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1. Introduction 
 

The composite materials, such as particle reinforced 

material, fiber composite material, have a wide application 

in engineering structures. Adding some small-sized 

inclusions into the matrix can largely improve the 

mechanical properties of these composite materials. 

However, some initial defects, such as cracks, voids, can 

also always be found in these heterogeneous materials. In 

the engineering fields, the occurrence of disasters caused by 

the development of cracks and voids, which are included in 

the building, is often happened. In order to better 

understand the mechanical behavior of heterogeneous 

materials, the interaction between cracks and voids or 

inclusions have to be investigated. Especially, it is highly 

worthwhile to investigate the effects of these inclusions and 

voids on the overall behavior (weakening or strengthening) 

of the product composites, in particular the cracking process 

which usually finally leads to the failure of the structures. 

In some earlier references, most of researchers proposed 

some mathematical formulations for analyzing crack-

inclusion interactions. Based on the Green's function 

solutions, Atkinson (1972) had solved the problem of the 

interaction between a circular inclusion and a radial crack. 
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He had shown graphically the variation of the stress 

intensity factor with the distance of the crack tip from the 

inclusion. Erdogan et al. (1974) further solved the problems 

by considering an arbitrarily oriented crack. In later studies, 

Erdogan and Gupta (1975) analyzed a more complicated 

inclusion problem with a crack crossing the boundary. 

Patton and Santare (1990) analyzed the effect of a rigid 

elliptical inclusion on a straight crack. By distributing 

dislocations along the crack lines and forces along the 

matrix-inclusion interfaces, Lam et al. (1992) proposed a 

set of coupled integral equations for the analysis of the 

interaction between cracks and inclusions. Lee et al. (2001) 

used a displacement integral equation technique to tackle an 

unbounded elastic solid with orthotropic inclusions and 

voids as well as multiple inclusions and crack interaction 

problems. Dong et al. (2003) proposed a general-purpose 

integral formulation for the analysis of the interaction 

between the inclusions of arbitrary shapes and cracks. 

However, these formulations can only be used to deal with 

some quite simple problems with simple load conditions. 

In numerical methods, the classical finite element 

methods (FEM) provide substantial capability for dealing 

with continuous and discontinuous problems with 

complicated boundary and load conditions in the 

engineering and scientific fields (Ortiz and Pandolfi 1999, 

Nishioka et al. 2001, Bouchard et al. 2003). However, for 

discontinuous problems, such as crack propagation 

problem, a refined mesh is needed near the crack tip and a 

continual remeshing is also performed as crack propagates. 

Due to an unknown crack path, the FEM is quite difficult in 

dealing with the modeling of arbitrary crack propagation. 
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Abstract.  This paper devoted to study dynamic interaction between crack and inclusion or void by developing the eXtended 

Finite Element Methods (XFEM). A novel XFEM approximation is presented for these structures containing multi 
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Remeshing complicates the meshing task and is time-

consuming. Subsequently, all kinds of novel numerical 

methods are developed for discontinuous problems, 

especially for crack propagation modeling, such as 

Element-Free Galerkin (EFG) method (Belytschko et al. 

1994), Element-Free Particle (EFG-P) method (Rabczuk et 

al. 2004, Rabczuk et al. 2007, Ai and Augarde 2016), 

Scaled Boundary Finite Element Methods(SBFEM) (Ooi 

and Yang 2011, Ooi et al. 2012), Numerical Manifold 

Method (NMM) (Shi 1992, Wu and Wong 2013), Boundary 

Element Method (BEM) (Hattori et al. 2016, Simpson and 

Trevelyan 2011), and eXtended Finite Element 

Methods(XFEM). Meshless method was also widely used 

for fracture modeling, and recently, the method has been 

combined with explicit crack descriptions, again using level 

sets (Zhuang et al. 2011, Zhuang et al. 2012). In 2004, the 

cracking particle method, a simplified meshfree method, 

was presented for modelling of fracture (Rabczuk et al. 

2004). Recently, Ai and Augarde (2016) proposed an 

adaptive cracking particle method for 2D crack 

propagation; the proposed method improved cracking 

particle method of Rabczuk in these aspects of crack path 

curvature modelling and efficiency for larger problems. 

Kumar et al. (2014) presented a multigrid coupled finite 

element and element free Galerkin approach for evaluating 

the fatigue life of cracked heterogeneous plate in the 

presence of multiple defects. Bhardwaj et al. (2015) 

presented the extended isogeometric analysis for 

investigating the effect of defects/flaws (holes, inclusions, 

cracks) on the fatigue life of functionally graded material. 

Among these methods, the XFEM should be one of the 

most promising numerical methods for the simulation of 

some strong and/or weak discontinuous problems. 

The XFEM were first introduced by Belytschko and 

Black (1999), based on the idea of the partition of unity 

approach (Melenk and Babuška 1996). The XFEM 

ameliorate the drawbacks of the FEM in solving 

discontinuous problems by enriching the standard FEM 

approximation. The XFEM approximation consists of 

standard finite elements which are used in the major part of 

the domain and enriched elements in the enriched sub-

domain for capturing special solution properties such as 

discontinuities and singularities. Therefore, the XFEM 

always holds these advantages. The XFEM mesh does not 

need to align with a discontinuity. For moving 

discontinuities, such as crack propagation problem, it does 

not need to carry on remeshing. Mesh refinement is also 

unnecessary around a discontinuous feature. The XFEM are 

quite adaptable for dealing with the coupling of strong and 

weak or multiple discontinuous problems. Singh et al. 

(2012) investigated the influence of the number of voids or 

inclusions in the domain on the stress intensity factor of the 

main crack. Later, Singh et al. (2011) evaluated the fatigue 

life of structures or components having multiple 

discontinuities, such as holes, cracks, and inclusions. Kim et 

al. (2011) analyzed the effect of equivalent initial flaw size 

distribution on a multiple-site damage specimen. Ye et al. 

(2012) investigated the effect of reinforcing particles on 

crack propagation behavior and fatigue performance during 

cyclic loading. Haboussa et al. (2011) focused on the 

interaction problem between cracks and holes. Sharma et al. 

(2013) studied the effect of inhomogeneities (holes, cracks, 

inclusions) on an edge crack by the XFEM. O‟Hara et al. 

(2016) presents the application of a two-scale 

generalized/extended finite element method involving the 

interaction of multiple crack surfaces. Kumar et al. (2015) 

performed the elasto-plastic XFEM simulations to evaluate 

the fatigue life of plane crack problems in the presence of 

various defects. They also proposed a new virtual node 

XFEM for modeling and simulation of kinked cracks in a 

single element; the proposed method could be used for 

crack growth simulation in homogeneous and bi-materials 

medium (Kumar et al. 2015). Furthermore, their another 

excellent work showed the advantage of the XFEM for the 

evaluation of fatigue life of an edge crack plate in the 

presence of multiple discontinuities i.e., holes, inclusions 

and minor cracks (Kumar et al. 2015). And subsequently, 

they studied some new enrichment in XFEM to solved 

moving crack problems in bi-materials (Kumar et al. 2016). 

In our previous studies (Jiang et al. 2014), we studied the 

effects of voids or inclusions on crack propagation under 

static loads and on dynamic stress intensity factors by 

XFEM. This study is the deepening and development of our 

previous studies. Its aim is to investigate the effects of voids 

or inclusions on crack propagation under dynamic load by 

the implemented XFEM. 

This paper is organized as follows. Section 2 discusses 

the level set functions of voids, inclusions, and cracks. 

Section 3 discusses the dynamic XFEM, including the 

construction of the XFEM approximation; the establishment 

of governing equations; the time integration scheme; and 

the integration schemes at the discontinuities. Section 4 

describes the computation of the dynamic stress intensity 

factors (DSIF). Section 5 describes the crack propagation 

criterion. Section 6 gives several numerical examples for 

verifying the implemented XFEM program. Section 7 

investigates the effects of a single circular or elliptical void 

/ stiff inclusion, and multi stiff inclusions on the crack 

propagation path under dynamic loads. Section 8 

summarises the major conclusions that can be drawn from 

this study. 

 

 

2. Level set functions of voids, inclusions, and 
cracks 

 
2.1 Level set functions of voids and inclusions 
 

A powerful tool for tracking interfaces is the level set 

method (LSM) (Osher and Sethian 1988). In LSM, the 

interface of interest is represented as the zero level set of a 

function, ϕ(x). This function is one dimension higher than 

the dimension of the interface. 

Consider a domain, Ω, divided into two non-overlapping 

subdomains, Ω
+
 and Ω

-
, sharing a interface, Γ, as illustrated 

in Fig. 1. On Ω
+
, the level set function ϕ(x)>0; on Ω

-
, the 

level set function ϕ(x)<0; on Γ, ϕ(x)=0. 

The circular level set function can be expressed as 

 
c

c c

1,2,...,
( ) min i i

i n
r


  x x x  (1) 
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Fig. 1 Domain with a circular interface 

 

 

where, nc is the number of circular voids/inclusions, and c

ix  

is the location of the centre of the ith circular void/inclusion 

with the radius of c

ir . 

The elliptical level set function can be expressed as 

    

    c
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c c

2

21,2,..., c c

2

cos sin
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cos sin
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 
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 



 

 (2) 

where, nc is the number of elliptical voids/inclusions; 

 c c,i ix y  is the location of the centre of the ith elliptical 

void/inclusion; a is the semi-major axis of the elliptical; b is 

the semi-minor axis of the elliptical; and θ is the orientation 

angle with counter clockwise,  π,π   . 

In the discritized domains, the values of the level set 

functions are stored only at the nodes, that is ( )i i  x . 

The level set values can be interpolated over the mesh by 

h ( ) ( )i i

i

N x x  (3) 

where, Ni(x) is the standard finite element shape functions. 

 

2.2 Level set functions of cracks 
 
Two level sets ψ(x,t)

 
and ϕ

k
(x,t)(k=1,2)

 
are used to 

describe the crack. As shown in Fig. 2, the functions are 

written as ψ and ϕ
k
 in the simplified form. The crack tip 

level set ϕ
k
 is generally assumed to be orthogonal to ψ. The 

function ψ(x,t) can be expressed by the signed distance 

function, that is 

* *( , ) sign(( ) )t    x x x x x n  (4) 

where, x is the coordinate of the point P; x
*
 is the projection 

of the point P on the crack surface; n is the unit outward 

normal to the crack surface; sign(x) is the signed function; 

sign(x)=1 for x>0; sign(x)=0 for x=0; and sign(x)=−1 for 

x<0. 

The function, ϕ
k
(x,t), can be defined as 

( , ) ( )k

kt   x x x t  (5) 

where xk is the coordinate of the kth crack tip and t is the 

unit tangential vector at the kth crack tip. 

 

Fig. 2 Crack description by two level set functions 

 

 

The values of the level set functions are stored only at 

the nodes as in the previous case. The level set values can 

be interpolated over the mesh by 

( , ) ( )( ( , ))

( , ) ( ) ( , )

k k

i i

i

i i

i

t N t

t N t

 

 

 










x x x

x x x
 (6) 

Crack growth is modeled by appropriately updating the 

ϕ
k
 and ψ functions. The evolution of the level set functions 

ϕ
k
 and ψ is determined by the crack growth direction θc. As 

shown in Fig. 3, in each step, the displacement vector of the 

crack tip is T=(Tx,Ty). The coordinate of the crack tip CT1 is 

(x1,y1), and the coordinate of the crack tip CT2 is (x2,y2). 

The following steps describe the procedure of the evolution 

of the level set functions k

n  and ψn at the step n, that is to 

compute the level set functions 1

k

n   and ψn+1 at the step 

n+1. 

Step 1: Compute the rotated level set ϕ
k,r

 of k

n , and ϕ
k,r

 

at the node with the coordinate of (x,y) can be given by 

   ,

1 1

yk r x
TT

x x y y    
T T

 (7) 

Here, the superscript „k‟ of ϕ
k,r

 denotes the kth crack tip, and 

the superscript „r‟ is fixed. 

Step 2: Compute the level set ψn+1. If ϕ
k,r

<0, the level 

set ψn+1 will not be updated, that is ψn+1=ψn. If ϕ
k,r

>0, ψn+1 

can be computed by 

   1 1 1

y x
n

T T
x x y y      

T T
 (8) 

Step 3: Compute the level set 
1

k

n 
, and 

1

k

n 
 can be 

given by 

1

k k

n n    T  (9) 

At a point x, the polar coordinate r and θ with respect to 

the tangent to the crack tip are defined as 

   

 

 

2 2

1

, ,

,
tan

,

k

k

r t t

t

t

 









      


  
   
  

x x

x

x

 
(10) 
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Fig. 3 Update of the level set functions 

 

 
Fig. 4  Discretized domains in two dimensions with nodal 

subsets *

absI , *

brI , *

voidI , and *

incI  

 
 
3. Basic formulation of XFEM for dynamic problems 
 

3.1 XFEM approximation 
 

The XFEM approximation for 2D domains with 

cracks/voids/inclusions can be written as 

*
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(11) 

where Ni(x) is the standard finite element shape function of 

node i; ui is the unknown of the standard finite element part 

at node i; i is the set of all nodes in the domain; *( )iN x  is 

the partition of unity functions, and the function can hold 

the same form with the standard finite element shape 

function but are not necessarily; ai, 
j

ib , vi, and ci is the 

nodal enriched degree of freedom; 
*

absI , 
*

brI , *

voidI , and 

*

incI  is the set of enrichment nodes shown in Fig. 4, and 

* * * *

abs br void inc, , ,I I I I I . 

For these elements which are cut completely by a crack, 

the nodes of these elements that are the nodal subset 
*

absI  

are enriched by Heaviside function H(x). The definition of 

Heaviside function H(x) follows 

*

*

1, ( ) 0
( )

1, ( ) 0
H

   
 

   

x x n
x

x x n
 (12) 

where, x
*
 is the projection of a point x on the crack surface; 

n is the unit outward normal to the crack surface. 

For these elements which are cut partially by a crack, 

the nodes of these elements that are the nodal subset 
*

brI  

are enriched by the crack tip enrichment function Fj(x). The 

definition of the crack tip enrichment function Fj(x) follows 

 

 

 

 

=1 2,3,4

sin 2

cos 2
( , )=

sin sin 2

sin cos 2

j

r

r
F r

r

r






 

 









，
 

(13) 

where r and θ are the local crack tip coordinate system. 

For these elements which are cut by the void boundary, 

the nodes of these elements that are the nodal subset *

voidI  

are enriched by the function V(x) (Sukumar et al. 2001). If 

the nodes lie in the void, V(x)=0, or else V(x)1. 

For these elements which are cut by the inclusion 

interface, the nodes of these elements that are the nodal 

subset 
*

incI  are enriched by the following function υ(x)  

* *

( ) ( ) ( )i i i i

i I i I

N N  
 

  x x x  (14) 

It should be worth pointing out that the enrichment 

function υ(x) is a ridge centered on the interface and has 

zero value in the blending elements (Moës et al. 2003). So 

the enrichment function can be reproduced exactly 

everywhere in the domain and no problems arise in the 

blending elements. 

 
3.2 Governing equations 

 

The boundary of a bounded domain, ΩR
2
, is 

partitioned into three parts: the displacement boundary (Γu), 

the traction boundary (Γt), and the crack boundary (Γc) that 

is traction-free. The elasto-dynamic basic equation is 

expressed as 

s

in

in

= : in

   


  
 

σ b u

ε u

σ D ε

 (15) 

with the following boundary and initial conditions 

    t

u

c

, = , on

= on

=0 on

t t 


 
  

u x u x

σ n t

σ n

, 
   

   

, 0 = 0

, 0 = 0

t

t






u x u

u x u
 (16) 

where σ is the Cauchy stress tensor, b is the body force 
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vector, ε is the strain tensor, ρ is the material density, ü is 

the acceleration field vector, s is the symmetric part of the 

gradient operator, u is the displacement field vector, D is 

the constitutive matrix, n is the unit outward normal vector 

to the crack surface, u  is the prescribed displacement, t  

is the external traction vector,  0u  is the initial 

displacement vector, and  0u  is the initial velocity 

vector. 

By the principle of virtual work, the following discrete 

equations can be obtained 

h h Mu Ku f  (17) 

where K(M) is the global stiffness(mass) matrix assembled 

by the element stiffness(mass) matrix; f is the global 

external force vector; u
h
 and ü

h
 denote the vector of nodal 

parameters (which include the classic degrees of freedom, 

u, and the enrichment degrees of freedom, a,b,v,c) and its 

second time derivative, respectively; and 

 
Th u u, a, b, v, c  

 
T

h u u, a, b, v, c  

(18) 

The element stiffness matrix is expressed by 

uu ua ub uv uc

au aa ab av ac

e bu ba bb bv bc

vu va vb vv vc

cu ca cb cv cc

 
 
 
 
 
 
 
 

k k k k k

k k k k k

k k k k k k

k k k k k

k k k k k

 
(19) 

where 

uu ua ub uv uc

au aa ab av ac

e bu ba bb bv bc

vu va vb vv vc

cu ca cb cv cc

 
 
 
 
 
 
 
 

k k k k k

k k k k k

k k k k k k

k k k k k

k k k k k

 
(19) 
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T
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4
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The element mass matrix is expressed by 

uu ua ub uv uc

au aa ab av ac

e bu ba bb bv bc

vu va vb vv vc

cu ca cb cv cc
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where 

 

   

   

   

   

   

   

   

 

e

e

e

e

e

e

e

e

e

Tuu

T Tua au

T Tub bu

T Tuc cu

T
aa

T
aa

TT
ab ba

TT
av va

TT
ac ca

j j j

j j j

d

H d

F d

d

H H d

H H d

H F d

H V d

H







 





























 

    

    

    

 

 

    

    

   



















m N N

m m N N

m m N N

m m N N

m N N

m N N

m m N N

m m N N

m m N N 

   

   

   

   

   

   

e

e

e

e

e

e

T
bb

TT
bv vb

TT
bc cb

T
vv

TT
vc cv

Tcc

, , 1,2,3,4

1,2,3,4

jk j k

j j j

j j j

d

F F d j k

F V d

F d

V V d

V d

d

j







 



 

  































 



  


     

     


 



     


 
















m N N

m m N N

m m N N

m N N

m m N N

m N N

 

333



 

Shouyan Jiang and Chengbin Du 

 

   

   

   

   

   

   

   

 

e

e

e

e

e

e

e

e

e

Tuu

T Tua au

T Tub bu

T Tuc cu

T
aa

T
aa

TT
ab ba

TT
av va

TT
ac ca

j j j

j j j

d

H d

F d

d

H H d

H H d

H F d

H V d

H







 





























 

    

    

    

 

 

    

    

   



















m N N

m m N N

m m N N

m m N N

m N N

m N N

m m N N

m m N N

m m N N 

   

   

   

   

   

   

e

e

e

e

e

e

T
bb

TT
bv vb

TT
bc cb

T
vv

TT
vc cv

Tcc

, , 1,2,3,4

1,2,3,4

jk j k

j j j

j j j

d

F F d j k

F V d

F d

V V d

V d

d

j







 



 

  































 



  


     

     


 



     


 
















m N N

m m N N

m m N N

m N N

m m N N

m N N

 

(27) 

and 
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The element external force vector is 

T
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(30) 

 

3.3 Time integration schemes 
 

The Newmark implicit time-integration scheme is used 

in dynamic analysis. Eq. (17) for a specific time t+Δt is 

expressed as 
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 (31) 

where ut, tu  and ü t are the displacement, velocity, and 

acceleration vectors at time t, respectively; Δt is the time 

step; γ and β are parameters that can be determined to 

obtain integration accuracy and stability, with 

 
21

1
4

β α  , 1

2
γ α   and 

1
0

3
α    

The Newmark implicit time-integration scheme is an 

unconditionally stable scheme. The solution stability does 

not dependent on the time step size. The selection of time 

step size depends on the solution accuracy.  

Here, referring to the software ABAQUS (ABAQUS 

Theory Manual, Version 6.9), we set parameter α=−0.05 to 

remove the slight high frequency noise in the solution 

without having any significant effect on the meaningful, 

lower frequency response. 

The following steps describe the prescribe integration 

method procedure, while neglecting the damping effects. 

I. Initial calculations: 

(i) Form stiffness matrix K, and mass matrix M. 

(ii) Give the initial displacement vector u0 and the initial 

velocity vector 
0u . Then, calculate the initial acceleration 

vector ü0 by the equilibrium equation 

0 0 0 Mu Ku f  (32) 

(iii) Select a time step Δt and the parameters β and γ. 

Here, β=0.275625 and γ=0.55 are used. Calculate 

integration constants 
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(33) 

(iv) Form the effective stiffness matrix K  

0c K K M  (34) 

II. For each time step: 

(i) Calculate effective loads 
t tf  at time t+Δt  

 0 2 3t t t t t t tc c c    f f M u u u  (35) 

(ii) Solve for the displacement vector ut+Δt at time t+Δt 

t t t t Ku f  (36) 

(iii) Calculate the acceleration vector t tu  and the 

velocity vector t tu  at time t t : 
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 (37) 

 

3.4 Integration schemes at the discontinuities 
 

For these elements partitioned by the boundary of an 

inclusion, a void, or a crack, the ordinary Gauss quadrature 

rules cannot accurately calculate the integration of 

enrichment function. An alternative method that is dividing 

the enrichment element into a set of subpolygons needs to  
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(a) Elements partitioned completely by the interface of an 

inclusion or a void 

 
(b) Elements partitioned completely by a straight crack 

 
(c) Elements partitioned completely by a broken crack 

 
(d) Elements partitioned partially by a straight crack 

Fig. 5 Element partitioning method for these elements 

containing a discontinuous interface 

 

 

be used (Moës et al. 1999). In this paper, the method 

subdividing the element into sub-quads is used. For these 

elements partitioned completely or partially by the 

boundary of an inclusion, a void, or a crack, the method 

subdividing these elements into sub-quads is shown in Fig. 

5. As shown in Fig. 5(a), in these elements which are 

partitioned completely by the interface of an inclusion or a 

void, the point C is computed accurately by level set 

function. 

To solve the element stiffness or mass matrix of these 

enrichment elements, each sub-quad element is respectively 

transferred into the standard element (−1,1)×(−1,1) by the 

method of the coordinate transformation. The Gauss 

integration points are distributed into each sub-quad. The 

numerical integration is firstly performed in each sub-quad 

element domain, and then the element stiffness or mass 

matrix of the enrichment element can be obtained by 

assembling the numerical integration results of each sub-

quad element. It is worthwhile pointing out that these sub-

quads only necessary for integration purposes. They do not 

provide additional degree of freedoms for the global 

stiffness and mass matrix. 

 

 

4. Interaction integral for computing dynamic stress 
intensity factors 

 

Take field 1,  (1) (1) (1), ,ij ij iu  , for the actual field, and the 

field 2,  (2) (2) (2), ,ij ij iu  , for the auxiliary field. The actual 

field is obtained from numerical solutions computed by 

using XFEM, and the auxiliary field refers to the asymptotic 

results of linear fracture dynamics (Attigui and Petit 1997). 

The interaction integral equation which are used to evaluate  

 

Fig. 6 Elements selection for the interaction integral near 

the crack tip 

 

 

the DSIF follows (Song and Paulino 2006) 
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(38) 

As shown in Fig. 6, A denotes the circle domain with 

centre at the crack tip and the radius R. R is defined as 

k eR r h  (39) 

where he is the crack-tip element size; rk is a user-specified 

scalar multiple; q is the weight function; q=1 if the node lies 

in A; and q=0 if the node lies outside of A or lies on the 

boundary of A. The weight function q in the interior of an 

element is obtained by the interpolation of the nodal value 

4

1

i i

i

q N q


  (40) 

Additionally, the interaction integral relates to the DSIF 

through the relation 
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I I II II*

2
M K K K K

E
     (41) 

where 
aux

IK
 
and 

aux

IIK
 
are the local auxiliary DSIF for the 

auxiliary fields, respectively; and the definition of E
*
 is 
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 (42) 

By setting aux

I 1K   and aux

II 0K   as well as 

 1,2 (1,2)

1M M , we obtain the expression of KI as follows 

* (1,2)

I 1 2K E M  (43) 

Similarly, we obtain the equality 

* (1,2)

II 2 2K E M  (44) 

by setting aux

I 0K  , aux

II 1K  , and 
 1,2 (1,2)

2M M . 
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Fig. 7 Schematic of an infinite plate with a semi-infinite 

crack loaded by a tensile stress perpendicular to the crack 

surface 

 
 
5. Crack propagation criteria 

 
The maximum circumferential stress criterion (Erdogan 

and Sih 1963) is used to determine the crack growth 

direction. Once KI and KII are calculated, the criterion gives 

the following crack growth direction 

2
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(45) 

where θc 
is the crack growth angle in the local crack-tip 

coordinate system. If KII=0, then θc=0. It should also be 

noted that if KII>0, the crack growth angle θc<0, and if 

KII<0, then θc>0. By a private communication with Suo et 

al. (2003) gives an improve expression for θc 
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 (46) 

The equivalent stress intensity factor then follows 

2c c
e I II ccos cos 1.5 sin

2 2
K K K

 


 
  

 
 (47) 

If Ke≥KIC, then the crack grows, where KIC is the 

material‟s fracture toughness. 

 

 

6. Numerical verification 
 

We have implemented the corresponding XFEM 

program by Fortran language in the environment of 

Microsoft Visual Stidio 2005. In this section, we mainly 

give several classic examples to verify the effectiveness of 

the implemented XFEM program. 

 

6.1 An infinite plate with a semi-infinite crack 
 

The example considered in this section is an infinite 

plate with a semi-infinite crack loaded by a tensile stress 

perpendicular to the crack surface. A schematic of this 

problem is shown in Fig. 7. A uniform traction σ0=500 MPa 

is applied to the top edge. The plate dimensions are the 

length L=10 m, and the width 2H=4 m. The initial crack 

length is a=5 m, and the vertical position of the crack is  

 
(a) Case 1 

 
(b) Case 2 

Fig. 8 Comparison of our present numerical results with 

theoretical solutions 

 

 

H=2 m. In numerical model, the plate is discretized into 

79×199 uniform mesh. Since the specimen is finite, we stop 

the simulation when the reflected wave from the edge 

reaches the crack tip, i.e., t≤3tc=3H/c1 (c1 is the dilatation 

wave speed). The material properties are: Young‟s modulus 

E=210 GPa, Poisson‟s ratio ν=0.3 and the density ρ=8, 000 

kg/m
3
. The plane strain conditions are used. 

In the problem, the Mode-I stress intensity factor for a 

stationary crack can be written as 
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 (48) 

For a moving crack, we have 

 
 

 dyn dynr
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, 0,

1 2

a c
K a t K t

a c





 (49) 

where, the Rayleigy wave speed cr=2, 947 m/s, and the 

dilatational wave speed c1=5, 944 m/s. 

This theoretical solution will be compared with our 

numerical results. We will investigate these cases: i) the 

crack does not propagate; ii) the crack initially does not 

propagate, and after time t=1.5tc, the crack starts to 

propagate at a prescribed constant velocity a =2000 m/s.  

This example is pure mode-I crack problem. As shown 

in Fig. 8, by comparing mode-I dynamic stress intensity 

factor obtained from our present numerical results with that  
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Fig. 9 Convergence curves in mode-I stress intensity factor 

 

 
(a) x-directional displacement contour (Unit: mm) 

 
(b) y-directional displacement contour (Unit: mm) 

Fig. 10 Deformed plate after the crack propagation (with 

20 times magnified deformation) 

 

 

obtained from theoretical solutions, a fairly satisfactory 

agreement can be observed.  

Additionally, a convergence study of approximation 

accuracy is made by using following relative L2 norm e2 
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where, num

IK  is the mode-I stress intensity factor obtained 

by the present numerical results; 
ana

IK  is the analytical 

mode-I stress intensity factor. 

The convergence curves for mode-I stress intensity 

factor for solutions obtained with different mesh sizes are 

shown in Fig. 9. The XFEM displays a remarkable ability 

for capturing the value of the stress intensity factor as the 

mesh is refined. We also show the deformed structure after 

the crack propagation given in Fig. 10 and the stress 

distribution in Fig. 11. Results show that the XFEM can 

better capture the stress singularity at the crack tip. 

 
(a) Normal stress σxx 

 
(b) Normal stress σyy 

 
(c) Shear stress τxy 

Fig. 11 Stress distribution contours after the crack 

propagation (Unit: MPa) 

 

 
(a) Geometry and dimension(Unit: mm) 

 
(b) XFEM mesh 

Fig. 12 Impact on a notched PMMA beam 

 

 

6.2 A notched Polymethlyl Methacrylate (PMMA) 
beam subjected to an impact load 
 

A notched Polymethlyl Methacrylate (PMMA) beam 

subjected to an impact load tested by Nishioka et al. (2001) 

as shown in Fig. 12(a) is considered. The impact velocity is 

5 m/s. The material properties of PMMA beam are: Young 

modulus E=2940 MPa, Poisson ratio v=0.3, and density  
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(a) Crack propagation velocity time history 

 
(b) Crack propagation length time history 

Fig. 13 Dynamic crack propagation criterion 

 

 
(a) Mode-I dynamic stress intensity factor 

 
(b) Mode-II dynamic stress intensity factor 

Fig. 14 Dynamic stress intensity factors time histories of 

the notched PMMA beam subjected to impact load 

 

 

ρ=1190 kg/m
3
. The thickness of the beam is 10 mm. Plane 

stress conditions are assumed. In numerical model, the 

mesh used to discretize the beam is shown in Fig. 12(b). It 

has 13180 elements and 13245 nodes. The crack velocity 

obtained from the experimental measurements shown in 

 
(a) x-directional displacement contour (Unit: mm) 

 
(b) y-directional displacement contour (Unit: mm) 

Fig. 15 Deformed beam after the crack propagation (with 20 

times magnified deformation) 

 

 

Fig. 16 Geometry and dimension of a PMMA specimen 

with a hole subjected to impact loads (Unit: mm) 

 

 

Fig. 13 drives the crack propagation while the computed 

DSIF are used to predict the crack propagation direction. A 

time step of Δt=4 µs are used in the simulations.  

This example is a mixed-mode crack problem. Fig. 14 

shows a comparison for mode-I and mode-II dynamic stress 

intensity factors obtained from our present numerical results 

with that obtained from other reference's FEM simulation 

results (Nishioka et al. 2001). Although some differences in 

the numerical value between our present results and other 

reference's results can be seen, the distribution of dynamic 

stress intensity factors still shows a fairly satisfactory 

agreement. We also show the deformed structure after the 

crack propagation given in Fig. 15. 

 

6.3 A PMMA specimen with a hole subjected to 
impact loads 
 

A PMMA specimen with a hole (Fig. 16) subjected to 

impact loads at both ends is considered. Experiments on 

such specimens were reported by Grégoire et al. (2007). 

The material properties of the specimen are: Young 

modulus E=3300 MPa, Poisson ratio v=0.42 and mass 

density ρ=1180 kg/m
3
. Plane strain conditions are assumed. 

As shown in Fig. 17, time dependent loads are applied to 

both ends of the specimen according to the BEM simulation 

of Fedelinski (2011). The crack is stationary between 

0≤t≤200 µs. It then propagates at a =210 m/s. The crack 

arrests between 270 µs≤t≤320 µs, and then propagates again  
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Fig. 17 Time dependent loads applied to both ends of the 

specimen 

 

 
(a) Mode-I dynamic stress intensity factor 

 
(b) Mode-II dynamic stress intensity factor 

Fig. 18 Dynamic stress intensity factors time histories of 

notched PMMA beam with a hole subjected to impact load 

 

 

at a =160 m/s until t=500 m/s. A time step of Δt=5 µs is 

used in the simulation. In numerical model, the plate is 

discretized into 90×180 uniform mesh. 

As shown in Fig. 18, by comparing mode-I and mode-II 

DSIFs obtained from our present numerical results with that 

obtained from other reference's results (Fedelinski 2011, 

Ooi et al. 2012), a fairly satisfactory agreement can still be 

observed. We also show the deformed structure after the 

crack propagation given in Fig. 19. 

 

6.4 An infinite plate with a semi-infinite crack nearby a 
void or an inclusion 
 

In this example, the geometric dimension, boundary 

conditions, load conditions, and XFEM mesh partition both 

are identical with that described in Section 6.1. But here, a 

void or an inclusion with radius R is nearby the crack tip; 

see Fig. 20. The circular center coordinates of the void or  

 
(a) x-directional displacement contour (Unit: mm) 

 
(b) y-directional displacement contour (Unit: mm) 

Fig. 19 Deformed beam after the crack propagation (with 

10 times magnified deformation) 

 

 

Fig. 20 Schematic of an infinite plate with a semi-infinite 

crack nearby a void or an inclusion 

 

 
(a) A void nearby the crack tip 

 
(b) An inclusion nearby the crack tip 

Fig. 21 Comparison of our present numerical results with 

FEM solutions 
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(a) With a circular void (b) With an elliptical void 

Fig. 22 Schematic of a notched cubic concrete specimen 

with a void nearby the crack tip subjected to a splitting 

force (Unit: mm) 

 

 

inclusion is set to (1.0, 2.0). 

By this example, we examine whether the correct 

dynamic stress intensity factors can be obtained when a 

void or an inclusion is nearby the crack tip by the 

implemented XFEM program. As shown in Fig. 21, we 

compare our present numerical results with FEM solutions. 

The FEM solutions are obtained by the software ABAQUS. 

A very satisfactory agreement can be observed. This 

example explains the dynamic stress intensity factors can 

still be correctly obtained in this case when some of the 

inclusion node may fall into the stress intensity factors 

computation domain. 

 

 

7. Numerical example 
 

7.1 Crack path deflection because of a void 
 

As shown in Fig. 22, a notched cubic concrete specimen 

with the dimension of 200 mm×200 mm×200 mm subjected 

to a splitting force is considered in this example. 

Additionally, a void is nearby the crack tip. We investigate 

the influence of the void on the crack propagation path. 

Here, the splitting force is applied on the iron by an impact 

load v=0.0893 mm/s. The iron is fastened on the concrete 

specimen. The material properties of concrete are: Young 

modulus E=28 GPa, Poisson ratio v=0.167, and mass 

density ρ=2400 kg/m
3
. The material properties of iron are: 

Young modulus E=200 GPa, Poisson ratio v=0.3, and mass 

density ρ=7800 kg/m
3
. In numerical model, the specimen is 

discretized into 10154 elements and 10370 nodes. The 

concrete material‟s fracture toughness KIC equal to 0.64 

MPa·m
1/2

 tested by experiment. 

As shown in Fig. 23, we investigate the dimension of 

the circular void on the crack propagation path. If no void 

lies in front of the crack tip, the crack propagates along pure 

mode-I crack path; see Fig. 23(a). The crack may propagate 

into the void if a large void (R/D≥0.6) lies in front of crack 

tip; see Fig. 23(f), Fig. 24(e), and Fig. 25(c). The void may 

have a slight or no influence on the crack propagation path 

if an enough small void (R/D≤0.3) lies in front of crack tip; 

see Fig. 23(b), Fig. 24(a), and Fig. 25(a). Additionally, we 

can observe the circular void has an obvious effect on the  

 
(a) R=0 mm          (b) R=10 mm 

 
(c) R=15 mm          (d) R=20 mm 

 
(e) R=25 mm          (f) R=30 mm 

Fig. 23 The influence of the dimension of the void on the 

crack propagation path (D=50 mm) 

 

 
(a) R=8 mm          (b) R=12 mm 

 
(c) R=16 mm          (d) R=20 mm 

 
(e) R=24 mm 

Fig. 24 The influence of the dimension of the void on the 

crack propagation path (D=40 mm) 
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(a) R=6 mm          (b) R=12 mm 

 
(e) R=18 mm 

Fig. 25 The influence of the dimension of the void on the 

crack propagation path (D=30 mm) 

 

a=30 mm, b=20.8 mm, D=50 mm 

 

 

a=40 mm, b=22.5 mm, D=50 mm 

 

 

Fig. 26 The influence of the position of the elliptical void 

on the crack propagation path 
 

 

Fig. 27 Splitting force versus CMOD curve 

 

 

crack path deflection when 0.3<R/D<0.6; the crack initially 

curves towards into the void, then, the crack moves round 

the void and propagates away the void. 

We alter the circular void into the elliptical void at the 

crack tip and investigate the influence of the position of the 

elliptical void on the crack propagation path and fracture 

properties. As shown in Fig. 26, similar to the circular void, 

we can observe that the elliptical void with varying the 

orientation angle θ from 0° to 90° has an obvious effect on 

the crack path deflection; the crack initially curves towards 

into the void, then, the crack moves round the void and 

propagates away the void. If a large elliptical void with 

varying the orientation angle θ from 0° to 90° lies in front 

of crack tip, we also observe that the crack will propagate 

into the void. 

As shown in Fig. 27, we can observe that the orientation 

angle has an obvious effect on the maximum splitting force 

when an enough large elliptical void lies in front of crack 

tip and the crack will propagate into the void. As the 

orientation angle θ increases, the maximum splitting force 

will increase. However, the orientation angle has a quite 

slight effect on the maximum splitting force when the crack 

does not propagate into the void. 

 

7.2 Crack path deflection because of a stiff inclusion 
 

In this section, we mainly investigate the effects of the 

stiff inclusion on the path of crack propagation. The 

geometric dimensions, material properties, the load 

conditions, and the boundary conditions of the plate both 

are identical with these described in section 7.1, but the 

plate contains an inclusion instead of a void. Here, the 

horizontal distance between the center of the inclusion and 

the crack tip D is set to be 50 mm. The Young‟s modulus 

(E') of the stiff inclusion varies from 56 GPa to 28000 GPa,  

θ = 0° θ = 45° 

θ = 90° 

θ = 0° θ = 45° 

θ = 90° 
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(a) δ=2            (b) δ=10 

 

(c) δ=20            (d) δ=100 

  

(e) δ=1000 (f) Comparison of crack path 

with different δ 

Fig. 28 The influence of the rigidity of the inclusion on 

the crack propagation path with δ varying from 2 to 1000 

 

 

its Poisson‟s ratio (v') keeps at 0.2, and mass density (ρ') 

2800 kg/m
3
. Defining δ=E'/E, as shown in Fig. 28, we 

investigate the influence of the rigidity of the inclusion on 

the crack propagation path with δ varying from 2 to 1000. 

The inclusion also has an evident effect on the crack path 

deflection. The crack initially propagates away the 

inclusion, then, after the crack moves round the inclusion, it 

starts to propagate along its original path. As δ increases, a 

larger curvature of the crack path deflection can be 

observed. However, as δ increases from 2 to 10, the 

curvature has an evident increase. By comparison, the 

curvature has a slight increase, as δ increases from 10 to 

1000; see Fig. 28(f). 

As shown in Fig. 29, we also investigate the influence of 

the dimension of the inclusion on the crack propagation 

path. Here, we idealize the perfect bond interface between 

the inclusion and the matrix. The crack always propagates 

away the inclusion. Similar to the void, if an enough small 

inclusion (R/D≤0.3) lies in front of crack tip, the inclusion 

will have a slight or no influence on the crack propagation 

path.  

The orientation angle θ of the elliptical inclusion also 

has an evident effect on the crack path deflection. As θ 

decreases, a larger curvature of the crack path deflection 

can be observed; see Fig. 30. 

 

 

Fig. 29 The influence of the dimension of the inclusion 

on the crack propagation path 

 

 

 

Fig. 30 The influence of the position of the elliptical 

inclusion on the crack propagation path 

 

 

7.3 Crack path deflection because of multi stiff 
inclusions 
 

In this section, we investigate the effect of the material 

heterogeneous on the crack propagation path deflection. 

Five specimens (S1, S2, S3, S4, and S5) with different 

inclusion distribution are generated randomly. These 

specimens, S1, S2, and S3, hold the same inclusion 

contents. The inclusion contents of the specimens, S4 and 

S5, are more than that of the specimens, S1, S2, and S3. As 

shown in Fig. 31 and Fig. 32, we can observe that the 

material heterogeneous has an obvious effect on the crack 

propagation path. When the crack encounters with a big 

inclusion, the crack always propagates away the inclusion 

or does not continue to propagate. As δ increases, a larger 

curvature of the crack path deflection can be observed. 

Additionally, from Fig. 33, we can see that the maximum 

splitting force will increase with the increase of the  

R = 15 R = 20 

R = 25 

θ = 0° θ = 45° 

θ = 90° 
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(a) S1                  (b) S2 

 
(c) S3                  (d) S4 

 
(e) S5 

Fig. 31 The crack propagation path deflection due to 

material heterogeneous (δ=10) 

 

 
(a) S1                  (b) S2 

 
(c) S3                  (d) S4 

 
(e) S5 

Fig. 32 The crack propagation path deflection due to 

material heterogeneous (δ=2) 

 

 
(a) δ=10 

 
(b) δ=2 

Fig. 33 Splitting force versus CMOD curve 

 

 

inclusion contents. The maximum splitting force also will 

increase when a large inclusion lies in front of crack tip. 

 

 

8. Conclusions 
 

This paper mainly studies on dynamic interaction 

between crack and inclusion or void by developing XFEM. 

In XFEM, some basic formulations are discussed in detail, 

containing the selections of enrichment functions, the 

establishment of governing equations for dynamic XFEM, 

the time integration scheme, the numerical integrations at 

the discontinuities, the evaluations of the DSIFs, and crack 

propagation criterion. The level set method is used for 

representing the location of inner discontinuous interfaces 

containing the boundaries of voids and inclusions, and the 

surface of cracks, so that the mesh does not need to align 

with these discontinuities. The investigation covers the 

effects of a single circular or elliptical void / stiff inclusion, 

and multi stiff inclusions on the crack propagation path 

under dynamic loads. Some significant conclusions have 

been obtained from this study. 

The circular void has a significant effect on the dynamic 

crack propagation path. The crack initially curves towards 

into the void, then, the crack moves round the void and 

propagates away the void. Additionally, the crack may 

propagate into the void if a large void lies in front of crack 

tip. By comparing, if an enough small void lies in front of 

crack tip, the void may have a slight or no influence on the 

crack propagation path. 

Similar to the circular void, the elliptical void with 
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varying the orientation angle θ from 0° to 90° also has an 

obvious effect on the crack path deflection; the crack 

initially curves towards into the void, then, the crack moves 

round the void and propagates away the void. If a large 

elliptical void with varying the orientation angle θ from 0° 

to 90° lies in front of crack tip, we also observe that the 

crack will propagate into the void. In addition, the 

orientation angle has an obvious effect on the maximum 

splitting force when an enough large elliptical void lies in 

front of crack tip and the crack will propagate into the void. 

As the orientation angle θ increases, the maximum splitting 

force will increase. However, the orientation angle has a 

quite slight effect on the maximum splitting force when the 

crack does not propagate into the void. 

The inclusion has an evident effect on the dynamic 

crack propagation path but it has difference compared with 

the void. The crack initially propagates away the inclusion, 

then, after the crack moves round the inclusion, it starts to 

propagate along its original path. As δ (the ratio of the 

elastic modulus of the inclusion to that of the matrix) 

increases, a larger curvature of the crack path deflection can 

be observed. However, as δ increases from 2 to 10, the 

curvature has an evident increase. By comparison, the 

curvature has a slight increase, as δ increases from 10 to 

1000. The orientation angle θ of the elliptical inclusion also 

has an evident effect on the crack path deflection. As θ 

decreases, a larger curvature of the crack path deflection 

can be observed. 

The material heterogeneous has an obvious effect on the 

crack propagation path. When the crack encounters with a 

big inclusion, the crack always propagates away the 

inclusion or does not continue to propagate. As δ increases, 

a larger curvature of the crack path deflection can be 

observed. Additionally, the maximum splitting force will 

increase with the increase of the inclusion contents. The 

maximum splitting force also will increase when a large 

inclusion lies in front of crack tip. 
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