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1. Introduction 
 

Finite element method is one of the most powerful 

numerical approaches for obtaining approximate solution of 

boundary and initial value problems characterized by partial 

differential equations. Alongside this method, other robust 

numerical approaches such as differential quadrature, 

meshless, discrete singular convolution and so forth are 

widely used in various researches (Wang and Yuan 2017, 

Akgöz and Civalek 2015, Akgöz and Civalek 2014, Civalek 

et al. 2010, Civalek 2004, Liu and Wu 2001). From an 

engineering standpoint, finite element method is 

indispensably utilized for solving different problems such 

as stress analysis, heat transfer, fluid flow, and so on (Rao 

2011, Reddy 2006, Cook et al. 1989, Hughes 1987). 

Although the finite element method is utilized in analyzing 

wide range of problems, this method is still being enhanced 

by increasing the accuracy and efficiency (Carrera et al. 

2015, Li et al. 2015, Kim 2014, Dukić et al. 2014, Kazakov 

2012). The accurate finite element analysis relies heavily on 

employing appropriate interpolation functions which 

represent the behavior of the solution within an element. In 

fact, interpolation functions of various orders and 

dimensions enable finite element approach to solve distinct 

types of problems with varying degrees of accuracy (Rao 

2011). Subsequently, variety of researchers have been 

interested in this subject and proposed the new interpolation 

functions for solving different problems (Bishop 2014, 

Inaudi 2013). Milsted and Hutchinson (1974) presented the  
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finite element solution to the membrane eigenvalue 

problem. They used polynomials plus trigonometric 

functions for constructing the interpolation functions. 

Trigonometric terms are utilized for additional degree of 

freedom to both boundary and interior nodes of the element. 

Augarde (1998) described the generation of Hermitian 

interpolation functions from Lagrangian interpolation 

polynomials and implemented many-noded straight beam 

elements within a finite element analysis code. Moreover, 

Hashemi and Richard (1999) presented a dynamic finite 

element formulation to calculate the natural frequencies and 

mode shapes of Euler-Bernoulli rotating beam by using the 

frequency dependent trigonometric interpolation functions. 

The interpolation functions of rotating beam finite element 

are developed by Gunda and Ganguli (2008) with satisfying 

the governing static homogenous differential equation of 

Euler-Bernoulli rotating beam. In this case, they are the 

functions of element length, rotational speed, element 

location across the beam, element mass and stiffness and 

length of the beam. 

Since the free and forced vibrations of generally 

restrained beam (GRB) are considered in this study as 

numerical results, it is vital to pay attention to this subject in 

the literature. It should be pointed out that the vibration of 

beam with generally restrained supports is extensively 

investigated by researchers. For instance, Macbai and Genin 

(1973) presented the effects of elastic support on the natural 

frequencies of a built-in beam. Furthermore, the upper and 

lower bounds for the dynamic support stiffness are 

investigated. Grefi and Mittendorf (1976) introduced a 

method based on the discrete technique of component mode 

analysis for vibration analysis of a wide range of beams, 

plate and shell problems, including the effects of variable 

geometry and material properties. Besides, the problem of 

free vibration of Timoshenko beams with the elastically 

supported ends is solved by using a finite element model 

(Abbas 1984). Rao and Mirza (1989) derived the exact 
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eigen-frequency equations for a wide range of restraint 

parameters of generally restrained Bernoulli-Euler beam. In 

addition, the applicability of the Fourier series to the 

dynamic analysis of beams having arbitrary boundary 

conditions investigated by Wang and Lin (1996). The 

numerical results for free vibration and dynamic response 

based on the Fourier series are compared with the results of 

conventional modal analysis. Kim and Kim (2001) derived 

the eigen-frequency equations of Euler-Bernoulli beams 

with general restraints in matrix form by using the Fourier 

series. This form could solve both the beam problems with 

generally restrained boundary conditions and the classical 

boundary conditions when appropriate restraint constants 

are assigned. On the basis of Green’s function, Abu-Hilal 

(2003) presented the method for determining the dynamic 

response of damped Euler-Bernoulli beams.  

In this paper, the usual procedures in finding the 

interpolation functions of the classical beam element (i.e., a 

two-node Hermite cubic element with two degrees of 

freedom per node, transverse displacement and rotation), is 

firstly expressed. In this method, the accuracy of beam 

element is increased by adding extra nodes or degrees of 

freedom. However, finding the interpolation functions 

would lead to cumbersome process due to need to symbolic 

inversing of a large parametric matrix which is denoted by 

[G]. The dimensions of this square matrix are equal to the 

number of degrees of freedom, including the values of 

polynomial, trigonometric or the other base functions or 

their derivatives in each node. To improve this process, two 

innovative approaches which are more efficient and 

straightforward in contrast to the conventional ones for 

constructing the interpolation functions are depicted. To 

show the accuracy and efficiency of two proposed methods, 

both free and forced vibration analysis of the generally 

restrained beam (GRB) are investigated. For this aim, the 

eigenvalue problem is solved for the various introduced 

beam elements and compared with exact ones. Furthermore, 

the dimensionless frequency parameter is obtained and 

classified into eight cases for different values of known 

spring constants. Afterwards, the exact frequency response 

function (FRF) under the vertical base excitation is 

presented for some verification purposes. It will be 

concluded that both proposed elements are more accurate 

and efficient in contrast to the traditional ones. 

 

 

2. Classical Element (CE) 
 

The beam element of length with two degrees of 

freedom per node is shown in Fig. 1. In what follows, the 

standard procedure for finding the interpolation functions is 

reviewed briefly. For this purpose, four arbitrary functions, 

which are often selected from polynomial functions, are 

chosen. The beam deflection function is approximated as a 

linear combination of four known functions with four 

unknown constants 
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Fig. 1 Beam element with four degrees of freedom 

 

 

which U(x) is the deflection function of beam, f1(x) through 

f4(x) are four arbitrary base functions, α1, α2, α3 and α4 are 

four unknown constants. Eq. (1) can be rewritten as 

 ( ) ( )U x f x     
(2) 

which [f(x)] is the row matrix and usually defined as 

2 3( ) 1f x x x x       
(3) 

also, {α} is the vector includes α1 through α4. Notice that 

the element under study has four degrees of freedom. As a 

result, by finding only four interpolation functions, U(x) can 

be expressed as follows 

1 1 2 2 3 3 4 4
( ) ( ) ( ) ( ) ( )U x N x D N x D N x D N x D   

 (4) 

or 

 ( ) ( )U x N x D     
(5) 

Where Ni(i=1,4) are the interpolation functions and 

Dj(j=1,4) are the degrees of freedom that could be defined 

as below 
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Eq. (6) could be rewritten in matrix form by using Eq. (1) 
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 (7) 

Consequently 

   D G     
(8) 

where [G] is coefficient matrix 

2 3
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Subsequently 

   1G D      
(10) 

substituting Eq. (10) into Eq. (2) gives 

 1( ) ( )U x f x G D         
(11) 

comparing Eq. (11) with Eq. (5) yields 

1( ) ( )N x f x G             
(12) 

The complicated and time-consuming step in process of 

finding the interpolation functions is devoted to find the 

inverse of the coefficient matrix [G]. In addition, the 

inversion process should be generally carried out in 

parametric form, and coefficient matrices with large 

dimensions provide some limitations for parametric 

calculations. Considering additional nodes, the size of [G] 

will be increased, as a result of which the inverse of this 

matrix is obtained strenuously. The stiffness and mass 

matrices of individual element is defined based on the 

interpolation functions as follows (Reddy 2006) 

0

0

( ) ( ) ( )

( ) ( ) ( )

L

ij i j

L

ij i j

K N x E I x N x d x

M N x A x N x d x

 





  

(13) 

EI, ρ, A in this relation
 
represent the flexural rigidity, mass 

density and the cross-sectional area of the beam. In the next 

step, the accuracy of beam element is increased by adding 

inner equidistant nodes with 2 degree of freedom at each 

node. 

 

 

3. High order beam element (HE) 
 

One of the usual approaches for increasing the accuracy 

of beam element is adding inner equidistant nodes with 2 

degree of freedom at each node. Herein, a four-node 

element with eight bending degrees of freedom and a total 

length of L is shown in Fig. 2. In this case, complete 

polynomial of order seven is chosen due to the fact that the 

four additional degrees of freedom are considered. Hence 

2 3 4 5 6 7( ) 1f x x x x x x x x       
(14) 

Herein, [G] would be a 8×8 matrix which is defined as 

follows 

 

 

 
Fig. 2 Beam element with eight degrees of freedom 
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(15) 

The above matrix consists of four blocks, and each block is 

comprised of a 4×4 matrix. As it is shown in Eq. (9), the 

first block of this matrix is exactly similar to the [G] which 

is obtained for classical beam element when four degrees of 

freedom are considered. According to Eq. (12), for 

obtaining the interpolation functions of eight degrees of 

freedom element, the inverse of matrix (15) must be 

attained through cumbersome symbolic computations. 

Obviously, this procedure becomes complicated when the 

degrees of freedom are increased. If the added functions, 

which are pertinent to the additional degrees of freedom, D5 

through D8, are taken into consideration in such a way that 

the upper right matrix block becomes completely zero, the 

inverse of 8×8 matrix would be reduced to inverse of two 

4×4 matrices. In fact, if the interior nodes are still located at 

x=L/3 and x=2L/3 as shown in Fig. 2, and the terms of the 

additional base functions are chosen different from x
4
 

through x
8
, the inverse of [G] would be obtained 

conveniently. Recall that, the inverse of partitioned matrix 

 
    
  

0B
A

C D
 (16) 

is attained straightforwardly as below (Anton and Rorres 

2005) 





 
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1

1

1 1

0B
A

DC B D
 (17) 

It can be seen that for inversing the main matrix [A] it is just 

necessary to find out the inverse of two sub-matrices [B] 

and [D]. In contrast to the inverse of 8×8 matrix, the inverse 

of two 4×4 matrices is carried out more convenient. 

According to Eq. (17), first proposed element is introduced 

in the next section. 

 

 

4. First Proposed Element (FPE) 
 

As mentioned before, the upper right matrix block [G] 

becomes zero if the additional base functions correspond to 

the added degrees of freedom are appropriately selected. 

This block consists of the values of added functions and 

their first derivatives at the ends of the beam. Instead of 

considering x
4
, x

5
, x

6
 and x

7
, g1(x) through g4(x) are selected. 

Consequently, [f(x)] for the element with eight degrees of 

freedom is defined as follows 

     
2 3

1 2 3 4
( ) 1 ( ) ( ) ( ) ( )f x x x x g x g x g x g x  (18) 
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Fig. 3 Four mode shapes of clamped-clamped (C-C) beam 

 

 

the upper right matrix block which must be set to zero is 


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Generally, various functions could be found in such a way 

that the values of gi(x) and their first derivatives at x=0 and 

x=L become zero. It is valuable if a set of functions with a 

remarkable physical interpretation are found. One of the 

most important functions which have these characteristics, 

are the mode shapes of the clamped-clamped (C-C) beam. 

Each arbitrary deflection function of the beams could be 

expanded by the set of linear independent functions called 

orthogonal eigenfunctions. One of the most well-known 

eigenfunctions of the structures is the dynamic mode 

shapes. For instance, in this case, it seems sufficient to 

consider only the first four mode shapes from the set of 

infinite mode shapes of the clamped-clamped (C-C) beam. 

The first four mode shapes of clamped-clamped (C-C) beam 

are plotted in Fig. 3. 

Considering g1(x) through g4(x) as four mode shapes of 

the C-C beam (but not definitely the first ones), the upper 

right matrix block of [G] which is shown in Eq. (19), would 

be become zero. For obtaining the mode shapes of the 

clamped-clamped (C-C) beam, the free vibration equation 

must be solved analytically as follows 

 
4

4

4
0

d U
U

d x
 (20) 

in which 
2

4 ,
A

EI

 
   and L  is defined as the 

dimensionless frequency parameter of the beam. Solving 

Eq. (19) yields 

      ( )U x A Sin x B Cos x C Sinh x D Cosh x  (21) 

where, A, B, C and D are four unknown constants. 

Imposing the boundary conditions at x=0, i.e., 

(0) (0) 0U U  , leads to 

 


 

D B

C A
 (22) 

therefore, U(x) is rewritten as below 

         ( )U x A Sin x Sinh x B Cos x Cosh x  (23) 

Applying the boundary conditions at x=L, i.e., 

( ) ( ) 0U L U L  , yields 

   

   

     
    

      

0

0

Sin L Sinh L Cos L Cosh L A

Cos L Cosh L Sin L Sinh L B
 (24) 

In order to have a nontrivial solution, the determinant of the 

coefficient matrix is set equal to zero. This equation could 

be simplified as 





1

Cos L
Cosh L

 (25) 

By solving Eq. (25), the first four dimensionless parameters 

L  would be obtained as follows 

      
1 2 3 4

4.7300407448 7.8532046240 10.9956078380 14.1371654912
, , , ,...

L L L L

      
1 2 3 4

4.7300407448 7.8532046240 10.9956078380 14.1371654912
, , , ,...

L L L L
 

(26) 

by identifying ,L  the determinant of the coefficient 

matrix of Eq. (24) is equal to zero and the two equations 

become linearly dependent. In this case, A  and B  are 

dependent on each other. For instance, by assuming 

B A  the second equation could be written as follows 

           0 ,Cos L Cosh L A Sin L Sinh L A  (27) 

subsequently 

 


 






Cos L Cosh L

Sin L Sinh L
 (28) 

Now, U(x) are the mode shapes of clamped-clamped (C-C) 

beam. Hence 

   
 

   
 

 
    

 
( )

Cos L Cosh L
U x A Sin x Sinh x Cos x Cosh x

Sin L Sinh L

 
(29) 

Notify that the attained functions are the mode shapes of the 

C-C beam if and only if the λ parameters are equal to the 

beam frequency parameters introduced in Eq. (26). 

Subsequently the four suggested functions g1(x) through 

g4(x) become 

           
              

           
( ) i i

i i i i i

i i

Cos r Cosh rx x x x
g x Sin r Sinh r Cos r Cosh r

L L Sin r Sinh r L L

 
(30) 

where .
i

r L  Notice in particular that the values of gi(x) 

and their first derivatives at x=0 and x=L are equal to zero. 

Therefore, if the functions g1(x) through g4(x) are 

considered as the additional base functions in [f(x)], the 

upper right matrix block coefficient matrix becomes 

completely zero. As a result, the procedure of inversing [G] 

becomes perfectly simple and efficient. In fact, in the 

process of inversing the coefficient matrix, the upper right 

matrix block becomes zero 

 
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 
 

0
B

C I

G
G

G G
 (31) 
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utilizing Eq. (17) gives 


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B

I C B I

G
G

G G G G
 (32) 

where [GB] is the 4×4 matrix which is germane to the 

standard polynomials, [GI] is the 4×4 matrix which is 

consist of g1(x) through g4(x), and [Gc] is mixed of two sub-

matrices. Recall that, [N(x)] are obtained through Eq. (12). 

The ith additional interpolation function (i=5,…,8) could be 

found by multiplying the new [f(x)] by the column of [G]
-1

 

from Eq. (31) 
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i
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(33) 

Eq. (33) clearly shows that the upper right matrix block is 

equal to zero, and the additional interpolation functions are 

only depended on the new base functions gi(x). 

Interestingly, the mode shapes of the simple structures are 

orthogonal. In this case, two different mode shapes of the 

beam with the length of L are orthogonal in the interval 

0 :x L 
 

 0

( ) ( ) 0
L

i j
g x g x dx i j 0

( ) ( ) 0
L

i j
g x g x dx i j  (34) 

In this stage, it is noteworthy to find out where this property 

could be helpful. The mass matrix [M
e
] of the element could 

be expressed as 


                    

1

0

( ) ( )
L

Te TM A G f x f x dx G  (35) 

the superscript T over [f(x)] indicates matrix transpose. Eq. 

(35) is rewritten as follows 

                
1e TM A G m G  (36) 

Note that the general component of the mass matrix which 

is related to the additional degrees of freedom could be 

stated as 

 
    4 4

0 0 0

( ) ( ) ( ) ( ) ( ) ( )
L L L

ij i j i j k n
m f x f x dx g x g x dx g x g x dx  (37) 

where , 5 to 8i j  , 4k i   and 4n j  . If k n  

Eq. (37) becomes to zero, and as a result of which, the 

4 4  lower right block of mass matrix which is related to 

the four additional degrees of freedom becomes diagonal. 

Herein, the stiffness matrix could be rewritten by utilizing 

Eqs. (12) and (13) as 

  
                    

1

0
( ) ( )

LT TeK EI G f x f x dx G  (38) 

the superscript T over ( )f x    indicates matrix transpose. 

Simplifying Eq. (38) yields 

 
              

1TeK EI G k G  (39) 

The new defined 8 8  matrix [k] is the integration of the 

transpose of the second derivative row matrix [f(x)] which 

is multiplied by itself. The second derivative of [f(x)] is 

stated as follows 

          1 2 3 4
( ) 0 0 2 6 ( ) ( ) ( ) ( )f x x g x g x g x g x  (40) 

Notice that, if the beam is modeled by employing only one 

element, the eigenvalue problem would be stated as below 

         
2e eK X M X  (41) 

where {X} represented the eigenvector and   is the 

circular frequency. Substituting Eqs. (36) and (39) into (41), 

gives 

    
   

                      
1 12T T

EI G k G X A G m G X  (42) 

Eq. (42) could be rewritten as below 

      
 

               
12 0

T

G EI k A m G X  (43) 

by defining 

   


  
1

G X Y  (44) 

the new eigenvalue problem in terms of [k] and [m] 

matrices can be stated as follows 

      


           
2 0

T
G EI k A m Y  (45) 

where {Y} is the new eigenvector. In order to find the 

nontrivial solution, the determinant of the coefficient matrix 

is set equal to zero. Therefore, the natural frequencies are 

obtained by solving the following equation 

 
       

2

0
A

Det k m
EI

 (46) 

substituting   4 2 A EI  into Eq. (46) gives 

       
4 0Det k m  (47) 

 

 

4. Second Proposed Element (SPE) 
 

In this section, the second proposed element for 

improving the classical beam element (CE) and enhancing 

high order element (HE) is presented. Furthermore, it is 

explained how this novel technique is efficient in contrast to 

the previous ones. In this approach, the interpolation 

functions of the traditional beam element are enhanced by 

employing m mode shapes of the C-C beam. The 

fundamental concept of this technique could be clarified as 

follows 
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       




    2 3

1 2 3 4 4

1

m

j j

j

U x x x x g x  (48) 

it can be seen that the first four terms of Eq. (48) are the 

approximating functions which are utilized in classical 

element (CE). The main four degrees of freedom of the 

beam element can be expressed as follows 

   

   

   

   

 

 

    

   

















  

   

     

     









1 1 4

1

2 2 4

1

2 3

3 1 2 3 4 4

1

2

4 2 3 4 4

1

0 0

0 0

2 3

m

j j

j

m

j j

j

m

j j

j

m

j j

j

D U g

D U g

D U L L L L g L

D U L L L g L

 (49) 

Recall that, the terms which are situated in sigma are equal 

to zero while the boundary conditions of clamped-clamped 

(C-C) beam are imposed on gj(x). Consequently, up to this 

stage 









  
  

   
      

   
   
   

11

22

3 3

4 4

B

D

D
G

D

D

 (50) 

The m virtual degrees of freedoms are defined as 

    
5 5 6 6

; ; ; ,
m m

D D D  (51) 

or 







   
   
   
       

          
    
   
      

5 5

6 6

m m

D

D

I

D

 (52) 

where [I] is an identity matrix which is consist of (m-4) 

rows and columns. Interestingly, it is unrecognizable what 

D5 through Dm are, and where their locations are. Based on 

the expressions given for m virtual degrees of freedom, the 

coefficient matrix which is pertinent to the new beam 

element could be expressed as follows 

 
    
  

0

0

B
G

G
I

 (53) 

inversing the above matrix yields 




 
   
 
 

1

1
0

0

B
G

G
I

 (54) 

In this case, the above partitioned matrix is consisting of 

two sub-matrices with zero values. As mentioned before, 

finding the inverse of the coefficient matrix is a time-

consuming and cumbersome step. Due to the simple nature 

of Eq. (53) the inverse of this matrix is readily attained by 

reducing the computational efforts. Therefore, the first four 

interpolation functions are strikingly similar to N1 to N4 for 

the classical element. It must be emphasized that the (m-4) 

new functions are definitely the mode shapes of clamped-

clamped beam. 

 

 

5. Numerical results 
 

This section deals with the computational performance 

of discussed elements, and their applications for the free 

and forced vibration of generally restrained Euler-Bernoulli 

beam. The finite element results will be compared with 

analytical solutions. For this purpose, first, the eigenvalue 

problem is solved for the presented beam elements and 

compared with exact eigenvalues. Afterwards, the exact 

frequency response function (FRF) of generally restrained 

beam (GRB) is obtained in frequency domain. Afterwards, 

the frequency response functions for both exact and finite 

element solutions are plotted. Comparisons are made 

through the convergence of elements to exact natural 

frequencies for each mode. In addition, the frequency 

response functions are attained for different values of non-

dimensional frequency parameter. Consequently, the 

capability and robustness of two proposed elements will be 

examined.  

 

5.1 Free vibration  
 

A straight uniform Euler-Bernoulli beam of length L, 

partially restrained against translation and rotation at its 

ends is shown in Fig. 4. The translational restraint is 

characterized by K1=αEI/L
3
 at one end and K3=γEI/L

3
 at the 

other end, and the rotational restraint K2=βEI/L and 

K4=δEI/L. Moreover, α, β, γ and δ are the arbitrary known 

dimensionless stiffness constants. 

Solving eigenvalue problem for different elements 

would lead to the values of the non-dimensional frequency 

parameter (λL). In the following problems, for the SPE 

element, the number of virtual degrees of freedom (m) equal 

four. Considering only one element, the results for the first 

four modes for different values of α, β, γ and δ are classified 

into 8 cases. Although a wide range of numerical results 

have been generated, due to space limitations, only a few 

cases are presented in this paper. Tables 1-8 include the  

 

 

 
Fig. 4 Geometry of generally restrained Bernoulli-Euler 

beam 
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Table 1 Case 1: Values of the dimensionless frequency 

parameter (λL) for α, γ=0.1 and β, δ=0.1 

 Various Methods 

Mode Exact CE HE FPE SPE 

1 0.6684728889 0.668519285 0.6684728889 0.6684729132 0.6684729132 

2 1.3092120493 1.309327213 1.309212046 1.3092127235 1.3092127236 

3 4.7715490482 5.245344392 4.771574272 4.7725636693 4.7725636692 

4 7.8787172144 9.630819671 7.879745955 7.8824131545 7.8824131545 

 

Table 2 Case 2: Values of the dimensionless frequency 

parameter (λL) for α, γ=0.1 and β, δ=100 

 Various Methods 

Mode Exact CE HE FPE SPE 

1 0.6686893152 0.6687357521 0.6686893148 0.6686893395 0.6686893395 

2 3.1142982891 3.12507341 3.1142982901 3.114340473 3.1143404739 

3 6.2232960253 13.84294919 6.2242032152 6.226801935 6.2268019353 

4 9.3357758982 21.46549391 9.3455676753 9.346414593 9.3464145938 

 

Table 3 Case 5: Values of the dimensionless frequency 

parameter (λL) for α, γ=1 and β, δ=0.1 

 Various Methods 

Mode Exact CE HE FPE SPE 

1 1.184478676 1.185296618 1.184478676 1.184479091 1.184479091 

2 1.696265304 1.696687067 1.696265304 1.696267766 1.696267766 

3 4.787948788 5.260910369 4.787974789 4.788989954 4.788989954 

4 7.882388043 9.634358521 7.883421437 7.886106589 7.886106589 

 

Table 4 Case 4: Values of the dimensionless frequency 

parameter (λL) for α, γ=1 and β, δ=100 

 Various Methods 

Mode Exact CE HE FPE SPE 

1 1.188300928 1.189126169 1.188300927 1.188301357 1.188301357 

2 3.144179614 3.155490843 3.144179615 3.144223816 3.144223816 

3 6.227220149 13.84379736 6.228131708 6.230744436 6.230744436 

4 9.336969875 21.46585364 9.346772319 9.347624315 9.347624315 

 

Table 5 Case 5: Values of the dimensionless frequency 

parameter (λL) for α, γ=10 and β, δ=0.1 

 Various Methods 

Mode Exact CE HE FPE SPE 

1 2.035385162 2.048648027 2.035385162 2.035390261 2.035390261 

2 2.788458341 2.793675281 2.788458342 2.788487102 2.788487102 

3 4.947253452 5.412782769 4.947288236 4.948569641 4.948569641 

4 7.919256312 9.669771484 7.920337348 7.923204915 7.923204915 

 

 

values of natural frequencies for each mode based on the 

exact and finite element solutions in terms of the stiffness 

dimensionless parameters α, β, γ and δ. Note that the exact 

solutions are coincided with those which are obtained for  

Table 6 Case 6: Values of the dimensionless frequency 

parameter (λL) for α, γ=10 and β, δ=100 

 Various Methods 

Mode Exact CE HE FPE SPE 

1 2.098729773 2.113304417 2.098729774 2.098736776 2.098736776 

2 3.403000098 3.419935492 3.403000106 3.403064984 3.403064984 

3 6.266456738 13.85227505 6.267412867 6.270166423 6.270166423 

4 9.348933151 21.46945064 9.358842872 9.359745596 9.359745596 

 

Table 7 Case 7: Values of the dimensionless frequency 

parameter (λL) for α, γ=100 and β, δ=0.1 

 Various Methods 

Mode Exact CE HE FPE SPE 

1 2.896361262 2.996510813 2.896361329 2.896370644 2.896370644 

2 4.663805665 4.751257368 4.663806197 4.664087977 4.664087977 

3 6.086465167 6.580700096 6.086728201 6.090825292 6.090825292 

4 8.294713915 10.02351552 8.296390726 8.301280535 8.301280535 

 

Table 8 Case 8: Values of the dimensionless frequency 

parameter (λL) for α, γ=100 and β, δ=100 

 Various Methods 

Mode Exact CE HE FPE SPE 

1 3.497751893 3.735294995 3.497752558 3.497805126 3.497805126 

2 4.664729852 4.753443275 4.664730387 4.665008471 4.665008471 

3 6.648886375 13.93664575 6.650379057 6.654544459 6.654544459 

4 9.470610645 21.50539104 9.481654171 9.483056659 9.483056659 

 

 

different cases in Rao and Mirza (1989) research. 

The dimensionless natural frequencies which are 

presented in Tables 1-8 show that the results of HE element 

and two proposed elements are estimate the exact solution 

desirably, although the former gives better estimation in 

almost all tables in contrast to the proposed elements when 

considering only one element. However, it is important to 

notice that these elements estimate exact solution with 

diminishing the time-consuming steps of computation as 

mentioned before, in contrast to the former. In Case 1-2 the 

coefficient of translational spring are constant and equal to 

0.1; moreover, the values of rotational stiffness are slightly 

increased. Similarly, in Cases 3-4, Cases 5-6 and Cases 7-8 

the coefficient of translational spring values are constant 

and equal to 1, 10,100, respectively and the rotational 

stiffness are varied gradually. Although the translational and 

rotational stiffness increase the dimensionless frequency 

parameter λL, this influence is relatively greater for 

translational springs.  

In Case 7, the stiffness of rotational springs are 

negligible, as a result of which this beam is similar to the 

simple-simple (S-S) beam. However, the corresponding 

values of λL are relatively smaller than (S-S) beam. In order 

to show the sensitivity analysis much better, Case 8 is 

selected. Although the stiffness of springs in Table 8 can be 

assumed as a model of clamped-clamped (C-C) beam, the 
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Table 9 Normalized eigen-values for the first mode of 

different elements 

Number of 

Elements 
CE HE FPE SPE 

1 1.006516145 1 1.000002505 1.000002505 

2 1.000377701 1 1.000000187 1.000000187 

3 1.000074002 1 1.000000038 1.000000038 

4 1.000074002 1 1.000000038 1.000000038 

5 1.000023353 1 1.000000012 1.000000012 

6 1.000004605 1 1.000000002 1.000000002 

7 1.000002485 1 1.000000001 1.000000001 

8 1.000001456 1 1 1 

9 1.000000909 1 1 1 

10 1.000000596 1 1 1 

     

20 1.000000037 
Solution 

Diverge 
1 1 

 

Table 10 Normalized eigen-values for the fourth mode of 

different elements 

Number of 

Elements 
CE HE FPE SPE 

1 1.221045399 1.000136507 1.000498608 1.000498608 

2 1.066450581 1.000000615 1.000035283 1.000035283 

3 1.002499954 1.000000001 1.000007659 1.000007659 

4 1.003213721 1 1.000002192 1.000002192 

5 1.003213721 1 1.000002191 1.000002191 

6 1.000875201 1 1.000000482 1.000000482 

7 1.000498204 1 1.000000269 1.000000269 

8 1.000301771 1 1.000000162 1.000000162 

9 1.000192544 1 1.000000102 1.000000102 

10 1.000128273 1 1.000000068 1.000000068 

     

20 1.000008406 
Solution 

Diverge 
1 1 

 

 

values of λL for the clamped-clamped beam (C-C) as shown 

in Eq. (26) are greater than Case 8. Besides, by considering 

Case 5 and dividing the beam into 20 elements the 

dimensionless frequency parameter λL is computed for 

various numbers of elements and compared with the exact 

solutions. The results are normalized with respect to the 

exact values and classified into two tables for first and four 

modes. 

Convergence curves for Tables 9-10 are plotted in Figs. 

5-6 as a function of the number of elements. In these 

figures, the values of classical element (CE) are 

approximately estimating the exact solutions. Increasing the 

number of the elements, the high order element (HE) 

rapidly converges to the exact values in contrast to the 

classical element (CE). It could be observed in Figs. 5-6, 

the trend of high order element is altered when the number 

of the elements are increased, reaching between 15 and 16. 

This means that, the values of dimensionless frequency 

 
Fig. 5 Convergence curves for the first mode 

 

 
Fig. 6 Convergence curves for fourth mode 

 

 

parameter instead of plummeting are increasing due to 

numerical errors. Therefore, it seems that the high order 

element (HE) beam elements with the small length are 

unstable for employing in the Euler-Bernoulli eigenvalue 

problem. As a result, instead of using high order element 

(HE), the first proposed element (FPE) could be utilized. 

Besides, it could be observed in Tables 9-10 when the beam 

element is divided to 8 elements, the (FPE) strongly 

converges to exact values. As mentioned before, (SPE) can 

be employed instead of (CE) since the exact solutions are 

estimated accurately by (SPE) due to virtual nodes which 

are used in this element. Furthermore, as it is shown in Figs. 

5-6, (SPE) is also able to be employed instead of the high 

order element (HE), since the former could estimate the 

exact solutions more accurate in contrast to the latter with 

reducing more additional calculation and provides higher 

computational efficiency. 

 

5.2 Forced vibration 
 

In this stage, the exact frequency response function of 

generally restrained Euler-Bernoulli beam is obtained by 

solving the governing differential equation of the beam. The 

governing differential equation could be expressed in the 

time domain as follows 


 
 
 
 


 

  

222

2 2 2

(x,t)(x,t)
0T

uu
EI A

x x t
 (55) 

In this relation, u(x, t) is the transverse relative deflection of 

beam and uT(x, t) is the total deflection of the beam which is 

defined as follows 

( , ) ( , ) ( , )
T g

x t x t u x tu u  (56) 

where ug(x, t) is the displacement of ground. From a 

mathematical standpoint, Eq. (55) is a partial differential 
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equation (PDE) which can be transformed into frequency 

domain with the aid of integral transforms. For this aim, one 

of the most well-known of them, the Fourier transform, is 

utilized. The Fourier transform with respect to t can be 

defined as below 











 
1

[ ( , )] ( , )
2

i tf x t f x t dteF  (57) 

where t and ω are time and frequency independent 

variables, respectively. Besides, F represents Fourier 

transform. Applying this transform into Eq. (55), yields 


  

  
   


 



4

4

2

2
( ) 0

g

u
EI u u

x
A

t
F F  (58) 

For harmonic ground excitation with the frequency ω, 
(x, t ) (x, ) ei t

g g
u a . By assuming  (x, ) 1,

g
a  the Eq. 

(58) could be written as follows 

4
2

4

( , )
( , )

d U x
EI U x

d x
A A


  

 

(59) 

Eq. (59) is the fourth order linear non-homogeneous 

ordinary differential equation (ODE). The complementary 

and the particular solutions of this equation are obtained as 

below 

1 2 3 4

2

( , )

1
( , )

c

p

U x c Sin x c Cos x c Sinh x c Cosh x

U x

    




   




  

(60) 

therefore 

   ( , ) ( , ) ( , )
c p

U x U x U x  (61) 

where 
2 1 4( / )A EI    is the eigen-frequency 

parameter of the beam. Imposing four boundary conditions, 

four constants c1 through c4 are obtained. The boundary 

conditions at x=0 are 

 

 

  



  

1

2

0 (0) 0

0 (0) 0

K U EIU

K U EIU
 (62) 

Boundary conditions at x=L gives 

 

 

  



  

3

4

( ) 0

( ) 0

K U L EIU L

K U L EIU L
 (63) 

in this relation K1 through K4 are the stiffness of springs 

which are defined as follows 

      
1 2 3 43 3

, , ,
EI EI EI EI

K K K K
L L L L

 (64) 

where α, β, γ and δ are the known dimensionless 

parameters. Imposing the boundary conditions (62) and (63) 

in Eq. (61) gives 

   

   
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               
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         
        
 

            

3 3

1

2

3 3 3 3

3

4

0

0

c

c

cSin Cos Cos Sin Sinh Cosh Cosh Sinh

cCos Sin Sin Cos Cosh Sinh Sinh Cosh

 

(65) 

where μ=λL is another dimensionless coefficient. Solving 

the system of equations, Eq. (65), the unknown coefficients 

c1 through c4 are obtained. Afterwards, the frequency 

response functions (FRF) are plotted for various elements. 

In each case, the slope of the beam at x=0 is plotted against 

the dimensionless frequency parameter. The dimensionless 

frequency parameter is defined as ω/ω1
s
, where ω is the 

excitation frequency and ω1
s
 represents the fundamental 

frequency of the beam for the symmetric modes. Results are 

obtained for different number of elements by employing 

(CE), (HE), (FPE) and (SPE) elements. Assuming α=10, 

β=0.1, γ=10, δ=0.1 and various number of elements (NE), 

different analyzes are done for the different values of ω/ω1
s
, 

as follows. 

It can be seen from the Fig. 7, the high order element 

and both proposed elements are estimated the exact 

solutions more accurate in contrast to the classical element. 

Since the SPE is an alternative element for CE and HE, and 

the results are the same for HE and SPE, the accuracy of the 

SPE is shown in Fig. 8 in comparison to the CE element. It 

could be observed that the SPE element can estimate the 

exact solutions with only one element in contrast to CE 

which is able to estimate the exact results when the number 

of elements are increased, reaching eight elements. 

Although increasing the number of elements may reduce the  

 

 

 

 
Fig. 7 FRFs for the classical, high order and two proposed 

elements with respect to the exact solutions with 1NE   
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(a) NE=4 

 
(b) NE=8 

Fig. 8 FRFs for the classical and high order finite 

elements and the exact solutions 

 

 

differences between two solutions, in higher frequencies 

this variation has still remained. For the sake of brevity, 

frequency response function curves for two proposed 

elements are not presented for the higher frequencies with 

the more number of elements since these curves are quite 

similar to those which are obtained from exact curves. As it 

is shown in Figs 7-8, the amplitude of frequency response 

function for unit harmonic ground excitation might be 

increased dramatically if the excitation frequency becomes 

close to the natural frequency due to the resonance 

phenomenon. While the resonance occurs, the vertical 

asymptotes can be observed in frequency response function 

curves. 

As mentioned, the (SPE) is an alternative element for 

the classical element (CE). However, unlike what occurred 

in Fig. 7, (SPE) element converges to the higher frequencies 

rapidly and accurately in comparison with the (CE) 

element. Above figures lend plausible evidence to draw a 

conclusion that for the same number of elements and same 

values of ω/ω1
s
 two proposed elements give more accurate 

and efficient solutions in contrast to those which are 

obtained from (CE) and (HE) elements. Although both 

proposed elements estimate the exact values similar to the 

high order element, the procedure for obtaining the results 

in these elements, eliminate the time-consuming steps of 

computations, considerably. 

 

 

5. Conclusions 
 

The main goal of this paper is to increase the efficiency 

and accuracy of the conventional elements by introducing 

two novel techniques. The traditional procedure of finding 

the interpolation functions of the classical beam element is 

expressed, briefly. As a common procedure by using the 

inner equidistant nodes with 2 degree of freedom at each 

node, the accuracy of the classical element is increased. In 

these methods, inversing the coefficient matrix includes the 

cumbersome and time-consuming step. To remedy this, two 

novel methods for diminishing the additional computational 

efforts are presented. The first proposed element (FPE), 

instead of utilizing traditional polynomials expression as a 

base function, taking the mode shapes of the clamped-

clamped (C-C) beam into account. This means that, the 

upper right coefficient block becomes zero. The Second 

proposed element (SPE), utilizes not only the mode shapes 

of the clamped-clamped (C-C) beam as base functions but 

also considers m virtual degrees of freedom. In this case, 

both upper and lower right blocks become zero and the 

coefficient matrix is inverted straightforwardly. Afterwards, 

the reliability and sturdiness of both proposed elements are 

demonstrated via numerical examples. For this reason, free 

and forced vibrations of the generally restrained beam 

(GRB) are investigated. The obtained result through 

classical element indicate that the differences between exact 

solutions and this element. However, both proposed 

methods are able to estimate the exact solutions accurately. 

Besides, the results which are attained from the frequency 

response function curves have proven that the finite element 

solutions based on the high order element and both 

proposed elements could estimate the exact solutions more 

accurate in contrast to the classical element. 
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