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1. Introduction 

 

It is well known that structures will accumulate local 

damages in their components because of earthquake, 

impact, fatigue, etc. These damages can lead to the failure 

of the structures. To assure the safety of structures the 

damage identification methods have become important 

topics of research in the past few decades. So far, the 

existed approaches for damage identification are generally 

classified into two major categories: methods based on 

static measurements and methods based on dynamic 

measurements. The latter methods identify the local damage 

based on the vibration characteristics, while the former ones 

use the static deformations for identification.  

Comparing with the static methods the dynamic 

approaches have been developed more fully. Lots of 

approaches are studied in fields of frequency domain in the 

past few decades. For example, methods based on the 

changes in natural frequency are used to identify the local 

damage (Cawley and Admas 1979, Kim and Stubbs 2003). 

Majumdar et al. (2012) utilized the ant colony optimization 

to identify damages in truss structures using the natural 

frequencies only. Damage identification methods from 

mode shape changes are investigated by many researchers 

(Pandey et al. 1991, Rizos et al. 1990, Ratcliffe 1997). A 

damage index based on strain energy numerical technique is 
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studied by Hu et al. (2012) to identify the structural local 

damage. And there are other approaches using modal 

flexibility (Pandey and Biswas 1994, Wu and Law 2004, ) 

and frequency response function(Chatterjee 2010, Mohan et 

al. 2013) to identify structural damage. Yang and Liu (2007) 

proposed a method for structural damage identification 

based on residual force vector. Li et al. (2015) presented a 

method for simultaneous identification of stiffness and 

damping in discrete systems based on derivatives of eigen-

parameters. Li and Lu (2015) presented a method for 

structural identification based on fruit fly optimization 

using natural frequencies and mode shapes. Vo-Duy et al. 

(2016) developed a two-step approach for damage detection 

in laminated composite structures using modal strain energy 

method and an improved differential evolution algorithm.  

On the other hand damage identification methods in 

time domain have been developed rapidly in recent years. 

Cattarius and Inman (1997) used time histories of vibration 

responses for identification. Lu and Law (2007) developed 

the response-sensitivity method to detect the damage. Then 

He and Lu (2010) utilized the response-sensitivity-based 

method to identify multiple cracks in beam structure. 

Recently, Lu et al. (2013) used the modal curvature based 

method to develop the efficiency and accuracy of the 

response-sensitivity method in cracked beam. Li et al. 

(2016) proposed a method for structural damage 

identification based on residual force vector and response 

sensitivity analysis. Fu et al. (2016) proposed a two-step 

approach based on modal strain energy and dynamic 

response sensitivity analysis.    

Making comparison between the static and dynamic 

approaches, the advantage of the static methods can be 

concluded as: (1) Equation of equilibrium is only related to 
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stiffness. (2) Static response data are much easier to obtain. 

(3) The noise in static measurement is less than the dynamic 

one. But the researches in the static field are much less than 

that in the dynamic field because the information can be 

used in the static system is limited. By minimizing the 

difference between the applied and the internal forces, 

Sanayei and Scamploi (1991) identified the structural 

damage in static system. It should be pointed out that the 

method required the measured points and the location of the 

applied external force. Then Snanyei and Onipide (1991) 

improved the previous method by minimizing a 

condensation procedure. Hjelmstad et al. (1992) used the so 

call mutual residual energy to estimate the parameter of 

complex linear structures. Later, Banan and Hjelmstad 

(1994a, 1994b) proposed a set of parameter estimation 

methods based on the static system. Recently Nejad et al. 

(2005) presented a new structural damage detection 

algorithm by minimizing the difference between the load 

vector of measured and analytical load vector. Chen et al. 

(2005) defined a grey relation coefficient of displacement 

curvature and used it to locate the structural damage. Yang 

and Sun (2010) proposed a localization method using the 

flexibility disassembly technique. But this method requires 

the input data to contain all the deformation information. 

Abdo (2012) studied the influence of the parameters in the 

damage detection based on the changes in the static 

displacement curvatures. 

In this paper a method for localization and 

quantification of structural damage using measured 

incomplete static displacement is proposed. A residual force 

vector is deduced based on the static equilibrium equations 

of the intact and damaged structure. And the residual strain 

energy (RSE) is derived from the residual force vector. In 

order to reduce the number of measurements in the 

identification, model reduction method is adopted to obtain 

a reduced finite element model. Two numerical simulations 

are studied to verify the proposed method. The results 

illustrate that the RSE can localize the damaged element 

exactly with full displacement measurement. When only a 

small number of static displacement data are used, some 

suspicious damaged elements will appear adjacent to the 

true damaged elements. The true locations and extents of 

damage can be obtained from a model updating method 

based on sensitivity analysis of the static displacement.  

 

 

2. Methodology 
 
2.1 Residual force vector in static system 

    

The static equilibrium equation for an undamaged 

structural system with nd degrees-of-freedom (DOFs) can 

be written as 

KU F  (1) 

where K is the global stiffness matrix and U is the nodal 

displacement vector when a static load vector F is applied 

on the system. Then the displacement U can be calculated 

from Eq. (1) 

 -1
U K F  (2) 

As the mass has no effect on the static system, structural 

damage only leads to the change of the stiffness parameters. 

If local damage leads to a perturbation in the structural 

stiffness matrix by δK, the equilibrium equation for the 

damaged system can be expressed as 

( ) 
d

K δK U F  (3) 

where Ud is the displacement vector of the damaged system 

while the applied static force vector remain unchanged.  

Subtracting Eq. (1) from Eq. (3), the residual force 

vector denoted by Rf is expressed as 

 
d

Rf δKU KδU  (4) 

where δU=U−Ud. It can be seen that the value of the 

residual force vector can be calculated by the right term of 

Eq. (4). And a detailed expression of the middle term in Eq. 

(4) can be written as 
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where δki (i=1,2,…,nd) is the stiffness change vector of the i 

th DOF. Eq. (5) shows that the residual force rfi will be 

nonzero only if the element which contains the i th DOF is 

damaged. 

 

2.2 Residual strain energy 
 

It can be seen that residual force vector indicates the 

damage information in the DOF level. In order to reflect the 

damage information in the element level, residual strain 

energy (RSE) is defined based on the residual force vector 

Rf. The residual strain energy can be written as 

( 1,2, , )iRSE i nel T

i
δU K δU  (6) 

where nel  denotes the total number of the elements, 

δU=U−Ud 
and Ki represents the stiffness matrix of the i th 

element. 

Consider the expression of residual force vector Rf in 

Eq. (4) and it can be re-written as 

1

( )
nel

i

  i dRf K U U  (7) 

Meanwhile the residual force vector Rf can be regarded 

as a summation of the elemental residual force vector Rf
e
  

1

nel

i

 e

iRf Rf  (8) 

From Eq. (7) and Eq. (8), an elemental residual force 

can be expressed as 

( 1, 2, , )i nel e

i i
Rf K δU  (9) 

Eq. (5) shows that the component of Rf
 
will be non-zero 

only if the related element is damaged. In other words, if 

the j
 
th component of Rf is zero it can be expressed as 
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following 

1

( ) ( ) 0
nel

i

j j


  e

iRf Rf  (10) 

Then considering the definition of RSE in Eq. (6), it can 

be found that RSE  could be obtained by multiplying δU
T

 
to Eq. (9). So another form of RSE is 

( 1, 2, , )iRSE i nel T e

i
δU Rf  (11) 

The RSE value of the damage element will be distinctive 

bigger than that of the others. Therefore value of RSE can 

be regarded as an index to determine which element is 

damaged. This will be verified in the numerical simulations.  

 
2.3 Reduction of the finite element model 

 

In practice it is impossible to measure all the DOFs of 

the system for damage identification. In order to make use 

of the incomplete measured data, a reduction method 

(Guyan 1965) is utilized to match the measured DOFs with 

the ones in FEM. 

Assuming that the static force is applied only among the 

measured DOFs, the static equilibrium equation can be 

rewritten as 

    
    
    

mmm ms

sm ss s

UK K F

K K U 0
 (12) 

where m and s represents the measured and unmeasured 

DOFs respectively. Consider the second equation in Eq. 

(11), Us can be represented by Um 

  -1

s ss sm m
U K K U  (13) 

Then a transform matrix is expressed as 

 
  
 

-1

ss sm

I
T

-K K
 (14) 

Multiplying Eq. (11) on both sides by T
T
, a reduced 

FEM model is obtained 

R

m
K U F  (15) 

R T
K T KT

 
(16) 

Based on the reduced model, RSE can be calculated as 

following 

( 1, 2, , )R

iRSE i nel T R

m i m
δU K δU  (17) 

( 1, 2, , )i nel R T

i i
K T K T

 
(18) 

It should be pointed out that 
R

i iRSE RSE  because of 

the incomplete displacement data. It means that RSE  of 

the reduced model can only find out the suspicious 

damaged elements but not the true damaged elements. As 

the number of measurement increases, the number of false 

alarms will be reduced.  

2.4 Selection of load case 
    

Strain energy is utilized here to represent the 

contribution of an element. The strain energy of the j
 
th 

element under the i th load case is calculated as 

1

2
ijSE  T

i j iU K U  (19) 

In the static method, a better load case should have less 

variation in contribution of elements. In order to find out 

the best load cases, deviation of the strain energy is used. 

The Deviation Index can be expressed as 

1 1
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(20) 

A smaller value of Di 
indicates that the i th load case is 

better than other cases. This strategy was also adopted by 

Nejad et al. (2005). 

 

2.5 Static displacement response sensitivity analysis 
    

The equilibrium equation of the damaged system can be 

expressed simply as 


d d

K U F  (21) 

It is usually assumed that the local damage only relates 

to the stiffness parameter of the structure, the damage 

model can be expressed as follows 

1

nel

i

i




d iK K  (22) 

where αi (i=1,2,…,nel) is the stiffness parameter whose 

value varies from 0 to 1. When the element is undamaged 

the value of αi is 1, and 0 means the element is completely 

damaged.  

Differentiating both sides of Eq. (21) with respect to the 

stiffness parameter, we have 

d

i i 

 
 

 

-1 d

d d

U K
K U  (23) 

Considering Eq. (22) the static displacement response 

sensitivity can be expressed in a simple form 

d

i


 



-1

d i d

U
K K U  (24) 

 

2.6 Identification of extent of damage 
 

As the suspicious damaged elements are localized, the 

stiffness parameters of these elements are used for model 

updating. And the value of the parameter of the intact 

element will remain as 1 during the iteration.  

   For given stiffness parameters the system deformation 

Ucal can be obtained by Eq. (1). As the stiffness parameters 

of the undamaged system are known and all the initial 

values of the damaged parameters are set to be 1. 
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Fig. 1 Finite element model of a simply supported beam 

 

 

Obviously, the initial damaged parameters are not the true 

values of the damaged system, Ucal generally deviates from 

the measured static response of the damage system. The 

difference between the measured and calculated 

displacement can be expressed as 

 
m cal

ΔU U U
 (25) 

where Um is the measured static response vector. The task 

of the model updating is to minimize the difference between 

the calculated and measured static displacement data ΔU. 

To this end, the damage parameter vector α needs to be 

updated iteratively by solving the following equation 

ΔU SΔα  (26) 

where Δα is the increment of the damage parameter vector 

α. And S is the static response sensitivity matrix whose 

entries can be obtained from Eq. (24). The detailed 

sensitivity matrix S can be written as 
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1 2
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S  (27) 

where the subscript n represents the number of suspicious 

elements determined from damage localization, and k 

represents the number of measured data. Generally the 

number of measured displacement will be larger than that of 

the damaged parameters. In this case, the over-determined 

Eq. (26) can be solved using the least-squared method, i.e. 

1

   
T T

Δα S S S ΔU  (28) 

Usually S
T
S is ill conditioned and Eq. (28) is an ill-

posed problem. So the Tikhonov regularization (1963) is 

utilized here to solve Eq. (26). Then solution of Eq. (26) can 

be expressed as 

1




   
T T

Δα S S I S ΔU  (29) 

where λ is a nonnegative regularization parameter 

determined by L-curve method (Hansen 1992) and I is an 

identity matrix. 

During model updating, the damage parameter vector is 

updated as 

er 1it iter iter  α α Δα  (30) 

where the superscript iter denotes the number of iteration.  

 

Fig. 2(a) Load case 1 for a simply supported beam 

 

 

Fig. 2(b) Load case 2 for a simply supported beam 

 

 

The convergence criterion is defined as 

tolerance

er er

er




it +1 it

it

α α

α
 (31) 

 

 

3. Numerical simulation 
 
3.1 A simply supported beam 
 

   In this case a simply supported beam shown in Fig. 1 is 

studied. The physical parameters of the beam are: 

E=3.0×10
10

 N/m
2
, ρ=2800 kg/m

3
. The beam is discretized 

into 20 Euler-Bernoulli beam elements. Finite element 

model of the beam are established using the Matlab 

software. 

As shown in Fig. 2(a) and Fig. 2(b), there are two load 

cases for selection. Using Eq. (19) and Eq. (20), the criteria 

D of these load cases are D1=3.9750 and D2=2.9814. Since 

D2 is smaller load Case 2 presented by Fig. 2(b) is chosen 

for analysis. 

 

Case1: Single damage 

    

In this section, a simply supported beam with a single 

damage is studied as a forward problem. Assuming the 4th 

element is damaged with a 15% reduction in the elemental 

stiffness. Three measurement scenarios are studied in the 

following: 1) The first measurement scenario deals with full 

measurement, i.e., the deflection and rotation of each node 

are measured. Fig. 3 shows result of damage localization. 

One can find that the proposed method can identify the 

location of damage precisely with full measurement. 2) The 

second scenario deals with the case when only the 

deflection of each node is measured, i.e., totally 21 

measurements. Fig. 4 shows the localization result. The 

location of damage can also be identified under such a 

measurement scheme, but the RSE values of element 3 and 

element 5 are also relatively large and they are regarded as 

suspicious damaged element. 3) The third scenario further 

deals with incomplete measurement of nodal deflection. In 

this case, only the deflection data of nodes 4, 6, 8, 11, 14, 

16 and 18 are used for damage localization. As shown in 

Fig. 5, elements 2, 3, 4 and 5 is identified as suspicious 

damaged ones according to their large RSE values while the 

other 16 elements can be regarded as undamaged ones.  

These scenarios show that the damage can be localized 

from the elemental RSE value. Studies also show that the  
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Fig. 3 Damage localization result of the single damaged 

beam with full deformation 

 

 

Fig. 4 Damage localization result of the single damaged 

beam with deflection data only 

 

 

Fig. 5 Damage localization result of the single damaged 

beam with incomplete deflection data 

 

 

incomplete measurement will leads to more suspicious 

damaged element, the less the measurement, the more 

suspicious damaged elements. The accurate location of 

damage and its extent will be identified from the finite 

element model updating using the measured static 

displacement.  

 

Case2: Multiple damages  

    

In this case two local damages locating at the 5th and 

14th elements are studied. The stiffness parameters of these 

two elements are reduced by 15% and 20%, respectively. 

The same as 7 measurements as the third scenario in Case 1 

are used to localize the damage. Fig. 6 shows the result of 

damage localization. Again the result is not the exact one 

due to the incomplete measurement data. Elements 5, 6, 12, 

13, 14 and 15 are regarded as the suspicious ones according 

to their RSE values. The other 14 elements are excluded as 

undamaged elements.  

As the suspicious damaged elements are determined, the  

 

Fig. 6 Localization result of the multiple damaged beam 

with 7 deflection data 

 

 

Fig. 7 Quantification of damage extents for a simply 

supported beam 

 

 

Fig. 8 A three-span continuous beam 

 

 

true damage location and corresponding damage quantity 

will be accomplished from sensitivity based model 

updating. In order to assure the identification equation, i.e., 

Eq. (26) is over-determined, multiple sets of measured data 

under different external forces are used. Remaining the 

location of the static loads unchanged, two sets of measured 

data under different magnitude of loads, i.e., F1=300 N, 

F2=300 N and F1=350 N, F2=450 N
 
are used in this study. 

After 33 iterations, the final result for damage extent 

identification is shown in Fig. 7 with the tolerance of 10
-8

. 

And the optimal regularization parameter is found to be 

λ=6.0882×10
-7

. 

 

3.2 A three-span continuous beam 

 

A three-span continuous beam shown in Fig. 8 is 

considered in this section. The geometrical parameters of 

the beam structure are presented in Fig. 8. And the physical 

parameters are: Young’s modulus E=3.0×10
10

 N/m
2
, mass 

density ρ=2800 kg/m
2
. Then the structure is divided into 24 

Euler-Bernoulli beam elements. And the best load case for 

localization shown in Fig. 8 is selected previously based on 

the criterion described in section 2.4. Considering the 

locations of the external forces and the constrains of the 

structure the measurement points are evenly distributed in 

each span of the beam. Therefore static displacement data 

obtained from nodes 3, 5, 7, 11, 13, 15, 19, 21 and 23 is 

used for damage localization and quantification. Two 

damage cases are studied here. 
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Fig. 9 Localization of two far away damages with 9 

deflection data 

 

 

Fig. 10 Quantification of two far away damage extents 

with 9 deflection data 

 

 

Case 3: Identification of two far away damages 

    

In this case the two damaged elements are far from each 

other. The stiffness parameters of elements 4 and 21 are 

both reduced by 20%. The localization result is presented in 

Fig. 9. From this figure, one can find that the values of 

RSE for elements 4, 5, 20 and 21 are significant big 

comparing with the values of other elements. Therefore 

these 4 elements are regarded as the suspicious damaged 

elements. It is shown that the localization result is not exact 

to the true damage location because of the limited 

measurements. But it can identify the suspicious elements 

well and the other 20 elements are excluded as undamaged 

ones.  

Then the model updating method based on sensitivity 

analysis is utilized for accurate identification. Changing the 

magnitude of the static loads to F1=1.5 kN, F2=3.0 kN, 

F3=2.0 kN
 

and one more set of static displacement 

measurement can be obtained. Therefore two sets of 

measured data can be used in the model updating. The final 

identification result is presented by Fig. 10 after 23 

iterations. Fig. 10 shows that the local damages are 

successfully identified with final optimal regularization 

parameter λ=7.2868×10
-7

. 

 

Case 4: Identification of two adjacent damages 

 

In this case, the proposed method is used to differentiate 

two adjacent damaged elements. Elements 6 and 7 are 

assumed to be damaged elements. The stiffness parameters 

of these two elements are reduced by 20%. The same 

external forces and measurements as the last study case are 

used. The localization result is shown in Fig. 11. It can be 

found that the RSE values of elements 4 to 9 are relatively 

bigger than others. So elements 4, 5, 6, 7, 8 and 9 are 

 

Fig. 11 Localization of two adjacent damages with 9 

deflection data 

 

 

Fig. 12 Quantification of two adjacent damage extents 

with 9 deflection data 

 

 

identified as suspicious elements. Once again, model 

updating is used to obtain the accurate damage location and 

extent. After 24 iterations, the result of damage 

identification is shown in Fig. 12 with the final optimal 

regularization parameter λ=1.9247×10
-7

. It is shown that the 

two adjacent damages have been differentiated successfully 

through the proposed method. 

 

 

4. Conclusions 
 

A structural local damage localization and quantification 

method using incomplete static measured data is proposed 

in this study. Based on the residual force vector in the static 

system, the residual strain energy (RSE) is introduced. 

Making use of the incomplete static displacement data of 

both intact and damaged structure, the proposed method can 

indicate the suspicious elements while lots of undamaged 

ones will be excluded. As the suspicious elements are 

determined, a model updating method based sensitivity 

analysis is utilized to further identify local damages. 

Numerical simulations show that the proposed method is 

effective for identifying the damage location and quantity 

even when the measurement data are incomplete. The 

advantage of the proposed method is that only limited static 

displacement measurement is needed in the damage 

localization and quantification. In this study the effect of 

artificial noise in the static displacement measurement on 

damage identification results is not taken into account. It 

will be investigated by the authors in the future.  
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