there are 

bending moments at the points of corresponding mode 

shape. 

(3) When natural frequency of spring-mass system is 

less than that of non-uniform continuous Timoshenko 

beam, the corresponding order natural frequency of the 

non-uniform continuous Timoshenko beam will increase 

and vice versa. Moreover, the smaller the difference 

between natural frequencies of spring-mass system and 

non-uniform continuous Timoshenko beam is, the more 

obvious the influence of spring-mass system is.  
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Appendix A: The solution of transfer matrix using 
Runge-Kutta method 
 

As shown in Fig. A1, non-uniform Timoshenko beam is 

divided into n equally spaced segments, and the length of 

each segment is h, that is, the step length of Runge-Kutta 

method. The symbols of x1, x2,···, xi-1, xi,···, xn. refer to the 

right position of each segment. 

 

 

 

Fig. A1 non-uniform Timoshenko beam 
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Using Tα, λ(x)to represent any elements in the transfer 

matrix [T(x)]. α, λ represent rows and columns of the 

elements in the matrix, respectively, and α=1,2,3,4; 

λ=1,2,3,4. 

Calculate the right side of the Eq. (13) in this paper, it 

has 
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where, {TTα, λ} is a row vector consisting of elements Tα,λ(x) 

in [T(x)]. 
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The Eq. (13) can also be expressed as 
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(A5) 

According to the basic principle of the fourth-order 

Runge-Kutta method, the recursive relation of the elements 

Tα, λ(x) of the transfer matrix can be obtained from Eq. (A5). 

)2

2(
6

)()(

4
,

3
,

2
,

1
,,1,





KK

KK
h

xTxT ii





 

(A6) 

where 1
,K 2

,K 4
,K are the estimated value of slope 

obtaining by Euler method at xi, xi+h/2, xi+1; 
3

,K is the 

estimated value of slope obtaining by improved Euler 

method at xi+h/2. 

Through the analysis of Eq. (A4), we can obtain that 
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(A7) 

According to Eq. (A7), the Eq. (A5) can also be 

expressed as 
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According to Eq. (A8), 1
,1 K 2

,1 K 3
,1 K 4

,1 K
; 

1
,2 K
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,3 K ; 1
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,4 K 3
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corresponding to the elements )(,1 xT  , )(,2 xT  , )(,3 xT  , 

)(,4 xT   respectively in the 1st, 2nd, 3rd and 4th row of the 

transfer matrix can be given. The relative computational 

formulas are as follows 
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(A12) 

The Eqs. (A6), (A9), (A10), (A11) and (A12) express 

the transfer relationship between any elements Tα，λ(xi+1) at 

xi+1 and Tα, λ(xi) at xi of the transfer matrix. From Eq. (12), 

the transfer matrix value at x=0 is determined as the identity 

matrix. The value of the transfer matrix [T(x)] at x=0 is 

taken as the initial condition, and the value of transfer 

matrix at x1, x2,···, xn can be obtained using the transfer 

relationship between Tα, λ(xi+1) and Tα, λ(xi). 
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