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1. Introduction 

 

Since CNTs have been discovered by Iijima (1991) 

many researchers have studied about syntheses processes, 

different properties and their applications. There are some 

articles dealing with static and/or dynamic behaviors of 

micro/nano structures that include diverse kind of CNTs. 

Nonlinear vibration of double-walled carbon nanotubes 

(DWCNTs) based on Euler-Bernoulli beam (EBB) theory 

considering nonlocal elasticity theory and nonlinear van der 

Waals interactions was investigated by Fang et al. (2013). 

They considered clamped-clamped boundary conditions and 

used Hamilton‟s principle to drive nonlinear equations of 

motion. After using harmonic balance and Davidon-

Fletcher-Powell methods to solve their equilibrium 

equations they concluded that nonlinear van der Waals 

force has important effect on natural frequency of DWCNT 

in  comparison  with  nonlinear  geometric  terms. 

Ranjbartoreh et al. (2008) investigated axial stability of 

single  and  double  walled  carbon  nanotubes 

(SWCNT/DWCNT) surrounded by an elastic medium in 

different buckling modes. They considered the van der 

Waals interactions between layers of DWCNTs. They 

showed that the critical axial force of DWCNT was larger 

than for SWCNT. Pradhan and Mandal (2013) showed the 

effects of nonlocal parameter, length and thickness of CNT, 

temperature changes on buckling, bending and vibration 

stability of CNT. They obtained equations of motion based  
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on Timoshenko beam (TB) theory and finite element 

method (FEM) is used to solve them. Aydogdu (2012) 

investigated the axial vibration of SWCNT surrounded by 

an elastic medium foundation based on Eringen nonlocal 

small scale theory. The effects of diverse parameters such 

as stiffness of elastic foundation, nonlocal coefficient and 

different boundary conditions on axial vibration instability 

were presented in this study. Wang and Wang (2013) 

demonstrated the dependency of natural frequency of CNT 

on stiffness and mass density of elastic media, small scale 

coefficient and rotary inertia. Hamilton‟s principle was used 

to derive equilibrium equations which are based on 

Timoshenko beam, nonlocal, stress and strain gradient 

theories. Lei et al. (2013) simulated CNT as a mechanical 

structure with viscoelastic properties based on the nonlocal 

Timoshenko beam theory. They studied the bending 

vibration of nanotubes with different boundary conditions. 

The natural frequencies and frequency response functions 

(FRF) are investigated by using transfer function methods. 

The dynamic stability of SWCNT and DWCNT under 

dynamic axial loading based on shell model and energy 

method was studied by Ghorbanpour Arani et al. (2011). 

They considered the effect of small length scale using 

Eringen‟s model. Their results demonstrated that the local 

and nonlocal critical dynamic loads in the case of axial 

buckling of the DWCNT were greater than the critical static 

loads. Chang and Lee (2012) investigated the vibration of 

CNTs using nonlocal viscoelasticity theory. The complex 

frequencies in closed-form expression were obtained in 

terms of the damping ratio. According to their analysis, the 

natural frequency significantly depends on damping 

coefficient, nonlocal parameter, thermal field and elastic 

medium. Boehle et al. (2015) presented a model of an 
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embedded CNT based composite strain sensor where was 

composed of a bundle of fiberglass fibers coated with CNT 

through a thermal chemical vapor deposition process. They 

used a numerical model to predict the strain response of a 

composite with embedded fuzzy fiber. Also, they compared 

numerical results with experimental data. The longitudinal 

output of the sensor from the model were observed nearly 

matched with the experimental results. Thermo-mechanical 

nonlinear postbuckling of functionally graded plates resting 

on Pasternak foundation according to hyperbolic shear 

deformation theory was presented by Chikh et al. (2016). 

The elastic properties of the material were considered based 

on sigmoid power law and varying across the thickness of 

the plate. In their work, they investigated the effects of the 

material, geometrical characteristics, temperature, boundary 

conditions, foundation stiffness and imperfection on the 

mechanical and thermal buckling and post-buckling of the 

functionally graded plates. Besseghier et al. (2015) studied 

nonlinear vibration properties of a zigzag SWCNT 

embedded in a polymer matrix where elastic foundation was 

simulated by Winkler-type model. They used harmonic 

balance method to drive the relation between deflection 

amplitudes and resonant frequencies of the SWCNT. They 

demonstrated graphically that the chirality of zigzag CNT 

as well as surrounding elastic medium play more important 

roles in the nonlinear vibration of the SWCNT. 

In this study, the CNT is assumed to have nonlocal 

viscoelastic properties according to the Kelvin-Voigt and 

Eringen models and simulated as an Euler-Bernoulli beam 

theory. The Hamilton‟s principle is implemented to obtain 

equations of motion. The effect of armchair and zigzag 

structures of CNT, on the static/dynamic instability are 

investigated. The CNT is embedded in a thermo-elastic 

foundation and the effect of temperature changes on the 

instability of CNT is expressed also. The elastic boundary 

conditions with two linear elastic and torsional springs at 

the ends of the structure are considered to investigate the 

effects of resistance of these two springs on buckling load 

and natural frequency. It is expected that by increasing the 

resistance of both springs, elastic boundary conditions will 

behave as clamped conditions. It can be stated that as the 

effect of torsional springs are neglected and linear elastic 

coefficient increases, elastic boundary conditions will 

approach to simply supported conditions. According to this 

study while boundary conditions resist axial movements, 

thermal compressive force will influence the stability of 

tube. A variable compressive (polynomial and harmonic) 

loads are applied on the structure and the effects of the 

compressive loads on static and dynamic instability region 

of the CNT are presented. Finally the presented results are 

compared with results of other authors for validation. 

Elastic boundary conditions and variable compressive loads 

are some of the innovative pints in this article. The results 

of DQ approach are compared with results of the Galerkin 

solution for indication of the results accuracy. 

 

 

2. Governing equations 
 
2.1 Nonlocal elasticity theory of viscoelastic model 

 
Fig. 1 A schematic figure of armchair and zigzag CNT 

stand on thermo-elastic foundation under an axial 

compressive load 

 

 

Fig. 1 shows a CNT with length L surrounded by 

thermo-elastic medium subjected to an axial compressive 

load. Eringen expressed nonlocal continuum theory in 

which the stress tensor in a given point of the body is 

dependent to strain tensor in all points of the body. Due to 

discrete nature of nanostructures, using classical continuum 

mechanics for these structures have not been interested in 

recent studies. On the other hand, Nonlocal continuum 

theory, can be correlated with atomistic simulations of CNT 

and it gives acceptable results. Constitutive equations in 

nonlocal theory is expressed as (Reddy 2007) 
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where E
*
, T(x’), l’, K0 and x x  are complex Young‟s 

modulus containing real and imaginary parts, local stress 

tenor, external characteristic size, modified Bessel function 

and Euclidean distance, respectively. Also τ=e0a/l’ in which 

e0 and a are constants related to each material and interior 

features size, respectively. 

The relation between nonlocal and classical stress 

tensors can be readily stated as (Ghorbanpour Arani et al. 

2014) 
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Displacement field of the Euler-Bernoulli beam is given 

by (Ghorbanpour Arani et al. 2014) 
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where 𝑈  and 𝑊̃  are axial and transverse components of 

displacement vector of the beam throughout the thickness, 

𝑈  and 𝑊  are axial and transverse displacements for 

midplane of the beam. According to the Green-Lagrange 

strain theory, the relations between strain tensor and 

displacement field are expressed as (Ghorbanpour Arani et 

al. 2014) 
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Implementing Kelvin-Voigt viscoelastic model, the 

rheological behavior of the system can be presented by two 

parameters: E and g, which indicate storage and loss 

factors, respectively. The nonlocal viscoelastic theory can 

be reduced as (Lei et al. 2013) 
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(5) 

where nl

xxM
 

and denotes nonlocal in-plane bending 

moment of CNT  

 

2.2 Energy method 
 

To derive the governing equations, Energy principle and 

variational method is utilized. The governing equations of 

motion can be derived from the Hamilton‟s principle as 

following (Ghorbanpour Arani et al. 2014) 

 
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starin total ext

t t1 1

dt U K W dt 0.        (6) 

Strain energy of the system with respect to the nonlocal 

small scale theory is expressed as (Ghannadpour et al. 

2013) 
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(7) 

where L is length of nanotube. There are three kinds of 

external loads: axial thermal load created by uniform 

temperature changes, Pasternak foundation contributed 

transverse force and an axial compressive load. It was 

presented in Fig. 1 that elastic boundary conditions are 

applied at the ends of CNT which are considered in the 

external work term (Kiani 2013). The total external work on 

the system is given by 
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where Kr, KW, Kf and Gf are torsional stiffness, linear spring 

constant, temperature dependent foundation stiffness and 

shear coefficient of foundation, respectively. The 

parameters FT=-EAαΔT (α is Thermal expansion constant) 

and Fpr=-Pb are compressive thermal load and compressive 

axial force, respectively. The CNT stands on an elastic 

temperature dependent foundation and its characteristics are 

presented in following equations (Shen and Zhang 2011) 
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where Hf=100 nm is the depth of foundation, υf=0.48 is the 

Poisson‟s ratio of foundation, Es=3.22-0.0034T (Gpa) is 

temperature dependent Young‟s modulus of the foundation, 

T=T0+ΔT is environment temperature and T0=300K° is 

room temperature. 

Total Kinetic energy of CNT can be obtained as follow 

(Ghannadpour et al. 2013, Ghorbanpour Arani et al. 2014) 
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where ρt is density of CNT and    2, 1,
t

t t t
A

m I z dA  , 

therefore Eq. (10) can be modified by these parameters 
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2.3 Governing equation 
 

Governing equations of the system can be obtained by 

using Hamilton‟s principle, substituting Eqs. (7)-(8) and 

(11) into Eq. (6), Equation of motion of CNT are obtained 

as 
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Eq. (12) is reduced to weak formulations as following 
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Using Eq. (13), the governing equations of the system 

with corresponding boundary conditions are obtained as 
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(14b) 

According to Eq. (14-b), clamped boundary conditions 

will be reached as Kr and KW approach to infinity. Here we 

substitute Eq. (5) into Eq. (14a) to estimate nonlocal 

moment of CNT (
nl

xx
M ) 
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Substituting Eq. (15) in Eq. (14a), the governing 

equation is obtained in terms of displacement component 
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Eq. (16) can be presented in Non dimensional form, 

using dimensionless parameters, defined as follows 
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where R is radius of the CNT. Radius of the zigzag and 

armchair CNT can be obtained by  R 0.142p 3 2 nm   

and  R 0.426p 2 nm  , respectively, where p is chiral 

index (Chang et al. 2005, Gafour et al. 2013).  

Non dimensional governing equation is obtained by 

substituting dimensionless parameters in Eq. (16) 
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  
    

   

 
 
 

  
  
  





 (17) 

 

 

3. Instability analysis 
 

Eq. (17) is dimensionless equilibrium equation of 

viscoelastic CNT and the purpose of the present study is to 
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investigate static and dynamic instability regions of this 

structure. Galerkin and DQ are two prominent numerical 

methods used to solve Eq. (17). Appropriate accuracy and 

convergence are the most important benefits of these two 

numerical solution methods. They also require 

proportionally less computational time than other numerical 

methods such as finite element and finite difference 

methods. 

Considering static instability of the structure, Eq. (17) 

can be reduced to 

 

 
 

4 2

t b f f4 2

2 2

t b2

2

f f 2

w w w
A p 2k w 2g

en w
A p

w
2k w 2g 0.

   
     

   

  
    

  


  



 
 
 

  
  
  





 (18) 

According to DQ method, the differential terms are 

approximated at some special points in the solution domain 

and the partial differential equations such as Eq. (18) or Eq. 

(17) can be converted to algebraic forms. In this method, 

the function w  and its derivatives can be approximated as 

(Yang et al. 2010) 

 
m N

m

ik km
k 1

i

w
C w , i 1,2,..., N




 


  (19) 

Where N is the grid points along ζ and  m

ikC is weighting 

coefficient matrix and its „m‟th derivative. The solution of 

the static equation (Eq. (18)) are obtained as follows 

(Ghorbanpour Arani et al. 2014, Yang et al. 2010) 

 

 

     

N N N

4 2

ik k t b ik k f ik k

k 1 k 1 k 1

N N
22 2

f ik k f ik k

k 1 k 1

N N
2 24 4

f ik k t b ik k

k 1 k 1

C w A p C w 2k I w

2g C w 2 en k C w

2 en g C w en A p C w 0

i 1, 2, ..., N

,

  

 

 

    

 

     



  

 

 

 (20) 

where „I‟ is unit matrix. Boundary conditions can be 

converted to algebraic equations by using DQ method, also 

N N N

2

ik k 1 ik k ik k

k 1 k 1 k 1

N N N

3

2 ik k ik k ik k

k 1 k 1 k 1

C w B C w 0 or C w 0

, i 1or N

B I w C w 0 or I w 0

  

  

  



  

   
      

      
   

  

  

 
(21) 

Combining Eqs. (20) and (21), a set of algebraic 

equations can be obtained as 

 

   

 

0 0
0

bbb bd bb bd

b

db dd ddb dd

K K

wK K K K
p

K K wK K



  
 

 

 
     
     
      
 
 

 (22) 

where [K] and [K’] are the stiffness matrix and stiffness 

matrix related to dimensionless critical buckling load (pb), 

respectively. Dynamic instability solution can be 

investigated by solving dynamic equilibrium equation (Eq. 

(17)).The general solution of this equation can be obtained 

by separation of variables as following 

( , ) ( )w w e    (23) 

where 
2

= t t tEI A L   is the dimensionless natural 

frequency in which λ is the natural frequency of CNT. 

Applying DQ method to the governing equations in 

dynamic form, a set of algebraic equations containing the 

natural frequency are achieved as 

   

 

   

   

20 0

0,
0 0

bb bd
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M b

dbb bdbb bd

db dddb dd

KD

M M

M M

w

wK KD D

K KD D





   
  

  
    

  
        

    
   

 
 

 
(24) 

Where [K], [D] and [M] are the stiffness, damping and mass 

matrices, respectively. Natural frequency Eq. (24) can be 

calculated by space state theory (Ghorbanpour Arani et al. 

2014, Yang et al. 2010). Imaginary part of eigenvalue (ω) is 

structural natural and real part of eigenvalue (ω) express 

structural damping frequencies of CNT. 

 

 

4. Numerical results and discussion 
 

In this section, influences of various parameters such as 

thermal effect, structural damping based on Kelvin-Voigt 

theory, small scale, elastic boundary conditions, thermo-

elastic foundation and different axial loads, are investigated  

 

 

Table 1 Variety of elasticity and shear modulus of CNTs in 

different temperature according to kinds of rolling 

procedure (Shen and Zhang 2011, Zhang and Shen 2006) 

Rolling 

procedure 

Type 

of 

CNT 

Radius 

(nm) 
Thickness 

Temperature 

(Ko) 

Young‟s 

modulus 

(Tpa) 

Shear 

modulus 

(Tpa) 

Armchair (10,10) 0.678 0.067 

300 5.65 1.94 

500 5.53 1.96 

700 5.47 1.96 

Armchair (12,12) 0.8136 0.067 

300 5.53 1.9 

500 5.38 1.94 

700 5.34 1.95 

Zigzag (17,0) 0.6654 0.088 

300 3.9 1.36 

500 3.89 1.36 

700 3.86 1.42 

Zigzag (21,0) 0.822 0.087 

300 3.81 1.37 

500 3.79 1.4 

700 3.78 1.41 
 

175



 

Saeed Amir, Mehdi Khani, Ali Reza Shajari and Pedram Dashti 

Table 2 Dimensionless critical buckling load and natural 

frequency of CNT with different boundary conditions and 

nonlocal constant 

0e a

L
 Ref. 

Boundary Conditions 

S-S C-S C-C 

Vibration analysis, 

(Im(ω)) 
   

0 

(Kiani 2013) 9.8696 15.4182 22.3733 

(Wang et al. 

2007) 
9.8697 15.4182 22.3733 

(Pradhan and 

Phadikar 2009) 
9.8696 15.4182 22.3733 

Present work 9.8696 15.4182 22.3733 

0.5 

(Kiani 2013) 5.3003 7.7837 10.9914 

(Wang et al. 

2007) 
5.3001 7.7835 10.9912 

Present work 5.30026 7.7837 10.9914 

0.7 

(Kiani 2013) 4.0854 5.9362 8.3483 

(Wang et al. 

2007) 
4.0852 5.9360 8.3481 

Present work 4.0854 5.9362 8.3483 

Buckling analysis, bP     

0 

(Kiani 2013) 9.8696 20.1907 39.4784 

(Wang et al. 

2006) 
9.8695 20.1997 39.4786 

(Pradhan and 

Phadikar 2009) 
9.8696 20.1907 39.4784 

Present work 9.8696 20.1907 39.4784 

0.2 

(Kiani 2013) 7.076 11.1697 15.3068 

(Wang et al. 

2006) 
7.076 11.1699 15.3068 

Present work 7.076 11.1697 15.3068 

1 

(Kiani 2013) 0.9080 0.9528 0.9753 

(Pradhan and 

Phadikar 2009) 
0.9080 0.9528 0.9753 

Present work 0.9080 0.9528 0.9753 

 

 

on static and dynamic instability of the structure. The 

characteristics of the CNT structure (Shen and Zhang 2011, 

Zhang and Shen 2006) are presented in Table 1 and the 

accuracy of the results is validated by Refs. (Ghannadpour 

et al. 2013, Pradhan and Phadikar 2009, Wang et al. 2007, 

Wang et al. 2006) in Table 2. 

It is worth mentioning that by simplifying Eq. (17), 

equilibrium equations of Ref. (Ghannadpour et al. 2013) 

can be obtained also. Verification of the DQ numerical 

solution is expressed by comparing the results of DQ 

method with Ritz method and other works in Table 2. 

 

4.1 Buckling load analysis 
 

In Figs. 2 and 3 we discuss about the static instability 

region of structure and the effects of some parameters on 

critical buckling load are investigated. It is obvious that 

increasing the length of CNT leads to decreasing critical 

buckling load. Figs. 2 and 3 indicate the effect of nonlocal  

 
Fig. 2 Critical buckling load versus nonlocal parameter 

via different aspect ratios and clamped condition, 

0T   

 

 
Fig. 3 Critical buckling load versus nonlocal parameter 

via diverse temperature and clamped conditions, L/R=25 

 

 

small scale parameter on stability of the structure with 

various aspect ratios of CNT. As the nonlocal parameter 

increases, the stability region of CNT is decreased. As it is 

mentioned in Table1, temperature changes decrease Young‟s 

modulus of CNT and elastic coefficients of the foundation. 

The flexural rigidity of CNT decreases when Young‟s 

modulus is decreased. It is obvious that critical buckling 

load is in a direct relation with flexural rigidity of structures 

and stiffness of foundation, therefore temperature has a 

negative influence on static stability as can be seen in Fig. 

3.  

Figs. 4 and 5 are presented in order to have a 

comprehensive analysis on the effect of aspect ratio on the 

critical compressive load. Figs. 4 and 5 are based on various 

aspect ratios with different boundary conditions and diverse 

chirality, respectively. Clamped conditions always resist 

forces and moments while simply support conditions cannot 

resist moment load so every beams/tubes with clamped 

conditions at their boundaries are more stable than those 

with simply supported conditions. Fig. 4 illustrates this 

matter that structures with clamped-clamped conditions are 

the most stable beams/tubes and critical buckling load 

decreases while boundary conditions change from clamped-

clamped to simply-simply supported conditions. Influence 

of chirality on the stability of CNT is demonstrated in Fig. 5  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
80

100

120

140

160

180

200

220

240

260

280

e
0
a (nm)

P
c
r (

n
N

)

 

 

Armchair, L/R = 15

Armchair, L/R = 20

Armchair, L/R = 25

Armchair, L/R = 30

Zig-Zag, L/R = 15

Zig-Zag, L/R = 20

Zig-Zag, L/R = 25

Zig-Zag, L/R = 30

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
50

100

150

200

e
0
a (nm)

P
c
r (

n
N

)

 

 
Armchair,  T=0 K

Armchair,  T=200 K

Armchair,  T=400 K

Zig-Zag,  T=0 K

Zig-Zag,  T=200 K

Zig-Zag,  T=400 K

176



 

Instability analysis of viscoelastic CNTs surrounded by a thermo-elastic foundation 

 
Fig. 4 Effects of various boundary conditions on critical 

buckling load versus aspect ratio,

 

0T 

 

 and

 

0 0e a   

 

 
Fig. 5 Effects of different kind of rolling on buckling 

load versus aspect ratio with clamped conditions,

 0T 

 

 and

 

0 0e a   

 

 
Fig. 6 Natural frequency versus nonlocal parameter via 

different aspect ratios and clamped condition, 0T   

 

 

and according to this figure, the Armchair structure is more 

stable statically than Zigzag. 

 

4.2. Dynamical analysis 
 

The effects of nonlocal parameter and temperature 

changes on natural frequency of the structure are illustrated  

 
Fig. 7 Natural frequency versus nonlocal parameter via 

diverse temperature and clamped conditions, L/R=25 

 

 
Fig. 8 Influence of nonlocal and viscoelastic parameter 

on dimensionless natural frequency for zigzag CNT 

with clamped conditions 

 

 
Fig. 9 Influence of nonlocal and viscoelastic parameter 

on dimensionless damping frequency for zigzag CNT 

with clamped conditions 

 

 

in Figs. 6 and 7. Similar to buckling analysis, increasing 

nonlocal parameter and temperature changes, leads to 

decreasing the natural frequency and dynamic stability of 

the structure. Also natural frequency is dependent on 

flexural rigidity and corresponding parameters that 

decreases the flexural rigidity. Viscoelastic hypothesis is 

one of those theories that decreases flexural rigidity of 
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structures. The influence of Kelvin-Voigt viscoelastic 

parameters on natural frequency of CNTs with different 

chirality are illustrated in Figs. 8-11. These figures 

demonstrate the effects of viscoelastic parameter on 

dimensionless natural frequency and dimensionless 

damping frequency. These frequencies decrease because 

Kelvin-Voigt coefficient has a negative influence on 

flexural rigidity of structure. 

The effects of elastic boundary conditions on natural 

frequency are illustrated in Figs. 12 and 13. Elastic 

boundary conditions is simulated by two springs, one resist 

transverse loads (B2) and other resist moment loads (B1). 

It is expected that when both spring rigidity approach to 

infinity, elastic condition will be closed to clamped 

condition. Since no simply supported conditions can resist 

moment load so by increasing B2 while B1=0 elastic 

condition approaches to simply support condition. Results 

that are shown in Figs. 12 and 13 satisfy this matter. 

Here, it is investigated the effects of two kinds of axial 

loads, that are function of „x or ζ‟ (harmonic and polynomial 

dependent), on natural frequency of the presented model. 

According to Figs. 14 and 15 compressive loads decrease 

stability of structure while tension loads increase natural 

frequency of the CNT. 

 

 

 
Fig. 10 Natural frequency versus nonlocal and 

viscoelastic parameter for armchair CNT with clamped 

conditions 

 

 
Fig. 11 Damping frequency versus nonlocal and 

viscoelastic parameter for armchair CNT with clamped 

conditions 
 

 
Fig. 12 Effects of suggested elastic boundary condition 

at the end of zigzag CNT on Natural frequency and 

0T   

 

 
Fig. 13 Effects of suggested elastic boundary condition 

at the end of zigzag CNT on Natural frequency and 

0T   

 

 
Fig. 14 Effects of polynomial axial load on Natural 

frequency of armchair CNT, t1=20 nN, t2=20 N/m, 

t3=20 N/nm
2
, p1=-2 nN, 2 2p N m  , p3=-2 N/nm

2
 

and ΔT=0 
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Fig. 15 Effects of harmonic axial load on Natural 

frequency of armchair CNT and 0T   

 

 
Fig. 16 Comparing the results of DQ method with 

Galerkin method for armchair CNT, t1=20 nN, t2=20 

N/m, t3=20 N/nm
2
, p1=-2 nN, 2 2p N m  , p3=-2 

N/nm
2
 and ΔT=0 

 

 

To verify the numerical solution, the Eq. (16) is solved 

with Galerkin method which examine a vibration deflection 

„w(ζ, τ)‟ as (Ghorbanpour Arani et al. 2014) 

   
1

, sin ,
N

i

i

w Q i e  


  (25) 

where Qi and N are amplitude coefficient which are chosen 

sufficiently large integers. It is an essential matter that every 

suggested deflection must satisfy the boundary conditions. 

Substituting Eq. (25) into Eq. (16) and using Galerkin 

integral (Yoon et al. 2005), Eq. (16) will be converted to a 

set of algebraic equations as 

        2

1
0.i ii i

M D K Q 


    (26) 

Fig. 16 demonstrates accuracy of DQ method by 

comparing results of DQ with Galerkin method. 

 

 

5. Conclusions 
 

In this paper critical buckling load and natural frequency 

of viscoelastic CNT and influences of various parameters 

such as nonlocal coefficient, different boundary conditions, 

chirality of the CNT, Kelvin-Voigt viscoelastic constants 

and aspect ratio of the CNT were investigated. DQ method 

was used in order to solve static/dynamic governing 

equations and Galerkin method which is a prominent 

numerical solution was applied to validate the results of DQ 

method. Effects of elastic boundary conditions and variable 

axial loads on natural frequency and vibration instability of 

the CNT. The results had an appropriate accuracy and 

corresponded to results which were reported by prior 

articles. This article could be useful for engineers and 

designers in order to produce and design mechanical 

structures with more efficiency. 
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