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1. Introduction 
 

Buildings with passive, active and semi-active control 

devices have been studied during the past decades. The 

Tuned Mass Damper (TMD) is one of the simplest control 

devices among the several passive control methods. Despite 

the progress of active and semi-active control systems in 

structural engineering, the passive control systems are still 

in use in many tall buildings due to their simplicity and 

lower cost. These passive systems use mechanical devices 

to dissipate a part of the input energy. Therefore, the 

structural responses and damages reduce too. 

The primary form of TMD has been used by Frahm 

(1911). This device was useful only when the frequency of 

the input excitation was so close to the natural frequency of 

the device. Later in 1947, optimal parameters of TMD were 

discussed by Ormondroyd and Den Hartog. At first, this 

theory was only appropriate for an undamped SDOF system 

under a sinusoidal force excitation. The theory was 

extended to damped SDOF systems by many researchers  
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(Warburton and Ayorinde 1980, Randall et al. 1981, 

Warburton 1982, Tsai and Lin 1993). Thompson (1981) also 

used the frequency method for optimizing TMD parameters. 

The genetic algorithm has been widely used in tuning 

TMDs as well (Hadi and Arfiadi 1998, Singh et al. 2002, 

Desu et al. 2006, Pourzeynali et al. 2007). Lee et al. (2006) 

improved Shuffled Complex Evolution (SCE) algorithm to 

reduce the performance index value for buildings equipped 

with TMD. Ramezani et al. (2017) estimated optimal TMD 

parameters for a 15-degree of freedom structure based on 

designed fuzzy system and compared them to those 

parameters obtained from the Genetic algorithm and 

empirical relations. 

Gravity Search Algorithm, GSA, is one of the newest 

optimization method introduced for the first time by 

(Rashedi et al. 2009). This method is a population-based 

approach where the researcher agents are included in the 

collection of masses as well as their interaction and the 

gravity force absorbs objects closely. Natural process of 

evolution is the basis of many optimization algorithms that 

can solve complex problems easily. GSA is one of the 

nature-inspired algorithms in various fields of civil 

engineering. For instance, Khajehzadeh et al. (2012) 

introduced a new version of GSA for non-linear constrained 

optimization of shallow foundation. They also, used the 

improved GSA in the optimization of RC retaining walls 

(Khajehzadeh et al. 2013). Khatibinia and Sadegh 

Naseralavi (2014) utilized Orthogonal Multi-Gravitational 
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Abstract.  In this study, the optimum parameters of Tuned Mass Dampers (TMDs) are proposed using Gravity Search 

Algorithm (GSA) and Particle Swarm Optimization (PSO) to reduce the responses of the structures. A MATLAB program is 

developed to apply the new approach to the benchmark 10 and 40-story structures. The obtained results are compared to those of 

other optimization methods used in the literature to verify the developed code. To show the efficiency and accuracy of the 

proposed methods, nine far-field and near-field worldwide earthquakes are applied to the structures. The results reveal that in the 

40-story structure, GSA algorithm can reduce the Relative Displacement (RD) and Absolute Acceleration (AA) up to 43% and 

21%, respectively while the PSO decreases them by 50% and 25%, respectively. In contrast, both GSA and PSO algorithms 

reduce the RD and AA about 29% and 21% for the 10-story structure. Furthermore, using the proposed approach the required 

TMD parameters reduce by 47% and 63% in the 40 and 10-story buildings in comparison with the referenced ones. Result 

evaluation and related comparison indicate that these methods are more effective even by using smaller TMD parameters 

resulting in the reduction of acting force from TMD, having smaller stiffness and damping factors while being more cost 

effective due to its decreased parameters. In other words, the TMD with optimum parameters can play a positive role in both tall 

and typical structures. 
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Search Algorithm (OMGSA) as a meta-heuristic algorithm 

for optimizing the trusses on shape and sizing with 

frequency constraints. GSA has been used for damage 

detection as well by Daei et al. (2016). Adarsh and Janga 

Reddy (2015) used the GSA method for evaluating 

probabilistic design of canals with cross-sectional shape of 

horizontal bottom and parabolic sides. This algorithm lately 

has been used widely in various branches like computer 

science, electrical engineering, mechanical engineering as 

well for optimizing control and objective functions. For 

instance, Precup et al. (2012) applied a novel GSA for the 

optimal tuning of fuzzy controlled servo systems. (Rashedi 

et al. 2011) suggested a new linear and nonlinear filter 

modeling using GSA. In another research, Duman et al. 

(2012) used GSA method to find optimum solution for 

Optimal Power Flow (OPF). 

Particle Swarm Optimization (PSO) is another nature-

inspired algorithm as a random and evolutionary technique 

based on the simulation of the social behavior of animals 

during migration or searching for food. For the first time, 

PSO was presented by Kennedy and Eberhart (1995). 

Kennedy et al. (2001) also used PSO algorithm to evolve 

neural network weights and the network structure in some 

applications like diagnosing human tremor or metal 

removal procedure in environmental manufacturing. The 

application of PSO in the engineering field has an 

increasing pace, requiring very few parameters to be 

adjusted. PSO has been recently used in structural control 

and other fields in civil engineering. (Shariatmadar and 

Razavi 2014) used the combination of PSO and fuzzy logic 

controller (FLC) methods to optimize FLC parameters that 

minimize the displacement of top floor of an 11-story 

building with active tuned mass damper. In another 

research, a new optimization algorithm on the basis of PSO 

and charged system search (CSS) was offered by (Kaveh 

and Talatahari 2012) for optimum designing of structures. 

Also, Kaveh et al. (2015) used the combination of PSO and 

Swallow Swarm Optimization algorithm (SSO) and found 

better optimum solution in comparison with other 

optimization methods applied to highly dynamic truss 

shape. In addition, it has been used in electrical engineering 

to control the voltage of Japanese electric utility (Yoshida et 

al. 2000). Saravanan et al. (2007) found optimal location of 

transmission devices by using a PSO technique in order to 

obtain minimum cost which can be useful in rebuilding 

electrical devices. Also in another field of engineering, 

Ghashochi-Bargh and Sadr (2013) optimized the natural 

frequency of composite panels utilizing PSO algorithm and 

another method named finite strip method (FSM). 

In this study, GSA and PSO algorithms are used to 

propose the optimal solution for obtaining the best value for 

damping ratio, stiffness and mass coefficient of TMD. Since 

the RD and AA have important roles in the failure of the 

structure, the aim of this article is to evaluate the optimum 

TMD parameters to reduce RD and AA while decreasing 

the values of the TMD parameters. Moreover, optimizing 

the TMD parameters provides an economical and practical 

design optimization approach for the buildings. A MATLAB 

code is developed in order to optimize the TMD parameters. 

To achieve an economical result, all of the TMD parameters 

are variable. RD and AA are the criterion of the procedure. 

Two numerical examples from the literature are selected as 

a reference to compare the results with those of both GSA 

and PSO and to verify the code. To demonstrate the 

performance of the algorithm and efficiency of the 

presented approach, nine far-field and near-field 

earthquakes are also applied to the examples. The results 

showed that the proposed methods reduced the TMD 

parameters and structural responses. 

 

 

2. Equations of motion 
 

In this section, equations of motion for an n-story 

system with TMD installed on the top floor are given (Sabri 

et al. 2013). 

For multiple degrees of freedom (MDOF) systems 

combined with TMD at the top floor subjected to ground, 

acceleration can be written as follows 

( ) ( ) ( ) ( )Mx t Cx t Kx t P t    (1) 

Where M, C and K are the mass, damping and stiffness 

matrices, respectively and x(t) is also the vector of 

horizontal displacements given as follows 
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 (4) 

 1 2( ) ...
T

n dx t x x x x  (5) 

mi, ci, ki and xi are mass, damping coefficient, stiffness and 

horizontal displacement of the ith story of a building (i=1, 

2, ..., n). md, cd and kd are the mass, damping coefficient and 

the stiffness of the TMD installed on the top of the building  
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Fig. 1 MDOF system with a single TMD on the top floor 

 

 

as shown in Fig. 1. 

xd is the displacement of TMD related to the ground. 

The displacement vector can be written as follows (Clough 

and Penzien 1993) 

1 1 2 2 ... n nx Y Y Y       (6) 

and in the matrix notation: 

x Y  (7) 

Where φ is the mode-shape matrix and Y is the generalized 

coordinate vector such that n×n mode shape matrix, 

transforms generalized coordinate vector, Y, to the 

geometric coordinates vector x. The mode-shape matrix is 

non-singular that can be inverted. By pre-multiplying the 

Eq. (1) by T

i and combining it with Eq. (7), Eq. (8) is 

obtained as follows 

( ) ( ) ( ) ( )T T T T

i i i iM Y t C Y t K Y t P t          (8) 

According to the orthogonality principle, all components 

with i j  
are omitted and the Eq. (8) can be written as 

( ) ( ) ( ) ( )i i i i i i iM Y t C Y t K Y t P t    (9) 

or in other words 

2( ) 2 ( ) ( ) ( ) /i i i i i i i iY t Y t Y t P t M      (10) 

in which 

( ) {1} ( )i gP t M x t   (11) 

And Mi, Ci, Ki and Y(t) are generalized mass, damping, 

stiffness and displacement, respectively for the ith normal 

mode (Clough and Penzien 1993). 

 

 

3. GSA algorithm 
 

GSA is a new optimization theory developed based on 

gravity law for continuous optimization problems. In GSA, 

each factor contains four parameters: position, inertial mass, 

active gravitational mass and passive gravitational mass. 

The solution to the problem is presented by the position 

of the mass, where a fitness function is employed to 

determine the gravitational masses as well as the inertial 

ones. So as to steer the algorithm, both the gravitational and 

the inertial masses are adjusted, while each mass puts 

forward a solution.  

The heaviest mass, leads to the attraction of masses. 

Therefore, the best possible solution is provided by the 

heaviest mass in the search space. There are several steps 

for the GSA as follows (Sabri et al. 2013):  

Step One: Initialization of the agents:  

The positions of the number of agents (N) are initialized 

at random. 

( ,... ,..., ), 1,2,..., .l d n

i i i iX x x x for i N 
 

(12) 

d

ix stands for the positions of the ith agent in the dth 

dimension, whereas n represents the dimension of space.  

Step Two: Fitness evolution and computation of the best 

fitness:  

In each iteration, the fitness evolution is conducted 

through the evaluation of the best and worst fitness for all 

the agents meant for the problems of minimization or 

maximization.  

Problems of minimization 

( ) min ( )

(1,..., )

jbest t fit t

j N




 (13) 

( ) max ( )

(1,..., )

jworst t fit t

j N




 (14) 

Problems of maximization 

( ) max ( )

(1,..., )

jbest t fit t

j N




 (15) 

( ) min ( )

(1,..., )

jworst t fit t

j N




 (16) 

fitj(t) is the fitness value of the agent jth at the iteration t. 

The best and worst fitness at the iteration t are also 

illustrated via the symbols of best(t) and worst(t). 

Step Three: Calculating of the gravitational constant 

(G):  

G as the gravitational constant is calculated at the 

iteration t 

( / )

0( ) t TG t G e 
 

(17) 

At the beginning, G0 and α are initialized. However, 

they will be reduced by time in order to control the search 

precision. T represents the entire number of iterations. 

Step Four: Computation of the masses of agents:  

At the iteration t, the gravitational masses as well as the 

inertial ones are computed for each agent (Sabri et al. 2013) 
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and are updated by the Eqs. (9) and (20) 

1,2,...,ai pi ii iM M M M i N     (18) 

( ) ( )
( )

( ) ( )

i
i

fit t worst t
m t

best t worst t


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
 (19) 

1
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( )

( )

i
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j

j

m t
M t

m t





 

(20) 

Mai and Mpi show in turn the gravitational masses in the 

active and passive forms, while Mii stands for the inertial 

mass of the agent ith. Also, ( )ifit t indicates the fitness 

associated with mass i in time t.  

Step Five: Computation of the accelerations of agents:  

At the iteration t, the acceleration of the ith agents is 

calculated 

( ) ( ) / ( )d d

i i iia t F t M t
 

(21) 

( )d

iF t
 represents the total force applying on agent ith which 

is calculated as follows 

,

( ) ( )d d

i j ij

j Kbest j i

F t rand F t
 

 
 

(22) 

The arrangement of the first K agents with the best 

fitness value and the biggest mass is called the Kbest.  

There will be a linear reduction in the Kbest over time. 

Furthermore, there will be only one agent which implies 

force to other agents in the last part.  

( )d

ijF t
 is calculated via Eq. (23) 

( ) ( )
( ) ( ) ( ( ) ( ))

( )

pi jd d d

ij j i

ij

M t M t
F t G t x t x t

R t






 


 (23) 

( )d

ijF t
 represents the force acting on the agent i from the 

agent j at the dimension of dth and the iteration of ith.  
( )ijR t  stands for the distance of Euclidian between the 

two agents of i and j at the iteration t.  

G(t) indicates the calculated gravitational constant in an 

equal iteration whereas ε is just a small constant.  

Step Six: Positions of agents and velocity:  

The following equations are used to calculate the 

position and the velocity of the agents at the succeeding 

iteration (t+1) 

( 1) ( ) ( )d d d

i i i it rand t a t      (24) 

( 1) ( ) ( 1)d d d

i i ix t x t t     (25) 

Step Seven: Repetition of the Steps 2 to 6 

In the final step, steps Two to Six need to be repeated till 

the iterations get to their maximum extent. The overall 

fitness is computed as the greatest fitness value at the 

ultimate iteration while the global solution to that specific  

 
Fig. 2 GSA flowchart (Sabri et al. 2013) 

 

 

problem is calculated as the position of the matching agent 

at particular dimensions (Sabri et al. 2013). The flowchart 

of GSA is illustrated in Fig. 2. 

 

 

4. PSO algorithm 
 

Particle Swarm Optimization is a biological search 

method that simulates social behaviors of migratory birds or 

a group of fish searching for food. Each member of this 

community can benefit from its own discoveries and 

experiences of all members in order to gradually approach 

the optimal (Kennedy and Eberhart 1995).  

PSO begins with a group of particle swarms that updates 

the situations for finding the best optimum solution. Each 

particle randomly takes the initial values (the location of 

each member of the group that birds are looking for food). 

The algorithm finds the optimal solution to the problem by 

directing these values during successive iterations. 

In fact, the movement of birds in this algorithm depends 

on two factors: the individual and the social movement. The 

combination of these two movements creates a model to 

find the best target point in optimization problems. 

Each particle keeps the best solution that has achieved 

by that particle up until now. This value is called personal 

best or Pbest. Another best value that is followed by the 

PSO is the best value obtained by any particle in the 

neighborhood of that particle up until now. This value is 

called Gbest. 

The fitness function is investigated for each particle in 

the current position. If it is larger than Pbest, then Pbest will 

be updated. If it is larger than Gbest, then Gbest will be 

updated. The general view of Pbest and Gbest has been 

shown in Fig. 3. After finding the above-mentioned values, 

Return best solution

Update the G, best and worst of the population

Meeting end of

criterion?

Evaluate the fitness for each agent

Yes

Update velocity and position

Generate initial population

No

Calculate M and  for each agent
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the movement speed of particles, as well as their next place 

are calculated from the following formulas (Kennedy and 

Eberhart 1995) 

1 1

2 2

( 1) ( ) ( ( ))

( ( ))

i i i i

i

V t V t c r Pbest x t

c r Gbest x t

    


 (26) 

)1()()1(  tvtxtx iii  (27) 

Where    and    are the velocity and the place of the ith 

particle, respectively,   represents the time step,   is the 

inertia weight,    and    are individual and social learning 

factors which are usually equal two,     and    take 

randomly values between 0 and 1. Pbest and Gbest 
parameters were defined before. 

The velocity vector of each particle in PSO algorithm is 

updated and then a new speed is added to the last position 

of the particle. 

The PSO flowchart as illustrated in Fig. 4 is used in this 

study to propose optimum parameters of TMD. 

 

 

5. GSA and PSO algorithms for optimization of TMDs 
 

In this study, the MATLAB codes are used for linear 

dynamic analysis. The constraint of optimization problem in 

this study is limitation of allowable drifts based on design 

codes. At first, an objective function and the number of 

iterations are determined. The objective functions for the 

first and second examples are defined as Eqs. (30) and (31), 

respectively.  

The H2 norm is clarified as the root mean square of 

system impulse response which can be further defined as an 

average system taken over all frequencies. It is given by Eq. 

(28) (Hadi and Arfiadi 1998) 






 


djTjTTraceT rwrwrw )()((
2

1 *

2
 (28) 

 

 

 
Fig. 3 A general view of pbest and gbest of the PSO 

algorithm (Ahmadi et al. 2010) 
 

 
Fig. 4 The PSO flowchart 

 

 

Where the parameters are defined as follows: 

2rwT =H2 norm transfer function from external 

perturbation w to the controlled output r. 

ω= frequency, j= imaginary number, *= complex 

conjugate transpose 

For the systems with controlled output 

ZCr w  (29) 

The H2 norm transfer function from w to r can be calculated 

by 

5.0

0

5.0

2
)]([)]([ ELETraceCLCTraceT TT

wcwrw   (30) 

Where Lc and L0 are the controllability and the observability 

Gramians, respectively.  

The objective function for the second example adopted 

from (Farshidianfar and Soheili 2013) is defined as Eq. (31) 

max max10F U U   (31) 

where F, maxU
 and maxU  indicate the objective function, 

maximum acceleration and maximum displacement, 

respectively. 
The optimizer code generates three values for TMD 

parameters (mass, stiffness and damping ratio) which are 

variable. These parameters are called by the analyst code 

and are used to analyze the structure. As soon as the 

structure is analyzed, the responses are sent to the optimizer 

code again and the objective function is checked. Finally, 

other values are chosen. These stages continue until the 

iterations end. The last response is the best answer that 

minimize the objective function. The flowchart of this 

process is observable in Fig. 5. 

 

 

6. Numerical examples 
 

In this section, two key examples are used from 

literature to show the performance of the proposed 

Changing the velocity vector of

particles

Movement of Particles

Termination

Condition

End

Particle Evaluation

Yes

Start

Initialization

Defining Gbest, Pbest

No

151



 

Nadia M. Mirzai, Seyed Mehdi Zahrai and Fatemeh Bozorgi 

 

algorithms. For this reason, the optimum estimation of 

TMD parameters obtained from GSA and PSO methods are 

compared with some other methods used in references. A 

MATLAB program is composed for the time history 

analysis. 

 

6.1 Example 1 
 

The example No. 1 is a 40-story shear building with a 

TMD on the top floor, used by (Farshidianfar and Soheili 

2013). The total mass of the stories is 9.8e5 kg and the 

stiffness of all the 40 floors is as follows 

Ki =213e7 (N/m)                  i = 1 

Ki= 213e7-3(i-1)  (N/m)      2 40i   
(32) 

The damping coefficients are also 

 . /0.02 1 39C K N s m ii i    

 0.02 40.004 /C K N si m ii   
(33) 

And the height of the stories is 4 m. Since the maximum 

RD of the stories is an important item for the structural 

analysis, most researchers in this field aim to reduce the 

maximum RD and AA. The method used by Farshidianfar  

 

 

 

Fig. 5 Flowchart showing how the analyst and 

optimizer codes work 

 

and Soheili is the Ant Colony algorithm. The interval of 

design variables in this example is 1500≤m≤3037.97 ton; 

1300≤K≤1547.72 kN/m; 80≤C≤173.55 kN.s/m. Finally, the 

optimized parameters obtained as m=1547.720 ton, 

K=3037.970 kN/m and C=173.55 kN.s/m.  

To validate the code and compare it to results obtained 

by Farshidianfar and Soheili, the 1978 Tabas earthquake, 

Iran (RSN 143, Tabas station) is applied to the structure.  

Table 1 shows the values of RD and AA for the structure 

in the absence of TMD for verification. Moreover, the effect 

of the GSA and PSO on the RD and AA is illustrated.  

Table 2 shows the reduction percentage for all 

mentioned methods. The maximum RD is related to the 38
th

 

floor in GSA and the 40
th

 floor in the PSO algorithm while 

it seems the maximum RD for Ant Colony algorithm (used 

reference) is related to the 40
th

 floor. Hence, Table 3 

presents the maximum RD values under the Tabas 

Earthquake for all of the stories. 

Table 3 illustrates that TMD can reduce the RD in all 

stories. The top story displacement is important in tall 

buildings. As observed, the RD reduction at the top floor is 

more than that in the bottom floors, showing the positive 

effect of TMD. Maximum reduction is related to the 40
th

 

floor with the GSA and the 36
th

 floor with the PSO 

algorithm with reduction percentage of 37% and 36.5%,  

 

 

Table 2 The reduction percentage for three algorithms under 

the Tabas earthquake (Ex. 1) 

Algorithms 
Displacement 

reduction (%) 

Absolute acceleration 

reduction (%) 

Ant colony 30.14 0.19 

GSA 37.01 0.31 

PSO 35.96 0.38 

 

 
Fig. 6 Relative displacement (RD) response of the 

40
th

 floor under the Tabas earthquake (Ex. 1) 
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Table 1 The maximum relative displacement (RD) and the absolute acceleration (AA) under the 1978 Tabas earthquake 

(Ex. 1) 

 

Ant colony GSA PSO 

U40 (cm) relU max


 (cm/s2) U40 (cm) relU max
  (cm/s2) Umax (cm) relU max

  (cm/s2) 

Without TMD 2.0235 12.7756 2.0241 12.7727 2.0241 12.7727 

With TMD 1.4135 12.7507 1.2749 12.7321 1.2963 12.7248 
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Table 3 Maximum relative displacements (RD) (m) under 

the 1978 Tabas earthquake (Ex.1) 

Story 

No. 
No TMD 

Proposed 

method 

(GSA) 

Reduction 

(%) 

Proposed 

method 

(PSO) 

Reduction 

(%) 

1 0.0626 0.0485 22.51 0.0486 22.36 

2 0.1259 0.0965 23.35 0.0967 23.19 

3 0.1898 0.1439 24.16 0.1443 23.97 

4 0.2542 0.1906 25.01 0.1913 24.74 

5 0.3191 0.2366 25.86 0.2374 25.60 

6 0.3844 0.2817 26.72 0.2828 26.43 

7 0.4500 0.3261 27.53 0.3272 27.29 

8 0.5162 0.3704 28.24 0.3708 28.17 

9 0.5827 0.4140 28.95 0.4144 28.88 

10 0.6497 0.4572 29.63 0.4577 29.55 

11 0.7172 0.4994 30.36 0.5000 30.28 

12 0.7847 0.5422 30.90 0.5413 31.02 

13 0.8523 0.5885 30.95 0.5814 31.78 

14 0.9198 0.6346 31.01 0.6208 32.51 

15 0.9869 0.6802 31.08 0.6626 32.86 

16 1.0533 0.7251 31.15 0.7065 32.93 

17 1.1182 0.7689 31.24 0.7493 32.99 

18 1.1821 0.8115 31.35 0.7911 33.08 

19 1.2446 0.8528 31.48 0.8317 33.18 

20 1.3056 0.8925 31.64 0.8708 33.30 

21 1.3646 0.9308 31.79 0.9085 33.42 

22 1.4217 0.9674 31.95 0.9448 33.54 

23 1.4770 1.0021 32.16 0.9794 33.69 

24 1.5303 1.0352 32.35 1.0122 33.86 

25 1.5814 1.0665 32.56 1.0435 34.01 

26 1.6303 1.0957 32.79 1.0727 34.20 

27 1.6765 1.1228 33.03 1.1002 34.38 

28 1.7205 1.1482 33.27 1.1257 34.57 

29 1.7623 1.1714 33.53 1.1491 34.80 

30 1.8016 1.1926 33.80 1.1707 35.02 

31 1.8385 1.2117 34.09 1.1901 35.27 

32 1.8727 1.2285 34.40 1.2072 35.54 

33 1.9041 1.2431 34.72 1.2221 35.82 

34 1.9324 1.2552 35.04 1.2346 36.11 

35 1.9574 1.2648 35.39 1.2448 36.41 

36 1.9789 1.2716 35.74 1.2559 36.54 

37 1.9965 1.2756 36.11 1.2695 36.41 

38 2.0100 1.2767 36.48 1.2816 36.24 

39 2.0193 1.2747 36.87 1.2907 36.08 

40 2.0241 1.2749 37.01 1.2963 35.96 

TMD - 6.9309 ---- 7.3784 ---- 

Mean 

Value 
  31.41  32.15 

 

respectively. The average reduction percentage is 31.4% for 

the GSA and 32.2% for the PSO. 

Moreover, reducing the TMD parameters is more 

practical and economical. For this reason, it is tried to 

achieve the least values for the mass, stiffness and damping 

ratio. The values of TMD parameters are listed in Table 4. 

Table 4 illustrates that the proposed methods have 

caused a reduction in the TMD parameters compared to the 

Ant colony method. As presented, the GSA could reduce 

stiffness, damping coefficient and mass by 29.24%, 47.69 

and 1.88% while PSO could reduce them by 23.29%, 

47.30% and 2.11%, respectively. As follows, the 

displacement response of the 40th floor is shown for the 

Tabas earthquake in Fig. 6. It can be found from this figure 

that using TMD could reduce the peak values by 36.5% for 

the GSA and by 36% for the PSO. 

Since the story drift has an important role in the 

structural failure, the drift diagram must be studied. Fig. 7 

shows that the drifts of all stories are in the range of 0.0034 

to 0.0121 for both algorithms approximately demonstrating 

a more relatively uniform distribution. It means that all 

stories have somehow similar contributions in total building 

displacement showing an optimum scenario. For this 

purpose, standard deviation (SD) as an index is employed to 

evaluate the dispersion of story drifts as Eq. (34) 

1 2( )

1

N
xi

N i

  


 (34) 

Where 

1

1

N
xi

N i

 


 (35) 

The values of SD are listed in Table 5. These values 

demonstrate that the PSO algorithm has better performance 

in the case of uniform deformation. 

After employing the optimization algorithm, the optimized 

parameters are fixed and then the performance of the 

structure equipped with the same TMD is evaluated under 

different far and near field earthquakes. Therefore, some 

well-known ground motions from all over the world have 

been applied to the structure with and without the optimized 

TMD. Some of these earthquakes were selected from near- 

 

 

 
Fig. 7 Story drift for example 1 under the Tabas 

earthquake (Ex.1) 
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Table 4 The reduction percentage of TMD parameters (Ex.1) 

 

Farshidinfar and 

Soheili (AC) 

Proposed Method 

(GSA) 
Reduction (%) 

Proposed Method 

(PSO) 
Reduction (%) 

Stiffness (kN/m) 3037.970 2149.624 29.24 2330.444 23.29 

Damping coefficient (kN.s/m) 173.554 90.79254 47.69 91.455 47.30 

Mass (ton) 1547.720 1518.693 1.88 1515.054 2.11 

  
(a) Chi-Chi (b) Coyoto Lake 

  
(c) Kobe (d) Northridge 

 
(e) Oroville 

Fig. 8 Response of the 40th story under the Near-field records (Ex. 1) 
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Table 5 Standard deviation for story drifts in the 1
st
 example 

Structure Standard deviation 

Optimized TMD by GSA 0.003956115 

Optimized TMD by PSO 0.00336041 

Structure without TMD 0.004718042 

 

 

field stations and the others from far-field ones to 

investigate the effect of both types of the ground motions. 

In order to make them easily accessible, the RSN (Record 

Station Number) of each record has been presented. The 

displacement results are shown in Figs. 8 and 9 for near-

field and far-field earthquakes, respectively. These figures 

demonstrate that the TMD has a positive effect on the 

building. 

The values of the max RD (Umax ) and max AA (
maxU ) 

have been listed in the Tables 6 and 7 for all mentioned 

earthquakes. Based on Table 6, results show that the TMD 

can reduce the RD up to 43.82% by GSA and 50.54% by 

PSO algorithm. 

Table 7 shows that the TMD with mentioned optimum 

parameters has the positive effect on the AA, as well. In 

some cases, the absolute acceleration has reduced up to 

 

 

21.3% for the GSA and 25.2% for the PSO algorithm. Note 

that the absolute acceleration is calculated as: 

grel UUU   maxmax
 (36) 

 
6.2 Example 2 

 
Specifications of the second example which is gained 

from (Sadek et al. 1997) are listed in Table 8. This structure 

is a 10-story building where the height of the stories is 

assumed 3 m. The mass, stiffness and damping coefficient 

of all the stories are as Hadi and Arfiadi (1998) who 

considered m=55.45 ton, K=437.9 kN/m and C=47.9 

kN.s/m. The interval of design variables in this example is 

20≤m≤50 ton; 150≤K≤220 kN/m; 20≤C≤60 kN.s/m. The 

responses of this building under the Imperial Valley 

Irrigation District (El-Centro) 1940 NS ground acceleration 

record are presented in Table 9. 

As mentioned before, the reduction of the RD is an 

important factor for the structural analysis. In this study, the 

maximum RD under the El-Centro earthquake is related to 

the top floor with 0.281, 0.272, 0.2403, 0.2378 based on  

 

 
 

  
(a) Ducze (b) San Ferando 

  
(c) Landers (d) Park Field 

Fig. 9 Response of the 40th story under the Far-field records (Ex. 1) 
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Fig. 10 Displacement response of top floor of the 10-

story building under the El-Centro earthquake (Ex. 2) 

 

 

(Sadek et al. 1997), GA, GSA and PSO algorithms, 

respectively demonstrating 14.1, 16.8, 26.5 and 27.3% 

reduction. Therefore, it can be found out that the PSO 

algorithm can reduce the displacement of the top story more 

than the other mentioned methods while highest average 

reduction is related to GSA with 20.7%. 

About the TMD parameters, the proposed methods 

could reduce the TMD parameters 50.5, 29.1 and 26.4, by 

GSA and 63.2, 18.5 and 9.7% by PSO for stiffness, 

 

 

 
Fig. 11 Story drift for the 10-story building under the 

El-Centro earthquake (Ex. 2) 

 

 

damping ratio and mass, respectively compared to the GA 

method as shown in Table 10. This means that the TMD 

with the optimized parameters could reduce the RD and AA 

while it has less mass and is thus more economical than the 

TMD porposed by Hadi and Arfiadi and Lee et al. 

It is worth to mention that the responses of the top 

stories have been reduced up to 10%, affecting directly on 

the story drifts (Fig. 10). As shown in Fig. 11 the GSA and 

PSO algorithms have the maximum reduction percentage up 

to 29.5 and 24.1%.  
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Table 6 Maximum relative displacement (RD) (m) (Ex. 1) 

 
 

No TMD GSA PSO 

Records Umax Umax Reduction (%) Umax Reduction (%) 

N
ea

r-
F

ie
ld

 

R
ec

o
rd

s 

Chi-Chi-RSN 1549 0.7050 0.5121 27.36 0.5145 27.03 

Coyoto Lake-RSN 150 0.2079 0.2026 2.56 0.2022 2.76 

Kobe-RSN 1120 1.2249 0.7666 37.42 0.7647 37.57 

Northridge-RSN 1120 8.0662 5.4065 32.97 4.8089 40.38 

Oroville-RSN 119 3.2649 2.1988 32.65 2.1475 34.22 

F
ar

-F
ie

ld
 

R
ec

o
rd

s 

San Ferando-RSN 63 0.0562 0.0316 43.82 0.0278 50.54 

Ducze-RSN 1613 0.1034 0.0733 29.15 0.0755 26.96 

Landers-RSN 3752 0.0558 0.0440 21.16 0.0435 22.12 

Park Field-RSN 4150 0.0415 0.0280 32.57 0.0243 41.58 

Table 7 Maximum absolute acceleration (m/s
2
) (Ex.1) 

 
No TMD GSA PSO 

Records 
maxU  maxU  Reduction (%) 

maxU  Reduction (%) 

N
ea

r-
F

ie
ld

  

R
ec

o
rd

s 

Chi-Chi-RSN 1549 7.7407 7.7396 0.01 7.7395 0.01 

Coyoto Lake-RSN 150 3.9049 3.9029 0.05 3.9008 0.10 

Kobe-RSN 1120 4.9311 4.8453 1.74 4.8369 1.91 

Northridge-RSN 1120 30.5266 24.0369 21.26 22.8449 25.16 

Oroville-RSN 119 14.2435 13.1046 8.00 12.7665 10.37 

F
ar

-F
ie

ld
 

R
ec

o
rd

s 

San Ferando-RSN 63 0.5869 0.5869 0.00 0.5869 0.00 

Ducze-RSN 1613 0.4725 0.4724 0.02 0.4724 0.02 

Landers-RSN 3752 0.6462 0.6459 0.05 0.6458 0.05 

Park Field-RSN 4150 0.3061 0.3052 0.28 0.3052 0.29 
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Table 8 Specification of the building (Ex. 2) 

Story 

number 
Mass (ton) Stiffness (kN/m) Damping (kN.s/m) 

1 179 62470 805.863 

2 170 52260 674.154 

3 161 56140 724.206 

4 152 53020 683.958 

5 143 49910 643.839 

6 134 46790 603.591 

7 125 43670 563.343 

8 116 40550 523.095 

9 107 37430 482.847 

10 98 34310 442.599 

 

 

The deformation uniformity index, Eqs. (34) and (35), 

are used to compare the performance of each algorithm. The 

results are listed in Table 11. The results show that GSA 

algorithm is more efficient. 

In order to show the efficiency of the methods, the 

selected well-known ground motions were applied to this 

building, too (Figs. 12 and 13). The same optimized 

parameters of TMD are used for all earthquakes. 
The maximum RD and AA are listed in Tables 12 and 13. 

The results show that the values of RD and AA have been 

decreased under all ground motions. As obtained, RD has 

reduced up to 29.7% by the GSA and 22.4% by the PSO. 

AA has also reduced about 29.1% by the GSA and 21.7% 

by the PSO algorithm. 

 

  
(a) Chi-Chi (b) Coyoto Lake 

  
(c) Kobe (d) Northridge 

 
(e) Oroville 

Fig. 12 Top floor displacement for the 10-story building under the Near-field records (Ex. 2) 
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Table 9 Maximum relative displacements (RD) (m) under the 1940 El Centro NS earthquake (Ex. 2) 

Story 

No. 

No. 

TMD 

Sadek et 

al. 1997 

Reduction 

(%) 

Hadi and 

Arfiadi (GA) 

Reduction 

(%) 

Proposed 

method (GSA) 

Reduction 

(%) 

Proposed 

method 

(PSO) 

Reduction 

(%) 

1 0.041 0.036 12.195 0.034 17.073 0.0343 16.3031 0.0358 12.683 

2 0.088 0.077 12.500 0.072 18.182 0.0737 16.276 0.0770 12.500 

3 0.129 0.113 12.403 0.105 18.605 0.1070 17.056 0.1118 13.333 

4 0.166 0.145 12.651 0.134 19.277 0.1369 17.518 0.1433 13.675 

5 0.197 0.172 12.690 0.16 18.782 0.1617 17.932 0.1696 13.909 

6 0.222 0.194 12.613 0.184 17.117 0.1805 18.698 0.1900 14.414 

7 0.252 0.219 13.095 0.21 16.667 0.1934 23.259 0.2048 18.730 

8 0.286 0.245 14.336 0.236 17.483 0.2101 26.530 0.2149 24.860 

9 0.313 0.266 15.016 0.258 17.572 0.2286 26.965 0.2285 26.997 

10 0.327 0.281 14.067 0.272 16.820 0.2403 26.523 0.2378 27.278 

TMD – 0.456 
 

0.635 
 

0.4793 
 

0.2982 
 

Mean 

value   
13.15% 

 
17.75% 

 
20.7% 

 
17.83% 

Table 10 Reduction percentage of TMD parameters (Ex. 2) 

 
Hadi and Arfiadi (GA) 

Proposed Method 

(GSA) 
Reduction (%) 

Proposed Method 

(PSO) 
Reduction (%) 

Stiffness(kN/m) 437.9 216.67 50.5 161.335 63.2 

Damping(kN.s/m) 47.9 33.94 29.1 39.024 18.5 

Mass(ton) 55.45 40.81 26.4 50.076 9.7 

  
(a) Ducze (b) San Ferando 

  
(c) Landers (d) Park Field 

Fig. 13 Response of top floor for the 10-story building under the Far-field records (Ex.2) 
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Table 11 Standard deviation for story drifts in the 2
nd

 

example 

Structure Standard deviation 

Optimized TMD by GSA 0.002540994 

Optimized TMD by PSO 0.002729112 

Structure without TMD 0.002986698 

 
Table 12 Maximum relative displacement (m) (Ex.2) 

 
 

No 

TMD 
GSA PSO 

Records Umax Umax 
Reduction 

(%) 
Umax 

Reduction 
(%) 

N
ea

r-
F

ie
ld

 R
ec

o
rd

s 

Chi-Chi-RSN 1549 0.3752 0.3232 13.84 0.3315 11.64 

Coyoto Lake- 

RSN 150 
0.2427 0.2358 2.86 0.2357 2.88 

Kobe-RSN 1120 0.4849 0.3837 20.88 0.4291 11.51 

Northridge- 

RSN 1120 
3.0632 2.1539 29.69 2.3777 22.38 

Oroville-RSN 119 1.8050 1.4106 21.85 1.5423 14.55 

F
ar

-F
ie

ld
 R

ec
o

rd
s San Ferando- 

RSN 63 
0.01976 0.01916 3.04 0.01917 3.00 

Ducze-RSN 1613 0.03893 0.03484 10.52 0.03443 11.57 

Landers-RSN 3752 0.02609 0.02302 11.74 0.02339 10.34 

Park Field- 

RSN 4150 
0.05663 0.04085 27.85 0.04583 19.06 

 
Table 13 Maximum absolute acceleration (m/s

2
) (Ex.2) 

 

 
No 

TMD 
GSA PSO 

Records 
maxU  

maxU  
Reductio

n (%) maxU  
Reduction 

(%) 

N
ea

r-
F

ie
ld

 R
ec

o
rd

s Chi-Chi-RSN 1549 9.1457 8.7472 4.36 8.8047 3.73 

Coyoto Lake-RSN 150 6.1428 5.9532 3.09 5.9641 2.91 

Kobe-RSN 1120 5.5962 5.4255 3.05 5.4369 2.85 

Northridge-RSN 1120 30.1858 21.4143 29.06 23.6344 21.70 

Oroville-RSN 119 24.9446 21.6373 13.26 22.6999 9.00 

F
ar

-F
ie

ld
 R

ec
o

rd
s 

San Ferando-RSN 63 0.6075 0.6074 0.01 0.6075 0.00 

Ducze-RSN 1613 0.5936 0.5529 6.85 0.5540 6.67 

Landers-RSN 3752 0.7165 0.6278 12.38 0.6449 9.99 

Park Field-RSN 4150 0.7024 0.5350 23.83 0.5820 17.14 

 
 
7. Conclusions 

 
The objective of this paper was to propose optimum 

TMD parameters to reduce the structural responses (RD, 

AA) as the RD and AA have important roles in the failure of 

the structure and to decrease the values of the optimum 

TMD parameters as well. Moreover, optimizing the TMD 

parameters provides an economical and practical design 

optimization approach for the buildings. Therefore, two 

well-known algorithms: GSA and PSO were applied for the 

optimization goal. To illustrate the performance of these 

two methods, the responses of two numerical examples of 

benchmark structures under nine far-field and near-field 

worldwide earthquakes were investigated. 

Results showed that the TMD with the optimum 

parameters could reduce the maximum RD and AA in both 

examples. In the 40-story building example, analyzing the 

structure under the Tabas earthquake was led to 37% and 

36% reduction in RD and 0.31% and 0.38% for AA at the 

top floor by GSA and PSO algorithms, respectively. Even 

though the reduction percentage for the RD is 

approximately 6% more than the reference one in both 

proposed algorithms, the optimum parameters have been 

reduced, too. The values of stiffness, damping coefficient 

and mass reduction percentage are 29.2, 47.7 and 1.9% in 

the GSA and 23.3, 47.3 and 2.1% with the PSO algorithm 

compared to the Ant Colony method. The investigation of 

the building under nine earthquakes showed that the RD has 

been reduced up to 43.8% by GSA and 50.5% by the PSO 

and 21% and 25% reduction in AA by the GSA and PSO, 

respectively. The investigation of story drift demonstrates 

more relatively uniform distribution. It means that all 

stories have somehow similar contributions in total building 

displacement showing an optimum scenario.  

Results for the 10-story building example showed that 

although the maximum RD under the El-Centro earthquake 

reduced just 1 to 3% for the mean value compared to that of 

the Genetic Algorithm (GA), the TMD parameters including 

mass, damping and stiffness ratio reduced by 51, 29 and 

26% for the GSA and 63, 19 and 10% for the PSO, 

respectively. Moreover, the investigation of the responses of 

the structure under nine earthquakes showed that the RD 

reduced up to 29.7% by the GSA and 22.4% by the PSO, as 

well. The reduction percentage for the AA is up to 29.1% by 

the GSA and 21.7% by the PSO algorithm. The evaluation 

of the drift also illustrates that TMD has a positive effect on 

the story drift. The reduction percentage of the story drift is 

29.5% by the GSA and 24.1% by the PSO. The optimum 

TMD parameters acquired by these two methods are smaller 

than those obtained by the other methods. It results in 

reduction of acting force from TMD having smaller 

stiffness and damping factors leading to a cost effective 

scenario. In addition, results reveal that almost a uniform 

deformation is obtained using the optimized TMD. This 

trend reduces the potential of soft story event in the 

structure during earthquake. 
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