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1. Introduction 

 

Floating platforms are widely used to support various 

offshore structures at sea, such as floating offshore wind 

turbines and storage/offloading platforms, using their 

buoyancy. Several types of floating platforms have been 

introduced so far, but, among them, spar-type is commonly 

preferred thanks to its excellent vertical posture stability 

and the relatively simple shape and the easy installation at 

deep sea (Roddier et al. 2010, Chujo et al. 2011). However, 

it suffers from the inherent dynamic instability induced by 

wave and wind loads at the same time because it is not fixed 

on ground but floating at sea (Irani and Finn 2004, Jeon et 

al. 2013, Browning et al. 2014). Here, the dynamic 

instability is mostly meant by the pitch and roll motions and 

the heave motion in the vertical direction. The dynamic 

instability including the unstable station-keeping of floating 

platform owing to wave and wind loads may not only 

deteriorate the target performance but also lead to the fatal 

structural failure of entire offshore structure. In this regard, 

the securing of dynamic stability is essential for the 

successful application of spar-type floating platform to the  
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offshore engineering (Tong 1998, Faltinsen 1990). 
As a sort of fluid-structure interaction problem 

involving an exterior liquid sloshing, the dynamic motion of 

spar-type floating platform accompanies the complicate 

interaction between buoyancy, translation and rotational 

inertia forces and hydrodynamic pressure. In aspect of 

geometry, spar-type floating platform is characterized by 

the small waterplane area compared to the submerged 

volume, so that it is not easily excited vertically and 

displays heave and pitch motions of relatively long natural 

periods (Rho 2002). However, at resonance, the heave 

motion dramatically increases and induces the large coupled 

pitch motion, which gives rise to a disadvantageous effect 

on the restoring moment (Karimirad et al. 2011, Ryo et al. 

2002a). The change of restoring moment causes the time 

delay and results in the phase change in the heave motion, 

and the stability of spar-type floating platform in such 

environments was assessed based on the Mathieu-type 

instability (Ryo et al. 2002b, Haslum and Faltinsen 1999). 

To design a spar-type floating platform which secures the 

dynamic stability, the investigation of its dynamic 

responses, particularly at resonance, becomes the first and 

most important step. It has been reported that the coupling 

between heave and pitch/roll motions causes the coupling in 

resonance (Matos et al. 2011) as well as the primary 

resonances at the heave and pitch natural frequencies. 

According to our literature survey restricted to floating 
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platform, Liao and Yeung (2001) investigated the nonlinear 

effects, associated with bilge keels and fluid viscosity, on 

the roll response of cylinder in wave by a time-domain 

viscous-fluid method. They found that the response 

characteristics are very different depending on whether or 

not bilge keels and fluid viscosity are considered. Rho et al. 

(2002b) performed the free-decay tests in a wave tank 

with a scaled model to determine the natural periods and 

damping coefficients, and the motions in regular waves. 

They observed that pitch motions become unstable when 

the pitch natural period is double the heave natural 

period. Koo et al. (2004) evaluated damping effects and 

hull/mooring/riser effects on the principle instability. They 

considered the heave/pitch coupling using the modified 

Mathieu equation and investigated the wave elevation effect 

on Mathieu instability. Hong et al. (2005) performed 

experiments on the extreme motions of a spar platform in 

heave resonant waves in a water basin. They observed that 

unstable roll and pitch motions are occurred when the 

periods of wave are close to the heave resonant period 

and twice of the roll/pitch natural periods. Kyoung et al. 

(2005) created a test model for floating platforms and 

performed numerous tests in scenarios involving regular 

waves of various frequencies. They provided experimental 

verification of the occurrence of coupling in resonance with 

unstable pitch motion, when the frequency of vibrations 

becomes close to twofold the natural frequency of pitch. 

Radhakrishnan et al. (2007) measured the motion of a 

tethered spherical buoy subjected to incident regular 

wave in a wave tank, and they observed the transverse 

instability when the period of the wave generated was 

close to one-half of the natural period of the buoy. Matos 

et al. (2011) computed the second-order resonant heave, roll 

and pitch motions by means of a commercial BEM code 

and compared with those measured in small-scale tests 

performed in a wave basin. Ye et al. (2014) investigated 

the hydrodynamic performances of two FOWT scale 

modes, one cylindrical spar and the other with heave 

plate at the bottom. They present the numerical and test 

results for the regular and irregular waves, and they 

found the difference of the cylindrical spar with heave 

plate exists between numerical and test owing to the 

behavior of the heave plate. 

Most of previous studies concerned with the instability 

and coupled resonance were performed by scale model 

experiment in water basin or by numerical analysis using 

complex software. In order words, the previous work relied 

on the cost- and time-consuming experiment or the 

complicated time-consuming (within dozens of hours) 

numerical computation, in order to evaluate the dynamic 

responses of floating platform. In this context, the purpose 

of current study is to present a time-effective numerical 

method to analyze the parametric resonance of 2-D spar-

type floating platform in coupled heave and pitch motion. 

The time- and frequency-responses of spar platform can be 

rapidly (within dozens of minutes) obtained by solving a 

nonlinear dynamic equations expressed by only two degrees 

of freedom. Thus, the present numerical method could be 

usefully employed for the modeling of spar floating 

platform that is free from the coupled resonance. As an 

extension of our previous work on the spar-type floating 

platform (Jeon et al. 2013, Choi et al. 2015), the resonance 

response of a rigid spar-type floating platform in 2-D 

surface wave is solved by the coupled nonlinear equations 

which are derived using the geometric and kinematic 

relations of floating platform. And, the hydrodynamic force 

and moment acting on the floating platform are derived in 

terms of the velocity potential for 2-D incompressible and 

inviscid surface wave, in which the motion dependence of 

the metacentric height and the moment of inertia of floating 

platform are considered. The hydrodynamic interaction 

between the rigid floating platform and 2-D wave is 

modeled as the frequency and motion dependent added 

masses (Cho et al. 2001). The transient dynamic responses 

of the spar-type floating platform in heave and pitch 

motions are numerically solved using the fourth-order 

Runge-Kutta (RK-4) method and transformed into the 

frequency domain by the digital Fourier transform. The 

numerical experiments are performed with respect to the 

wave frequency in order to investigate the resonance 

responses and the coupling in resonance between heave and 

pitch motions. 

 

 

2. Spar-type floating platform in 2-D surface wave 
 

Let us consider 2-D incompressible, irrotational and 

inviscid surface wave of the wave length 𝜆 , the wave 

amplitude 𝜂𝑎 and the mean water depth ℎ. The unsteady 

flow velocity 𝒗 = *𝑢, 𝑤+ of water particles is governed by 

the Bernoulli equation (Currie 1974) expressed by 

1

2
(𝑢2 + 𝑤2) +

𝑝

𝜌
+ 𝑔𝑧 +

𝜕𝜙

𝜕𝑡
= 0         (1) 

with the hydrodynamic pressure 𝑝(𝑥, 𝑧; 𝑡) and the velocity 

potential 𝜙(𝑥, 𝑧) . The flow velocity satisfies the non-

penetration condition at bottom surface, which is given by 

𝑤 =
𝜕𝜙

𝜕𝑧
= 0  𝑎𝑡  𝑧 = −ℎ            (2) 

and the kinematic and dynamic boundary conditions given 

by 

𝑤 =
𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
  𝑎𝑡   𝑧 = 𝜂𝑎           (3) 

1

2
(𝑢2 + 𝑤2) + 𝑔𝜂 +

𝜕𝜙

𝜕𝑡
= 0  𝑎𝑡   𝑧 = 𝜂𝑎      (4) 

at the mean surface (𝑧 = 0)  with 𝜌  and 𝑔  being the 

water density and the gravitational acceleration. The wave 

height 𝜂 = 𝜂(𝑥; 𝑡)  in 2-D surface wave is defined by 

𝜂(𝑥; 𝑡) = 𝜂𝑎𝑐𝑜𝑠(𝜅𝑥 − 𝜔𝑡) with 𝜅 being the wave number 

and 𝜔 being the angular frequency. 

By assuming 2-D surface wave be small-amplitude, one 

can derive the wave velocity potential given by 

𝜙 = 𝜂𝑎 ∙
𝑔

𝜔
∙

𝑐𝑜𝑠ℎ,𝜅(ℎ+𝑧)-

𝑐𝑜𝑠ℎ(𝜅ℎ)
𝑠𝑖𝑛(𝜅𝑥 − 𝜔𝑡)       (5) 

from the governing Eqs. (1)-(4) (Sorensen 1978, Dean and 

Dalrymple 1984). Then, from the definition of wave 

velocity potential, one can derive the directional particle 

velocities given by 
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𝑢 =
𝜕𝜙

𝜕𝑥
= 𝜂𝑎 ∙

𝜅𝑔

𝜔
∙

𝑐𝑜𝑠,𝜅(ℎ+𝑧)-

𝑐𝑜𝑠ℎ(𝜅ℎ)
∙ 𝑐𝑜𝑠(𝜅𝑥 − 𝜔𝑡)    (6) 

𝑤 =
𝜕𝜙

𝜕𝑧
= 𝜂𝑎 ∙

𝜅𝑔

𝜔
∙

𝑠𝑖𝑛ℎ,𝜅(ℎ+𝑧)-

𝑐𝑜𝑠ℎ(𝜅ℎ)
∙ 𝑠𝑖𝑛(𝜅𝑥 − 𝜔𝑡)   (7) 

Substituting the velocity potential 𝜙  into the modified 

kinematic boundary condtion: 
𝜕2𝜙

𝜕𝑡2 + 𝑔
𝜕𝑧

𝜕𝑡
= 0 at the mean 

surface (𝑧 = 0), one can get the dispersion relationship 

which is expressed in terms of the angular frequency 𝜔 

and the wave number 𝜅: 𝜔2 = 𝜅𝑔 ∙ tanh(𝜅ℎ). 

In case of deep water (ℎ → ∞), the term 𝑡𝑎𝑛ℎ(𝜅ℎ) 

approaches unity and the hyperbolic function terms in Eqs. 

(5)-(7) become 𝑒𝑥𝑝(𝜅𝑧) , which leads to the following 

directional water particle velocities given by 

𝑢 = 𝜂𝑎𝜔 ∙ 𝑒𝜅𝑧 ∙ 𝑐𝑜𝑠(𝜅𝑥 − 𝜔𝑡)          (8) 

𝑤 = 𝜂𝑎𝜔 ∙ 𝑒𝜅𝑧 ∙ 𝑠𝑖𝑛(𝜅𝑥 − 𝜔𝑡)          (9) 

And, according to the linearized Bernoulli equation, one can 

derive the wave pressure field 𝑝(𝑥, 𝑧; 𝑡) given by 

𝑝(𝑥, 𝑧, 𝑡) =
1

2
𝜌𝜂2𝜔2 ∙ 𝑒2𝜅𝑧 + 𝜌𝑔𝜂 ∙ 𝑒𝜅𝑧 ∙ 𝑐𝑜𝑠(𝜅𝑥 − 𝜔𝑡)(10) 

Where, the hydrostatic pressure term 𝜌𝑔𝑧  is excluded 

because it is considered as the initial condition for the 

hydrodynamic analysis. 

Referring to Fig. 1 representing a 2-D cylindrical 

floating platform in heave and pitch motions, the point O is 

the origin of Cartesian co-ordinates while other three points 

B, G and MC denote the center of buoyancy, the center of 

gravity and the metacenter. And, 𝐷𝑒𝑞  and is ∆𝑧 are the 

draft (i.e., the length of wet part) and the vertical 

displacement of gravity center. The platform is assumed to 

be a rigid undamped body with two degrees-of-freedom. 

Letting 𝑭 = *𝐹𝐻 , 𝐹𝑉+ and M be the hydrodynamic force 

and moment resultants, the heave motion 𝑧(𝑡) and pitch 

motion 𝜃(𝑡) around the metacenter MC are governed by 

𝑚�̈�(𝑡) + 𝑘 ∙ 𝑧(𝑡) = 𝐹𝑉             (11) 

𝐼�̈�(𝑡) + 𝑘𝜃 ∙ 𝜃(𝑡) = 𝑀             (12) 

with m and I being the total mass and the area moment of 

 

 

 
Fig. 1 A spar-type floating platform in 2-D progressive 

surface wave 

inertia. Here, the moment of inertia 𝐼 of floating platform 

is defined with respect to the metacenter so that it varies 

with the motion of floating platform. Meanwhile, the 

hydrostatic stiffnesses 𝑘 and 𝑘𝜃  in the heave and pitch 

motions are defined by 𝑘 = 𝜌𝑔𝐴𝑤  and 𝑘𝜃 = 𝜌𝑔∇ ∙ 𝐺𝑀𝜃
̅̅ ̅̅ ̅̅  

with the waterplane area 𝐴𝑤 and the metacentric height 

𝐺𝑀𝜃
̅̅ ̅̅ ̅̅ . Here, the displacement volume 𝛻 (i.e., the volume of 

submerged part) is calculated by  𝛻 = 𝐴𝑤 × (𝐷𝑒𝑞 − 𝑧) . 

Note that 𝑘𝜃 is not constant but variable because both 𝛻 

and 𝐺𝑀𝜃
̅̅ ̅̅ ̅̅  are varying with the motion of floating platform. 

From the geometric configuration of the floating 

platform, the heave displacement 𝑧(𝑡) at the metacenter 

𝑀𝐶 and the heave displacement 𝑧𝐺(𝑡)  at the center of 

gravity are in the following relationship given by 

𝑧(𝑡) = 𝑧𝐺(𝑡) − ∆𝑧(𝑡) = 𝑧𝐺(𝑡) − 2 ∙ 𝐺𝑀𝜃
̅̅ ̅̅ ̅̅ ∙ 𝑠𝑖𝑛2 .

𝜃(𝑡)

2
/ (13) 

The volume change of submerged part according to the 

platform motion results in the position change of the center 

of buoyancy, which in turn changes the metacenter. Hence, 

the metacentric height 𝐺𝑀𝜃
̅̅ ̅̅ ̅̅  at the pitch angle 𝜃  is 

determined the following relation given by 

𝐺𝑀𝜃
̅̅ ̅̅ ̅̅ = 𝐺𝑀C0

̅̅ ̅̅ ̅̅ ̅̅ + 𝑀𝐶0𝑀𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐺𝑀0
̅̅ ̅̅ ̅̅ +

1

2
∙

𝐼𝑤

∇
∙ tan2 𝜃  (14) 

with 𝐼𝑤 being the area moment of inertia of the wet part of 

platform. Here, 𝐺𝑀𝐶0
̅̅ ̅̅ ̅̅ ̅̅  and 𝑀𝐶0𝑀𝐶 indicate the vertical 

distances between 𝐺  and 𝑀𝐶0  and between 𝑀𝐶0  and 

𝑀𝐶, respectively. 

Substituting Eq. (14) into Eq. (13), together with the 

approximation of sin2 𝜃 = tan2 𝜃 ≈ 𝜃2 for small rotation, 

ends up with 

𝑧(𝑡) = 𝑧𝐺(𝑡) − (𝐺𝑀0
̅̅ ̅̅ ̅̅ +

1

2
∙

𝐼𝑤

∇
∙ 𝜃2) ∙

𝜃2

2
 

= 𝑧𝐺(𝑡) − 𝐺𝑀0
̅̅ ̅̅ ̅̅ ∙

𝜃2

2
 

(15) 

�̈�(𝑡) = 𝑧�̈�(𝑡) − 𝐺𝑀0
̅̅ ̅̅ ̅̅ ∙ (�̇�2 + 𝜃�̈�) ≈ 𝑧�̈�(𝑡) (16) 

By substituting these approximate equations into the 

equation of translation motion (11), one can derive the 

following approximate equation of heave motion given by 

𝑚𝑧�̈�(𝑡) + 𝑘 .𝑧𝐺(𝑡) − 𝐺𝑀0
̅̅ ̅̅ ̅̅ ∙

𝜃2

2
/ = 𝐹𝑉       (17) 

at the center of gravity. Furthermore, by substituting 

 𝑘𝜃 = 𝜌𝑔∇ ∙ 𝐺𝑀𝜃
̅̅ ̅̅ ̅̅  into Eq. (12), using the relations in Eqs. 

(13)-(14), one can derive the approximate equation of pitch 

motion, which is given by 

𝐼�̈�(𝑡) + 𝑘 ∙ 𝐷𝑒𝑞 ∙ 𝐺𝑀0
̅̅ ̅̅ ̅̅ ∙ 𝜃(𝑡) +

1

2
.𝑘 ∙ 𝐺𝑀0

̅̅ ̅̅ ̅̅ 2
+ 𝜌𝑔𝐼𝑤/ 

∙ 𝜃3 − 𝑘 ∙ 𝐺𝑀0
̅̅ ̅̅ ̅̅ ∙ 𝑧𝐺(𝑡) ∙ 𝜃(𝑡) = 𝑀 

(18) 

 

 

3. Hydrodynamic force and moment 
 

Fig. 2 shows the free body diagram of floating platform, 

where the radius and the cross-section are denoted by 𝑅  
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Fig. 2 Free body diagram of the floating platform subject 

to the hydrodynamic pressure 

 

 

and 𝐴𝑉, respectively. The surface of floating platform is 

composed of the bottom surface B and the cylindrical 

surface S, and the normal force resultant 𝐹𝑁 is acting on B 

while the hydrodynamic pressure acting on S is projected on 

the left and right sides of the vertical cross-section normal 

to the wave direction. To calculate the vertical force 

resultant 𝐹𝑉  and moment resultants 𝑀𝐵  and 𝑀𝑆 , the 

bottom surface and the cylincrical surface are equally 

divided into the total of N sub-sections. Each cross-section 

is assumed to be subject to a force amounting to the central 

pressure multiplied by its area. For the division 𝑖 = 1~𝑁, 

the sub-sectional areas 𝐴𝑉𝑖 and 𝐴𝐻𝑖 
on the bottom surface 

and the projected vertical cross-section are calculated by 

𝐴𝑉𝑖 = 2 ∙ √𝑅2 − 𝑥2 ∙ 𝑑𝑥 𝐴𝐻𝑖 = 2 ∙ 𝑅 ∙ 𝛿𝑧, respectively. 

Meanwhile, the co-ordinates (𝑥𝑖 , 𝑧𝑖) of the sampling 

points within each sub-section are determined by the 

geometry transformation between the static equilibrium 

state and the current moving state. Letting (𝑋𝑖 , 𝑍𝑖) be the 

sampling points at the static equilibrium and (0, 𝑏) be the 

co-ordinates of metacenter MC at the current moving state, 

the following geometry transformation 

𝑥𝑖 = 𝑋𝑖 ∙ 𝑐𝑜𝑠 𝜃(𝑡) − (𝑍𝑖 − 𝑏) ∙ 𝑠𝑖𝑛 𝜃(𝑡)     (19) 

𝑧𝑖 = 𝑋𝑖 ∙ 𝑠𝑖𝑛 𝜃(𝑡) + (𝑍𝑖 − 𝑏) ∙ 𝑐𝑜𝑠 𝜃(𝑡) + 𝑧(𝑡)   (20) 

according to the translational heave motion 𝑧(𝑡) and the 

rotational pitch motion 𝜃(𝑡). 

The hydrodynamic pressure at a specific position 
(𝑥′, 𝑧′) on the surface of floating platform under heave and 

pitch motions is calculated by 

𝑝(𝑥 ′, z′; 𝑡) =
1

2
𝜌𝜂2𝜔2 ∙ 𝑒2𝜅𝑧 ′

+ 𝜌𝑔𝜂 ∙ 𝑒𝜅𝑧 ′
∙ 𝑐𝑜𝑠(𝜅𝑥 ′ − 𝜔𝑡) (21) 

Referring to Fig. 2, the normal force 𝐹𝑁𝑖 acting on the i-th 

cross-section 𝐴𝑉𝑖  of platform bottom surface 𝐵  is 

calculated by 

𝐹𝑁𝑖 = 𝑝(𝑃𝑉𝑖; 𝑡) ∙ 𝐴𝑉𝑖            (22) 

Then, the vertical force component 𝐹𝑉𝑖  and the horizontal 

force component  𝐹𝐻 are expressed by 

𝐹𝑉𝑖 = 𝐹𝑁𝑖 ∙ 𝑐𝑜𝑠 𝜃(𝑡)             (23) 

𝐹𝐻𝑖 = 𝐹𝑁𝑖 ∙ 𝑠𝑖𝑛 𝜃(𝑡)              (24) 

Thus, the moment 𝑀𝐵  due to the hydrodynamic 

pressure acting on the bottom surface 𝐵 becomes the sum 

of all the contributions of N  cross-sections as follows 

𝑀𝐵 = ∑ ,𝐹𝑉𝑖 ∙ (𝑃𝑉𝑥𝑖 − 𝑀𝐶𝑥)𝑁
𝑖=1 + 𝐹𝐻𝑖 ∙ (𝑃𝑉𝑧𝑖 − 𝑀𝐶𝑧)- (25) 

with (𝑃𝑉𝑥𝑖 ,  𝑃𝑉𝑧𝑖) and (𝑀𝐶𝑥, 𝑀𝐶𝑧) being the positions of 

𝑃𝑉𝑖  and the metacenter 𝑀C. 

Meanwhile, on the i-th cross section 𝐴𝐻𝑖  of the 

cylindrical surface 𝑆 of floating platform, the left and right 

force components 𝐹𝐿𝑖and 𝐹𝑅𝑖 are calculated by 

𝐹𝐿𝑖 = 𝑝(𝑃𝐿𝑖; 𝑡) ∙ 𝐴𝐻𝑖 ∙ cos 𝜃(𝑡)         (26) 

𝐹𝑅𝑖 = 𝑝(𝑃𝑅𝑖 ; 𝑡) ∙ 𝐴𝐻𝑖 ∙ cos 𝜃(𝑡)         (27) 

Then, the moment 𝑀𝑆 arising from the difference in the 

hydrodynamic pressures on the left and right sides can be 

calculated according to 

𝑀𝑆 = ∑ 𝐹𝑅𝑖 ∙ (𝑃𝑅𝑧𝑖 − 𝑀𝐶𝑧)

𝑁

𝑖=1

− ∑ 𝐹𝐿𝑖 ∙ (𝑃𝐿𝑧𝑖 − 𝑀𝐶𝑧)

𝑁

𝑖=1

 (28) 

with  𝑃𝑅𝑧𝑖 ,  𝑃𝐿𝑧𝑖 , 𝑀𝐶𝑧 being the 𝑧 components of 𝑃𝑅𝑖 ,  𝑃𝐿𝑖   
and 𝑀𝐶 respectively. 

Finally the vibratory force 𝐹𝑉 causing the heave motion 

and the total moment 𝑀 acting on the floating platform 

become 

𝐹𝑉 = ∑ 𝐹𝑉𝑖
𝑁
𝑖=1 , 𝑀 = 𝑀𝐵 + 𝑀𝑆         (29) 

Then, finally Eqs. (17) and (18) can be integrated into 

the following matrix form of coupled equations for 𝑧𝐺(𝑡) 

and 𝜃(𝑡) 

0
�̃� 0
0 𝐼

1 {
𝑧�̈�

�̈�
} + [

𝑘 −
1

2
∙ 𝐺𝑀0

̅̅ ̅̅ ̅̅ ∙ 𝜃

−𝑘 ∙ 𝐺𝑀0
̅̅ ̅̅ ̅̅ ∙ 𝜃 �̃�

] 2
𝑧𝐺

𝜃
3 = 2

𝐹𝑉

𝑀
3 (30) 

with �̃� = 𝑚 + 𝑚𝑎 , 𝐼 = 𝐼 + 𝐼𝑎  and �̃� = 𝑘 ∙ 𝐷𝑒𝑞 ∙ 𝐺𝑀0
̅̅ ̅̅ ̅̅ +

1

2
.𝑘 ∙ 𝐺𝑀0

̅̅ ̅̅ ̅̅ 2
+ 𝜌𝑔𝐼𝑤/ ∙ 𝜃2  Here, 𝑚𝑎  and 𝐼𝑎  indicate the 

added mass in heave motion and the added moment of 

inertia in pitch motion. The transient response of Eq. (30) is 

solved using the fourth-order Runge-Kutta (RK4) method 

which is numerically implemented by MATLAB. 

 

 

4. Numerical experiment 
 

In this section, the analytical and numerical formulae 

derived in Sections 2 and 3 are illustrated through the 

numerical experiments of a cylindrical floating body. In 

addition, the resonance characteristics of the body are 

investigated with respect to the wave excitation frequency. 

 

4.1 Preliminary results 
 

A 1/50-scale cylindrical semi-submersible platform 

shown in Fig. 3(a) is taken for the numerical experiments, 

where the diameter 𝐷 and the total length 𝐿 of the body 

are by 20 and 100 m, respectively. The other parameters 

are as follows: the water density 𝜌 of 1,025 kg/m3, the  
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(a) 

 
(b) 

Fig. 3 (a) A 1/50 scale platform model, (b) frequency-

dependent added mass and added moment of inertia 

 

 

total mass of structure 𝑚 of 3.1974 × 107 kg, the draft 

𝐷𝑒𝑞
 

of 99.34 m , and the COG location 𝑂𝐺̅̅ ̅̅  of 60 m , 

respectively. Here, the draft 𝐷𝑒𝑞
 

was determined using the 

relation of 𝐷𝑒𝑞 = 𝑚/𝜌𝐴𝑤 . The distributed mass of 

structure is concentrated to the center of gravity 𝐺 as a 

lumped mass, and the above-mentioned parameters were 

chosen for the simulation model to have the heave and pitch 

natural frequencies near 0.048 Hz  and 0.058 Hz 

respectively. 
Fig. 3(b) represents the variation of added mass and 

added moment of inertia to the angular velocity that was 

obtained by AQWA (2012). As is given in Eq. (18), the 

added mass is reflected to the heave motion while the added 

moment of inertia to the pitch motion. The variation of total 

added mass is relatively smaller than the total added mass 

of inertia, and both show the contrary trend to the angular 

velocity. One can infer, from the variation of both added 

quantities, that the heave and pitch motions exhibit the 

contrary behaviors to the wave excitation. It can be realized 

to some extent from Figs. 4(a) and 4(b) that represent the 

transient response of heave and pitch motions when 1-D 

sinusoidal wave having the frequency of 0.1 Hz and the 

wave height of 1.0 m  is applied. The heave motion 

displays the repeating events with almost the same peak 

amplitude and beating pattern, but the pitch motion shows 

typical cyclic events with the amplitudes ranging from 1.2° 

to 2.8° without apparent beating. 

 
(a) 

 
(b) 

Fig. 4 Transient responses ( 𝛺 = 0.1𝐻𝑧 ): (a) heave 

motion, (b) pitch motion 

 

 

Fig. 5(a) represents the time history of metacentric 

height 𝐺𝑀𝜃
̅̅ ̅̅ ̅̅  according to the heave and pitch motions of 

floating body. It is influenced by the total volume 𝛻 and 

moment of inertia 𝐼𝑤  of submerged part and the pitch 

angle 𝜃, as is expressed in Eq. (14), so that its time history 

is affected by those of heave and pitch motions. However, 

in our case, it is observed that the time history is more 

similar to one of pitch motion shown in Fig. 5(b), and the 

maximum variation is found to be 3.0𝑥10−4 m . 

Meanwhile, Fig. 5(b) represents the time variation of the 

area moment of inertia 𝐼𝑤  of the wet part, which is 

observed to be dominated by the time variation of heave 

motion. It is natural because the amount of wet part is 

directly proportional to the draft 𝐷𝑒𝑞  in heave motion, and 

the maximum variation of 𝐼𝑤 is found to be 1.3𝑥10−4 kg ∙
m2. 

Two plots in Fig. 6 represent the time histories of 

vertical force resultant 𝐹𝑉 and the moment resultant 𝑀 

that are exerted on the floating platform. It is observed that 

two resultants display the typical sinusoidal (cosine) time 

variation with the amplitudes of 5.75 × 104 N  and 

5.75 × 108 N ∙ m, respectively. The peak pitch angle of 

floating platform is less than 3° as represented in Fig. 4(b) 

so that all 𝑠𝑖𝑛𝜃(𝑡) and 𝑐𝑜𝑠𝜃(𝑡) terms in Eqs. (23)-(24) 

and (26)-(27) approach zero or unity. Thus, the time 

variation of both resultants is dominated by the sinusoidal  
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time variation of hydrodynamic pressure, as represented in 

Eq. (21). 

The transient time responses shown in Fig. 4 of the 

floating platform were transformed into the frequency 

domain by the digital Fourier transform (DFT), as 

represented in Fig. 7. Where, the frequency responses  

 

 

 

obtained by Ansys AQWA (2012) with damping are also 

included in order for the comparison with and without 

damping. First of all, it is observed that the present method 

and AQWA show a good agreement in the dominant peaks 

in both heave and pitch frequency responses. However, in 

case of AQWA, the insiginificant side peaks are not shown 

            
                      (a)                                                  (b) 

Fig. 5 The change to the platform motion (𝛺 = 0.1 Hz): (a) metacentric height 𝐺𝑀𝜃
̅̅ ̅̅ ̅̅ , (b) area moment of inertia 𝐼𝑤 

of the wet part 

 

             
                       (a)                                                  (b) 

Fig. 6 The change to the platform motion (𝛺 = 0.1 Hz): (a) vertical force resultant 𝐹𝑉, (b) moment resultant 𝑀 

 

                 
                        (a)                                                     (b) 

Fig. 7 Comparison of frequency responses to the wave frequency 𝛺 of 0.1 Hz (solid lines: present method, dotted 

lines: AQWA): (a) heave response, (b) pitch response 
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and the magnitude of dominant peaks are relatively smaller 

owing to the inclusion of damping. So, in aspect of the 

parametric resonance, the numerical accuracy of the present 

method has been jusfied from the comparison with AQWA.  

Meanwhile, It is clearly observed from Fig. 7 that each 

response shows two peaks at the wave frequency 𝛺 and its 

own natural frequency (i.e., 𝜔ℎ = 0.048 Hz  for heave 

motion, 𝜔𝑝 = 0.058 Hz  for pitch motion). Furthermore, 

each response shows the peak at the natural frequency of its 

counterpart motion, the peak at 𝜔𝑝 in the heave response 

and the peak at 𝜔ℎ  in the pitch response, respectively. 

Thus, it is clearly observed from the coupling between 

heave and pitch motions, which justifies that the coupling in 

resonance between two motions of floating platform is 

appropriately represented by the present nonlinear coupled 

equations. 

 

4.2 Resonance in heave and pitch motions 
 

Next, the resonance characteristics of floating platform 

are investigated with respect to the wave frequency. Figs. 

8(a) and 8(b) represent the heave and pitch time responses 

when the wave frequency 𝛺 is set by the heave natural 

frequency 𝜔ℎ . The heave motion shows a clear typical 

resonance response, furthermore it is observed that the 

amplitude of pitch motion in beating pattern uniformly  

 

 

 
(a) 

 
(b) 

Fig. 8 Transient responses when the excitation frequency is 

the heave natural frequency (𝛺 = 𝜔ℎ): (a) heave, (b) pitch 

increases with the lapse of time. Thus, it is found that the 

heave resonance produces an additive resonance with 

beating pattern in pitch motion. 

This kind of coupling in resonance between heave and 

pitch motions is also observed from Fig. 9 when the wave 

frequency is set by the pitch natural frequency 𝜔𝑝. The 

heave amplitude shows the gradual increase in beating 

pattern, and the floating platform gradually moves upwards. 

From the comparison between Figs. 8(b) and 9(a), it is 

observed that the coupled resonance at the heave natural 

frequency is weaker than one at the pitch natural frequency. 

Thus, it has been found that the influence on the coupling in 

resonance by pitch motion is stronger than that by heave 

motion. 

In order to justify the coupling in resonance between 

heave and pitch motions, the heave and pitch time responses 

are parametrically investigated by changing the wave 

frequency from 0.045𝐻𝑧 to 0.061𝐻𝑧 with the frequency 

interval of 0.003𝐻𝑧 ,  and the time responses are 

transformed into the frequency domain. Figs. 10(a) and 

10(b) represent the heave and pitch frequency responses for 

five different wave frequencies. The heave motion shows a 

peak at its natural frequency 𝜔ℎ when excited by the heave 

natural frequency (𝛺 = 𝜔ℎ), and it shows the peaks at the 

excitation frequency and the double excitation frequency as 

well as at its natural frequency when excited by the pitch 

 

 

 
(a) 

 
(b) 

Fig. 9 Transient responses when the excitation frequency is 

the pitch natural frequency (𝛺 = 𝜔𝑝): (a) heave, (b) pitch 
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natural frequency (𝛺 = 𝜔𝑝). Meanwhile, the pitch motion 

produces the peaks at the double excitation frequency as 

well as at the excitation frequency when excited by the 

pitch natural frequency (𝛺 = 𝜔𝑝), differing from the heave 

motion. However, it produces the peaks at the excitation 

and double excitation frequencies as well as at its natural 

frequency when excited by the heave natural frequency 

(𝛺 = 𝜔ℎ). Thus, the coupling in the primary resonance (i.e.,  

 

 

 

the resonance at the natural frequency of floating platform) 

between heave and pitch motions has been clearly justified. 

Next, the resonance characteristics of floating platform to 

the double natural frequencies of the floating platform are 

investigated. Figs. 11(a) and 11(b) represent the heave and 

pitch time responses respectively when the wave frequency 

becomes the double pitch natural frequency (𝛺 = 2𝜔𝑝). The 

pitch motion shows a clear resonance response, and 

              
(a)                                                      (b) 

Fig. 10 The change of frequency response to the excitation frequency  : (a) heave, (b) pitch 

          
                      (a)                                               (b) 

Fig. 11 Transient responses when excitation frequency is double pitch natural frequency (𝛺 = 2𝜔𝑝): (a) heave, (b) pitch 

 

            
                      (a)                                                (b) 

Fig. 12 Transient responses when excitation frequency is double heave natural frequency (𝛺 = 2𝜔ℎ): (a) heave, (b) pitch 
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furthermore it produces the gradual upward movement with 

the increasing amplitude in heave motion. So, it is found 

that the wave excitation at the double pitch natural 

frequency does also give rise to the coupling in resonance 

between pitch and heave motions. Figs. 12(a) and 12(b) 

represent the transient time responses when the wave 

frequency is the double heave natural frequency (𝛺 = 2𝜔ℎ). 

One can observe that neither heave motion nor pitch motion 

produces the resonance phenomenon, differing from Fig. 

11. Thus, it has been found that the wave excitation 

produces the resonance response in pitch motion and the 

coupled resonance response in heave motion only at the 

double pitch natural frequency. 

 
 
5. Conclusions 

 

In this study, the resonance characteristics of cylindrical 

floating platform in 2-D surface wave have been 

numerically investigated using a time-effective coupled 

nonlinear equations which is expressed by only two degrees 

of freedom. The floating platform was simplified as a 

undamped rigid body with two DOFs, and the coupled 

nonlinear dynamic equations were derived based on the 

small-amplitude wave potential and floating dynamic 

motion. The hydrodynamic interaction between the wave 

and the platform was modeled by the added mass, and the 

change in both the metacentric height and the area moment 

of inertia was considered. The transient time responses were 

calculated by the fourth-order Runge-Kutta (RK4) method, 

and their frequency responses were obtained by the digital 

Fourier transform. 

Through the numerical experiments, it has been found 

that the heave and pitch motions produce not only the 

primary resonances by their natural frequencies but the 

coupled resonances by their counterpart natural frequencies. 

This coupling in resonance between heave and pitch 

motions does also occur when the wave frequency becomes 

the double pitch natural frequency. But, the wave frequency 

equal to the double heave natural frequency produces 

neither the resonance in heave motion nor the coupled 

resonance in pitch motion. And, it has been found that the 

pitch motion gives rise to more significant effect on the 

coupled resonance than the heave motion. 
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