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1. Introduction  
 

The elastic demand of reinforced concrete (RC) 

structure and, indirectly, the required inelastic performance 

in static procedures is determined by the structure’s natural 

or fundamental period. Hence determining the natural 

period of a structure is an essential procedure in earthquake 

design and assessment (Asteris et al. 2017). The 

fundamental period of a structure depends on the mass, 

stiffness and strength of the structure and is thus affected by 

many factors, which include structure regularity the height 

of the building, the provision of shear walls, the number of 

storeys, number of spans, dimensions of the member 

sections, presence of openings in the infill panels, position 

of load, soil flexibility etc. (Asteris et al. 2015). 

Shear walls (SW) are commonly put into multi-storey 

buildings due to their good performance under lateral loads, 

such as earthquake forces, because they provide lateral 

stability and act as vertical cantilevers in resisting 
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horizontal forces. Stiffness, strength and ductility are the 

basic criteria that the structure should satisfy and shear 

walls provide a nearly optimum means of achieving these 

objectives (Ahmadi and Bakar 2014, Massone and Ulloa 

2014). Buildings having SW are stiffer than framed 

structures resulting in reduced deformations under 

earthquake load. Compared to stiffer constructions, flexible 

buildings that have a greater value of the fundamental 

period (Işik and Kutanis 2015) experience minor inertial 

force caused by an earthquake, but will, however, suffer 

more strain. 

According to Poovarodom (2004), there are three main 

methods of determining the dynamic properties of 

buildings: using empirical formula, numerical calculation 

using a model and finally, measurement of the actual 

system. The empirical formula in codes, currently available 

for the fundamental period, is a simple relation between the 

periods of buildings and their geometry. It is worth 

mentioning that in the vibration modes assessment phase of 

a specific structure, a large amount of the seismic energy is 

absorbed using the fundamental mode. For this reason, 

empirical formulas have been provided by many scientists 

using many approaches which take into account both the 

mechanical and geometrical characteristics of the structure. 

This approach is considered as a rough estimation, but the 

predictions made by using only a few of building 

configuration data were shown to be as accurate as more 

complex computer based methods (Ellis 1980). 

The most reliable estimates of periods are from 

structures which have experienced strong earthquakes and 
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been shaken strongly but not deformed into the inelastic 

range. However, this is often difficult to achieve since such 

data of periods are slow to accumulate. There are three 

reasons for this: first, relatively few buildings are installed 

with accelerographs, and second, earthquakes causing 

strong motions of these instrumented buildings are 

infrequent (Goel and Chopra 1998). The third reason is that 

this database is further reduced by analyzing distinguishing 

materials (steel, concrete etc.), structural systems (RC 

frames, SW etc.) and amplitude of shaking (Michel et al. 

2010). 

An overview of previous research considering 

experimental monitorization of real buildings is given in 

section 2. From the available data published from scientists, 

a database of RC SW buildings, along with the periods 

measured in both directions is created. 

In order to obtain a realistic estimation of seismic 

demand, many authors propose to evaluate the vibration 

period based on empirical data from existing buildings 

subjected to earthquakes. It is pointed in Ricci et al. (2011) 

that seismic codes often adopt formulas obtained by using 

this procedure. In the following, empirical-based 

expressions for evaluating the period of vibration of RC SW 

buildings are illustrated.  

In order to characterize the real structure’s responses to 

strong earthquake motion, finite element models of the test 

structure in dynamic analysis are used and can be verified 

by performing full-scale ambient and forced vibration 

experiments (Kutanis et al. 2016). Recently, many studies 

have been published where inappropriate behavior of 

structures under dynamic loads have been shown. Since the 

mathematical models of dynamic structural systems based 

on measured data also have a significant potential for 

ambient vibration, Zhou et al. (2017) pointed out the 

differences between experimental dynamic analysis tests 

and refined numerical modeling. Also, many researchers 

have shown that code formulas are grossly inadequate when 

comparing with conducted full-scale on-site vibration tests 

(Lee et al. 2000, Gilles et al. 2010, Zhou et al. 2017). 

The aim of this paper is to develop a method to provide 

a good estimate of the fundamental period of RC SW 

buildings for the purpose of using it in equivalent lateral 

force analysis specified in building standards. Since the 

fundamental period of vibration calculated by currently 

available approximate equations show remarkable 

differences between “code-estimated” and “measured” 

period values for actual structures, one of the contributions 

of this paper is to create a database of measured periods of 

real RC SW buildings. This database of RC SW buildings 

consists of known parameters such as numbers of stories, 

height, length, width, the percentage of RC walls along with 

measured vibration periods. In earthquake resistant designs, 

the value of the fundamental period needs to be as accurate 

as possible; therefore, using the database of real 

measurements, another contribution of the paper is to use 

new methods, such as ANN to provide more accurate 

prediction of fundamental periods. The Self-Organization 

Feature Map (SOFM) is used for modelling the expressions 

for fundamental period and then Genetic Algorithm (GA) is 

used in optimizing the SOFM models. The results between 

the best SOFM Model and values obtained by code are 

presented and discussed in this paper. 

 

 

2. Previous researches of dynamic characteristics of 
reinforced buildings by experimental monitorization 
 

Essentially, according to Oliveira and Navarro (2010), 

there are two ways to obtain the dynamic characteristics of 

a building: 1) by experimental monitorization of a real 

building for different input motion; 2) by numerical 

modelling based on the mechanical properties of building 

components. Both are important and complementary, with 

the second one being a way to calibrate the first.  

Housner and Brady (1963) published a theoretical 

analysis for an idealized building with shear walls with 

expressions derived using the Rayleigh’s method.  

Cole et al. (1992) compared expressions for periods 

given in UBC-91 with the data recorded on 64 buildings 

during some Californian earthquakes.  

Measurements from 21 buildings during the Loma 

Prieta and Whittier earthquake were analyzed in the work of 

Li and Mau (1997). The measured fundamental periods 

were compared with the expressions from UBC-94 code. It 

was noticed that the fundamental period of RC frames were 

underestimated, while the period of SW buildings were 

overestimated in some cases and underestimated in other 

cases. 

In the work of Goel and Chopra (1998), fundamental 

periods of SW buildings were measured on 16 buildings 

during several Californian earthquakes and compared with 

the values given by codes. It was discovered that the 

expressions in codes resulted in a longer fundamental 

period than the measured one which produced non-

conservative shear forces. When different values of Ct (Eq. 

(1)) derived from the combined effective area were used, 

the result was a much shorter period than the measured one. 

It was also concluded that the expression from ATC3-06, 

which used building dimension as the base for the 

investigated direction, significantly underestimated the 

period. Goel and Chopra also proposed new expressions 

based on Dunkerley’s method and the restriction of the 

period to 1.4 times the value from rational analysis. 

Lee et al. (2000) measured fundamental periods on 50 

RC apartment buildings with shear walls, and these results 

were compared with those obtained by code formulas and 

also by dynamic analysis. The comparison showed that 

comparatively large errors were likely to occur when code 

formulas were used. 

In the work of Jalali and Salem (2005), ambient 

vibration measurements were conducted on 30 RC 

buildings in Tehran and Tabriz, designed according to 

Iranian code, and the results of those measurements were 

compared to code formulas.  

Likewise, Gallipoli et al. (2010) performed ambient 

noise measurements on 244 RC buildings from 1 to 20 

floors in four European countries. It was found that the 

most striking feature was the similarity of the height-period 

relationships in four countries.  

In the work of Kwon and Kim (2010), building period  
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formulas in seismic design code with over 800 apparent 

building periods from 191 building stations and 67 

earthquake events were evaluated. The evaluation was 

carried out with the formulas in ASCE 7-05 for steel and 

RC MRF, SW buildings, braced frames and other structural 

types. The differences between the periods from code 

formula and measured periods of low-to-medium rise 

buildings were relatively high. The code formula for SW 

buildings overestimated periods for all building heights. 

 

 

3. Existing formulas of RC SW buildings 

 

Among the critical load cases accounted for in design of 

new buildings or evaluation of existing ones are seismic 

loadings (Ozmen and Inel 2015). In the earthquake resistant 

design of a structure, the forces that act on the structure 

must be determined. However, the actual forces that will 

occur over the lifetime of the structure cannot be known. 

Seismic forces to the structure result from the vibration of 

mass of structure. The fundamental period appears in the 

equations given in the standards or codes for the calculation 

of yield base shear and lateral forces. Therefore, during the 

building planning and design phases, it is important to 

 

 

carefully consider the fundamental period of the building. 

In the majority of cases, the assessment of the period is 

considered as a function of the structural system 

classification and number of stories or height and/or wall 

area. Several different expressions for evaluating the 

vibration period of RC SW buildings are given further in 

the text. A brief overview of the design equations provided 

in various codes and standards to estimate the fundamental 

natural period can be found in a work of Sofi et al. (2015). 

The formulation of period-height relationships is 

typically of the type 

βα HT   (1) 

where H represents the height of the system and α and β are 

constants. Since it first appeared in U.S. building code 

ATC3-06 with β equal to 0.75, the first empirical formula 

was in the following form 

75.0HCT t   (2) 

where: H – height of the structure [m] and Ct – constant 

depending on the structure type.  

The coefficient Ct is calibrated in order to achieve the 

best fit to experimental data. The value of Ct is given in 

Table 1 Expressions for periods of RC SW buildings given in building codes and by researchers 
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Table 1. 

This particular form of Eq. (1) was theoretically derived 

using Rayleigh’s method with the assumptions that the 

equivalent static lateral forces are distributed linearly over 

the height of the structure, the seismic base shear is 

proportional to 1/T
2/3

 and the distribution of the stiffness 

with height produces a uniform inter-story drift under the 

linearly distributed horizontal forces.  

Empirical expressions given in building codes are 

presented in Table 1 where: 

Ac – the total effective area of the shear walls in the first 

storey of the building (m
2
),  

Ai – the effective cross-sectional area of shear wall „i” in 

the direction considered in the first storey of the building 

(m
2
),  

Di – length of the shear wall „i” in the first storey in the 

direction parallel to the applied load (m), with the 

restriction Di/H ≤ 0.9;  

Ae – equivalent shear area assuming that the stiffness 

properties of each wall are uniform over its height; 

eA – the equivalent shear area expressed as a percentage 

of AB, which represents the building area; 

L – the width of structure in the direction of analysis (in 

meters); 

ρ – the ratio of the areas of shear wall sections along the 

direction of analysis to the total area of walls and columns. 

N – total number of stories.  

 

 

4. Selected buildings and identification of 
fundamental periods 

 

A database containing 78 building periods is created in 

order to evaluate the approximate period formulas in current 

seismic codes, provided in the previous section. Among 

various lateral load-resisting systems and their measured 

periods published in literature, only buildings with RC 

shear walls were selected. After reviewing the plans of the 

buildings, buildings with large irregularity, base isolation 

systems, or energy dissipation systems were excluded. In 

order for an RC SW building to be selected into the 

database, all the following parameters have to be known: 

- plan dimensions; 

- percentage of RC walls in both directions, e.g. RC wall 

area in both directions; 

- number of storey; 

- storey height. 

The majority of the buildings in the database were taken 

from the data provided by Lee et al. (2000). They carried 

out full-scale measurements on 50 RC apartment buildings 

in order to evaluate the reliability of code formulas such as 

those of the current Korean Building Code (KBC), UBC 

1997, NBCC 1995 and BSLJ 1994 for estimating the 

fundamental period of RC SW buildings. The results of 

measured periods were compared with those obtained by 

code formulas and those by dynamic analysis. Large errors 

occurred when the code formula of KBC, which is based on 

UBC 1988, was used. Also, none of the other code formulas 

examined in the study were sufficient for estimating the 

fundamental period of apartment buildings with SW 

dominant systems. The measured 10 to 25 storey high 

buildings were RC structures consisting of walls and 

regularly shaped flat plate slabs without columns or beams, 

and a centrally located rectangular core or cores spaced by 

two housing units. The thickness of walls and slabs of these 

buildings with various sizes and plan shapes were almost 

equal (about 200 mm), and the walls in units and cores, 

which were the primary lateral force resisting elements, 

were continuous throughout the height of such buildings. 

The storey height was about 2.6 m for all stories. Each 

building had a mat or a pile foundation. Since all the 

aforementioned parameters of all buildings were known, all 

50 buildings were included in the database. Their height 

varied from 40 to 68 m (or 15 to 25 stories) and had 

different plan dimensions. The ratio of the shear wall area 

aligned in the direction of the periods compared to the plan 

area of a typical floor varied from 1.4 to 6%. The length of 

the buildings varied from 18.3 to 63.9 m, while the width 

varied from 10 to 12.83 m. 

Gilles (2010) started to develop a period database for the 

city of Montreal, Canada, using ambient vibration 

measurements and the Frequency Domain Decomposition 

method. Between June 2007 and August 2009, ambient 

vibration tests were performed in 39 buildings in Montréal, 

from which 27 RCSW provided the main resistance to 

lateral loads. The database represented a consistent data set 

for the low-amplitude fundamental periods of buildings in 

Montreal, which have been used to evaluate the NBCC 

2005 formulas, to develop improved period equations and 

could had been used for seismic vulnerability studies in 

Montreal and as a pre-damage benchmark for the measured 

buildings (Gilles, 2008). Only 17 of the 27 RC SW 

buildings were selected for our database due to the 

constraints mentioned at the beginning of the section. The 

number of stories varied from 6 to 49, i.e., from 23 to 195 

m. The ratio of the shear wall area aligned in the direction 

of the periods compared to the plan area of a typical floor 

varied from 0.24 to 1.35%. 

Nine buildings were selected from the data provided by 

Goel and Chopra (1997). The authors evaluated the 

formulas specified in U.S. codes using the available data on 

the fundamental period of buildings, “measured” from their 

motions recorded during eight California earthquakes. The 

height of the buildings included in the database ranged from 

3 to 10 stories and the ratio of the shear wall area aligned in 

the direction of the periods compared to the plan area of a 

typical floor varied from 0.29 to 2.45%. The image of one 

of the measured buildings is presented in Fig. 1(a). 

The remaining 2 buildings were taken from the work of 

Gonzales and Lopez-Almansa (2011). The research was 

focused on buildings located in Peru with thin walls that 

were mainly 10 cm thick and reinforcement consisting 

mainly of a single layer of welded wire mesh. A typical 

building, which was analyzed, is presented in Fig. 1(b). 

These buildings might be vulnerable to earthquakes because 

of their low ductility, which was numerically evaluated by 

push-over and nonlinear time history analyses and the 

structural parameters were obtained from available testing 

information on two buildings with five stories, which were 

part of this database. Both buildings had a height of 12.1 m  
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and sum of the lengths of walls aligned in the direction of 

the periods compared to the plan area of a typical floor were 

2.39% and 2.96%.  

An overview of the generated database is given in Table 2. 

 

 

5. Comparison of measured periods with periods 
obtained using building codes 
 

In order to evaluate the reliability of period formulas 

obtained by building codes, the measured periods were 

compared with those obtained from some of the code 

 

 

formulas. For all the buildings in the database, the 

fundamental periods were calculated using only Eqs. (3), 

(4) and (6). Eq. (5) is similar to Eq. (4) when feet are 

converted into meters. The fundamental periods were not 

calculated using the other Equations, i.e., (7) to (13) since 

the extra data they require (width and length of the RC 

walls) were not available for all the buildings. Therefore, in 

Fig. 2, the comparison between the measured and calculated 

periods according to FEMA-450 (Eq. (3)), ATC3-06 (Eq. 

(4)) and Costa Rican Code (Eq. (6)) is presented. It is 

observed that for a majority of the buildings, the formulas 

(Eqs. (3), (4) and (6)) give a period much shorter than the  

 
 

(a) Burbank 1O-Story Residential Building, CSMIP Station 

No. 24385 – investigated by Goeal and Chopra (1997) 

(b) Building investigated by Gonzales and Lopez-Almansa 

(2011) 

Fig. 1 Images of some of the buildings in the database 

Table 2 Overview of the database of measured vibration periods for RC SW buildings 

Source 

No. of  

buildings 

selected 

No. of storeys Height (m) Length (m) Width (m) 
SW area (% with 

respect to plan area) 

min max min max min max min max min max 

Lee et al. (2000) 50 15 25 40.00 68.00 18.30 63.90 10.00 12.38 1.40 6.00 

Gilles (2010) 17 6 49 20.00 195.0 23.00 89.00 20.00 72.00 0.24 1.35 

Goel and Chopra (1997) 9 3 10 10.97 45.63 22.86 69.19 18.29 65.63 0.29 2.45 

Gonzales and Lopez-

Almansa (2011) 
2 5 5 12.10 12.10 16.60 28.00 12.10 15.1 2.39 2.96 

 

Fig. 2 Comparison between measured and calculated period according to building codes 
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one measured in this study. 

Fig. 3 shows the percentage difference between the 

measured and calculated fundamental periods. It can be 

seen that for most buildings, the differences are generally 

between 30% and 60%. In couple of cases, the percentage 

errors are much higher. The percentage differences between 

the measured and calculated period according to ATC3-06 

(Eq. (4)) were slightly lower, but for most buildings the 

differences were greater than 30%. Generally, it can be seen 

from Figs. 2 and 3 that among the three formulas given in 

seismic codes, the smallest errors are obtained using the 

formula ATC3-06 (Eq. (4)). 

Building periods predicted by these empirical equations 

are widely used in practice although it has been pointed out 

by many (Goel and Chopra 1998, Lee et al. 2000, Hadzima-

Nyarko et al. 2015, Salama 2015) that there is room for 

further improvement in these equations. 

The comparison of the measured values with empirical 

values indicates the potential of using ANNs for the 

prediction of the fundamental period of RC SW structures 

taking into account the crucial parameters that influence its 

value. 

In the last decades, there have been many attempts to 

use artificial neural networks in structural engineering 

(Hadzima-Nyarko et al. 2011, Kalman Šipoš et al. 2013, 

Lazarovska et al. 2014, Aguilar et al. 2016); however, to 

the authors’ best knowledge, there have been only a few 

attempts to apply ANNs for the prediction of the 

fundamental period of framed and infilled framed structures 

(Kose 2009, Joshi et al. 2014, Asteris et al. 2016) and no 

attempt for the prediction of the fundamental period of RC 

SW buildings.  

 

 

6. Defining the Self-Organization Feature Map 
(SOFM) and Genetic Algorithm (GA) 
 

Data-driven models are used exstensively by different 

scientists. Khademi et al. (2015) used ANN model for 

 

 

predicting the compressive strength of concrete. Nikoo et 

al. (2015) estimated the concrete compressive strength 

using evolutionary ANN. Muhammad et al. (2016) used a 

number of 3-layer Back propagation Neural Network 

(BPNN) as well as sensitivity analysis in shotcrete mix 

design modeling. In the current study, SOFM and GA are 

used as predictor models which are explained 

comprehensively in the following. 

 

6.1 Self-Organization Feature Map and Kohonen 
network  
 

In SOFM, competitive learning is used for training and 

it is improved using specific features of the human brain. 

The cells in human brain are presented with regular and 

significant computational maps in different sensory areas of 

the brain (Kohonen 1989). In a SOFM system, processing 

units are located in the nodes of one, two or more 

dimensional networks. Units are arranged in the competitive 

learning process with respect to input patterns. The location 

of the arranged units in the network should lead to the 

creation of a meaningful coordinate system in the network 

for input characteristics (Kohonen 1989). Hence, a SOFM 

contains a topographic map of input patterns in which the 

location of units corresponds to the inherent properties of 

the input patterns. Competitive learning, which is most of 

the times used in these types of networks, means that in 

each learning step units compete with each other in order to 

be activated. In the final step of each competition, just one 

unit wins, that is, its weights are changed differently in 

comparison to other units. In other words, when a new 

learning sample is applied to the network, the Euclidean 

distance from the weight vector of all the neurons in the 

network is calculated. The neuron with weight vector most 

similar to the input vector will be the winner. This learning 

is called Unsupervised Learning. Self-Organization Feature 

Maps are divided into different groups based on their 

structure; (1) MaxNet Network, (2) Mexican Hat Network, 

(3) Hamming Network, and (4) Kohonen Network.  

 

Fig. 3 Comparison in percentages between measured and calculated period according to building codes 
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Fig. 4 Model of one dimensional Kohonen Network     

(Srinivas et al. 2005) 

 

 

Kohonen is different from other neural networks due to 

its maintenance of the spatial characteristics of the input 

space. The reason for using Kohonen network is the 

increase of distinction among the inputs. In this network, 

each unit with positive weights is connected to its partner 

neighbors and each unit with negative weights is connected 

to its rival neighbors. Weight attributions represent the fact 

that the weights have positive values in the neighborhood of 

the partners and negative values in the neighborhood of the 

rivals. In the late 70’s, Kohonen showed the important fact 

that the reason of learning rule should be construction of the 

wi vectors collection, which points out the equal reliability 

representation of one density function with the constant 

reliability of ρ. In other words, wi vectors should change 

themselves based on the fact that each x input vector and 

density function with the constant reliability of ρ (14) 

(Kohonen 1989) 

m
X

1
)(   (14) 

One Kohonen layer is an array of neurons that can be 

one, two, or more dimensional. Examples of this type of 

network are shown in Figs. 4 and 5. 

In the learning phase of each unit, the distance of the X 

input vector to its own weights is calculated using Eq. (15) 

(Kohonen 1989) 

Ii=D(X,wi), (15) 

in which D is the distance measuring function. It is worth 

mentioning that any distance measuring function can be 

used for this purpose, for example Eq. (16) (Kohonen 1989) 

D(u,v)=1-cos. (16) 

In order to calculate the angle between =v,u the 

Euclidean distance formula D(u,v)=|u-v| can be used. The 

reason for this is to find out whether the units have the 

nearest weight vectors to X or not. This part is explained as 

the competitive part in these types of networks. The units 

with the closest weight to the input layer would be declared 

as the winner of this competition where its zi value would be 

equal to one. It is worth mentioning that in this situation,  

 

Fig. 5 Model of two dimensional Kohonen 

Network (Nikoo et al. 2015) 

 

 

the zi of other units would be equal to zero. Finally, the 

Kohonen Rule which is shown in Eq. (17) can be used for 

the purpose of updating the weights (Kohonen 1989) 

wi
new

=wi
old

+ (X-wi
old

)zi 0<≤1 (17) 

Eq. (17) can be also presented as Eq. (18), which is 

shown as follows (Kohonen 1989) 



 


unitesotherw

winnerforxw
w

old

i

old

inew

i

 )1(  
(18) 

SOFM, which is an unsupervised learning algorithm, 

has been proposed by Kohonen in 1982 for the first time 

(Kohonen 1989). The output neurons in this method are 

generally in a form of rectangular or hexagonal lattice 

which are organized into a one or two-dimensional map. It 

should be noted that in this method each of the output 

neurons is connected to all input neurons (Tay et al. 2001). 

The competitive learning algorithm is implemented in 

SOFM. For a specified input, the neuron that corresponds 

best to the situation, wins the competition and is permitted 

to be updated towards the input vector. Both the neurons 

and neighbors are allowed to be updated in SOFM (Tay et 

al. 2001). 

 

6.2 Genetic algorithm optimization method 
 

GA gets its inspiration from nature. It can be defined as 

evolutionary optimization algorithms based on Darwin’s 

principle of “Survival of the fittest”. It employs 

computational models of evolutionary processes such as 

selection, crossover and mutation as stochastic search 

techniques for finding global minimum for complex non-

linear problems having numerous sub-optimal solutions. 

GA is able to offer a delightful blend of exploration and 

exploitation of the search space. The GA parallel nature of 

global search and gradient free optimization and utilization 

of stochastic operators help in evolving the initial weights 

for ANN, thereby minimizing the likelihood of the BP 

algorithm to get stuck in the local minima (Chandwani et al. 

2015). 

In the system of genetic algorithm, genetic information 

is stored in chromosomes. Chromosomes are replicated and  
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Table 3 Statistical characteristics of the database data 

No. Parameter Name Type max min mean STDEV 

1 No. of storeys Type 49 3 16.81 7.702 

2 Height Input 195 10.97 49.92 26.42 

3 Length Input 89 16.6 42.34 13.49 

4 Width Input 72 10 18.79 12.81 

5 Longitudinal SW area Input 27.4615 0 12.13 5.33 

6 Transverse SW area Input 41.34742698 2.672 18.64 8.864 

7 Fundamental period Output 4.273504 0.13 1.555 0.698 

 

 

passed onto the next generation with selection depending on 

fitness. Genetic information can also be altered through 

genetic operations such as mutation and crossover. In GA, 

each “chromosome” is a set of genes, which constitutes a 

candidate  solution  of  the  problem.  In  typical 

implementations, a population or subpopulations of 

“chromosomes”  are  used.  The  passage  of  each 

“chromosome” to the next generation is determined by its 

relative fitness. Random mixtures and/or changes of the 

transmitted “chromosomes” produce variations in the next 

generation of “offspring”. The individuals that have greater 

fitness values (correspondence with desired properties) have 

better chances of being selected for transmission (Yuan et 

al. 2014). GA is hybridized with ANN in order to improve 

the performance of ANN and to reduce the drawback of BP 

algorithm. This procedure involves two stages. In the first 

stage, ANN is trained using GA. GA is used for evolving 

the optimal set of initial weights and biases for training of 

the neural network. This is accomplished by simultaneous 

search performed by GA in all possible directions in the 

search space and narrowing down to the region where there 

is maximum probability of finding the optimal weights and 

biases. The second stage involves training of neural 

network using BP algorithm. The training is started by 

initializing the BP algorithm with set of initial weights and 

biases evolved using GA assisted training of ANN. This 

initialization of ANN with optimal weights and biases is 

harnessed by BP algorithm to carry forward the search for  

 

 

the global optima started by GA through fine tuning of 

neural network’s weights and biases. In this method, higher 

qualified chromosomes have more chance for being 

repeated on selected population. 
 

 

7. Research process 
 

In this section, an overview of the research process 

regarding the data and methodology is provided. 
 

7.1 Defining the study data 
 

According to the data explained in section 4, a database 

of 78 RC SW buildings was created. The overall statistical 

characteristics of the created database of fundamental 

periods of RC SW buildings are given in Table 3. 
 

7.2 Methodology 
 

The number of inputs and outputs in the SOFM is six 

and one, respectively. In this research, three different 

Kohonen networks which are Square, Line, and Diamond 

are used for training. The overall specimens are 78 in which 

80 percent of them (62 specimens) are used for training 

purposes and 10 percent of them (8 specimens) are used for 

cross validation and another 10 percent of them (8 

specimens) are used for testing. Different excitation 

functions of Linear Axon, Bias Axon, Linear Sigmoid 

Axon, Linear Tanh Axon, Sigmoid Axon, Tanh Axon were 

used in order to determine the structure of the SOFM. For 

the purpose of determining the number of hidden layers, the 

experimental formula (19) was used in addition to default 

software (Gavin and Bowden 2005) 

12  IH NN  (19) 

where NH is the maximum number of the hidden layers and 

NI  is the number of inputs. Based on the fact that the 

number of effective inputs is equal to 6, the maximum 

number of nodes of hidden layers would be equal to 

13(NH≤13). The NeuroSolutions software (NeuroSolutions 

2005) is used in determining the optimized structure of each  

 

 

Table 4 Optimized model of Self-Organization Feature Map using Genetic Algorithm 

R
o

w
 

Model 

Name 

No. of 

Inputs 

No. of 

Outputs 

No. of 

Hidden 

Layers 

Learning 

Rule 

No. of 

Nodes 

in the 

Hidden 

Layer 

Network 

SOFM 

(Rows and 

Columns) 

Transfer 

 Function 

Neighbourhood 

 Shape 

Characteristics of 

Genetic 

Algorithm 

1 
Model 

1 

 

 

 

 

6 

 

 

 

 

1 

1 Moment 6 5*5 Tanh Axon SquareKohonenfull Crossover 
One 

point 

2 
Model 

2 
2 Step 8_4 6*6 Linear Tanh Axon LineKohonenfull 

Crossover 

probability 
0.9 

3 
Model 

3 
3 

Delta Bar 

Delta 
4_4_4 7*7 Linear Axon DiamondKohonenfull 

4 
Model 

4 
1 QuickProp 13 6*6 Linear Axon SquareKohonenfull 

Mutation 

probability 
0.01 

5 
Model 

5 
2 Moment 7_6 7*7 LinearTanhAxon LineKohonenfull 

6 
Model 

6 
2 Moment 4_4 5*5 SigmoidAxon DiamondKohonenfull Generation 100 
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SOFM. The optimized parameters are the number of hidden 

layers, number of nodes in hidden layers, learning algorithm 

of the network, transfer function and optimization ability of 

genetic function. Table 4 shows the optimized structure of 

each model and their different characteristics obtained by 

using GA. 

 

 

8. Results 
 

The results of training, validation simultaneous with 

training and testing of each of the models with optimized 

structures are presented in Table 5. In order to determine the 

best model, the R
2 
criterion and the slope of the straight line 

of the models are compared. Furthermore, in Table 6, the 

statistics indexes of all the models are evaluated. As it is 

shown in Tables 5 and 6, Model 1 has the most correlation 

for the output data compared to all other models.  

Also, the values of the structure in comparison to the 

corresponding actual measured values are shown in Figs. 6, 

7 and 8. As it is shown in Figs. 6, 7 and 8 and Tables 5 and 

6, in Model 1 the value of R
2
 for the periods of structure 

during train, validation and test stage is 6349.0, 634990 

and 6340.0, respectively. In addition, slopes of straight line 

for this parameter are 634..., 63409. and 6394.0, 

respectively. 

 

 

 

Fig. 6 Comparison of values of fundamental period outputs 

in SOFM Model with the experimental data in train step 

  

 

Fig. 7 Comparison of values of fundamental period in 

SOFM Model in validation step 
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Table 5 Optimized models of Self-Organization Feature Map in train, validation, and test steps for the 

fundamental period output 

R
o

w
 

Model 

Train Validation with Train Test 

Results of Graphs Results of Graphs Results of Graphs 

Equation R2 Equation R2 Equation R2 

1 SOFM Model 1 y=0.8972x+0.2218 0.9275 y=0.9243x+0.1098 0.9442 y=0.9117x+0.1127 0.9436 

2 SOFM Model 2 y=0.6357x+0.7184 0.6815 y=0.6954x+0.5507 0.7428 y=0.8544x+0.2276 0.85 

3 SOFM Model 3 y=0.4959x +0.9621 0.8556 y=0.4959x+0.9621 0.8556 y=0.524x+0.7508 0.5483 

4 SOFM Model 4 y=0.498x+0.8178 0.7622 y=0.5543x+0.6991 0.5649 y=0.5956x+0.5363 0.6259 

5 SOFM Model 5 y=0.6872x+0.6016 0.8664 y=1.0072x-0.0087 0.9038 y=0.8169x+0.2897 0.8119 

6 SOFM Model 6 y=0.0242x+1.5622 0.7781 y=0.013x+1.5808 0.2803 y=0.0163x+1.5727 0.3581 

Table 6 Statistical index for different SOFM Models for the fundamental period output 

R
o

w
 

Model 

Train Validation Test 

MAE MSE RMSE RMSD MAE MSE RMSE RMSD MAE MSE RMSE RMSD 

Mean 

Absolute 

Error 

Mean 

Squared 

Error 

Root 

Mean 

Squared 

Error 

Root Mean 

Squared 

Deviation 

Mean 

Absolute 

Error 

Mean 

Squared 

Error 

Root 

Mean 

Squared 

Error 

Root Mean 

Squared 

Deviation 

Mean 

Absolute 

Error 

Mean 

Squared 

Error 

Root 

Mean 

Squared 

Error 

Root Mean 

Squared 

Deviation 

1 
SOFM 

Model 1 
0.022 0.005 0.067 0.402 0.013 0.003 0.053 0.273 0.131 0.029 0.171 0.329 

2 
SOFM 

Model 2 
0.045 0.022 0.148 0.561 0.028 0.015 0.123 0.369 0.201 0.074 0.273 0.403 

3 
SOFM 

Model 3 
0.042 0.023 0.153 0.529 0.042 0.023 0.153 0.529 0.310 0.225 0.474 0.488 

4 
SOFM 

Model 4 
0.038 0.018 0.136 0.496 0.038 0.023 0.150 0.467 0.312 0.198 0.445 0.501 

5 
SOFM 

Model 5 
0.031 0.012 0.110 0.442 0.018 0.005 0.074 0.329 0.213 0.093 0.305 0.404 

6 
SOFM 

Model 5 
0.061 0.053 0.231 0.619 0.069 0.054 0.232 0.687 0.537 0.480 0.693 0.683 
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Fig. 8 Comparison of fundamental period output in SOFM 

model in the test step 

 

 

Fig. 9 5*5 Structure for accommodation of input data in 

SOFM Model 1 

 

 

Fig. 10 Effect of distances of neighbourhood weights in 585 

structure in SOFM Model 1 

 

 

Therefore, Model 1 has the highest correlation 

compared to all other 5 models. It is worth mentioning that 

SOFM1 has the least value of statistical index which 

indicates that this model has the least error. The best 

network for matching the input parameters in SOFM is a 

5*5 structure, which is shown in Figs. 9 and 10. This 

structure indicates the capability of each neuron for 

absorbing the number of the nodes for the two dimensional 

structure.  

In addition, the greatest impact of input data on the 

structure of SOFM Model 1 is shown in Fig. 10, which 

displays the neuron distances based on the lightness and 

darkness of colours. In other words, the lighter the colour is,  

 

Fig. 11 MSE value per epoch for SOFM Model 1 in both 

train and cross validation steps 

 

 

Fig. 12 Comparison of fundamental periods obtained by 

SOFM Model 1 and ATC3-06 (Eq. (4)) with experimental 

data in train step 

 

 

Fig. 13 Comparison of fundamental periods obtained by 

SOFM Model 1 and ATC3-06 (Eq. (4)) with experimental 

data in validation step 

 

 

the less distance the neurons would have. In addition, Fig. 

11 represents the convergence rate of MSE in both the train 

and cross validation steps.    

 
8.1 Comparison of SOFM model with code formula 
 

The best model obtained, SOFM model 1, was 

compared to the actual values measured and values obtained 

by building code ATC3-06 code, given by Eq. (4). The 

results of this comparison are presented in Figs. 12-17. 

Looking at Figs. 12-14, it can be noticed that the SOFM 

Model 1 provides a better estimate of the actual values 

measured compared to the estimate provided by building 

code ATC3-06. This is further confirmed by analysing Figs. 

15-17, where the plot of the predicted values of both the  
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Fig. 14 Comparison of fundamental periods obtained by 

SOFM Model 1 and ATC3-06 (Eq. (4)) with experimental 

data in test step 

 

 

Fig. 15 Comparison of fundamental periods obtained by 

SOFM Model 1 and ATC3-06 (Eq. (4)) in train step 

 

 

Fig. 16 Comparison of fundamental periods obtained by 

SOFM Model 1 and ATC3-06 (Eq. (4)) in validation step 

 

 

SOFM Model 1 and building code ATC3-06 are compared 

to the actual measurements. The perfect model is depicted 

by the straight black line y=x, hence the closer the model 

outputs are to the black line, the better the model. 

 

Fig. 17 Comparison of fundamental periods obtained by 

SOFM Model 1 and ATC3-06 (Eq. (4)) in test step 

 
 
9. Conclusions 
 

The fundamental period of vibration calculated by 

currently available code expressions show a, in some cases, 

significant deviation from the measured period values of 

actual structures. As a result, a lot of research is currently 

being performed to better these code expressions. This 

paper presents a step in such a direction. A database of 

measured periods of real reinforced concrete shear wall 

buildings is created. Using this database, five different 

SOFM neural network models are created and weights of 

the artificial neural networks optimized using genetic 

algorithm. These models are compared in three different 

steps: training step, validation simultaneous with training 

step, and test step. Results show that the SOFM Model 1 

with the Square Kohonen full learning algorithm and Tanh 

Axon transfer function is the best model. This SOFM model 

was further evaluated by comparing the model outputs to 

code expression values, taking into consideration the actual 

period values measured. Results indicate that the SOFM 

model better predicts fundamental period values compared 

to code expression values. These preliminary results 

indicate that practitioners could consider suitably trained 

neural network models, instead of code expressions for 

fundamental period estimation. Our future work involves 

increasing the database and analysing other model 

structures suitable for period prediction.  
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