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1. Introduction 
 

Articulation linkages have been widely used in the 

aviation and aerospace fields, such as deployable solar 

panels, extendable space masts, deployable antennas, and 

support structures of various mechanical arms. Due to the 

existence of clearance joints in articulation linkages, the 

dynamic response of space structures has strong 

nonlinearity, which is mainly caused by the contact and 

collision in clearance joints. Such nonlinearity has brought 

us a great difficult to analyze the dynamic characteristics of 

space structures and eventually limits our ability to improve 

the precision of space structures. Thus, as the increasing 

requirements of higher reliability of space structures, the 

lucubration on contact impact and propagation 

characteristics of stress wave in clearance joints are urgent 

to be addressed. 

In the past several years, some investigators have 

focused on the dynamic analysis of joint clearances. 

Dubowsky and Freudenatein (1971) established the one-

dimensional impact pair model and studied the impact 

phenomenon occurring in clearance joints. Subsequently, 

Dubowsky and Gardner (1977), Dubowsky et al. (1984), 

Deck and Dubowsky (1994) analyzed the motion 

performance of flexible mechanisms comprising a plurality 

of clearance joints, and established the two-dimensional 

planar impact pair model. Muvengei et al. (2013) used the 

direct integration method to analyze the dynamic 

characteristics of planar slider-crank mechanism with two- 
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clearance revolute joints. Koshy et al. (2013) established a 

multibody model of the slider-crank mechanism and studied 

the contact forces in revolute clearance joints by 

computation and experiment. Mahfouz and Badrakhan 

(1990) investigated the possibility of chaos in three 

different viscous damping systems with clearances and 

provided some guidance on the design of such a system. 

Bauchau and Rodriguez (2002) concerned with the 

modeling of clearance joints within the framework of finite 

element based dynamic analysis of nonlinear and flexible 

multibody system, and revealed the effects of clearance and 

lubrication on revolute and spherical joints.  

The above methods aim at the dynamic response of 

mechanisms and few studies concern to the transfer and 

exchange of energy in clearance joints. Thus, this paper 

intends to discuss the wave propagation in clearance joints 

based on the stress wave theory. 

In the past 50 years, the stress wave theory developed 

rapidly in the high-technology fields such as earthquake 

detection, engineering blasting, explosive processing, 

impact detection and weapons effects etc. Wang et al. 

(2013) dealt with a problem of propagation of longitudinal 

shock waves in two idealized material models, and given 

the relation of wave speed and stress with the rod material. 

Butt et al. (2014) tested the parameters of viscoelastic 

materials by studies the three-dimensional stress wave 

propagation in the split Hopkinson pressure bar. Chiffoleau 

et al. (2003) studied the reflection characteristics of 

structural or guided waves in rods at a solid/liquid interface, 

and the result shows that major reflection occurs from the 

solid/liquid interface not the liquid/gas one. Keskinen et al. 

(2007) studied the propagation and reflection of elastic 

wave in a rod chain by using finite element method and 

experiment method, and the result shows that different 

material will generate different reflection wave.  
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Wesolowski (1994) analyzed the one-dimensional wave 

propagating from one homogeneous material to another 

one. Wang (2003, 2004) did a lot of researches on the 

plastic stress wave and the elastic-plastic dynamic buckling 

stress wave. Yakupov (2007) used the Timoshenko beam 

theory and Laplace transform to analyze the stress wave 

propagate in a semi-infinite rod surrounding by elastic 

medium. These works focused on the characteristics of 

stress wave propagation, and did not involve the stress wave 

in clearance joints. Thus, the stress wave and clearance joint 

model will be combined in this work to analyze the 

response of clearance joints with impact loads, which may 

reveal propagation characteristics of stress wave in 

clearance joints and the damage mechanism of joints. 

This paper is organized as follows. In Section 2, the 

stress wave model of clearance joints is proposed base on 

viscoelastic theory. In Section 3, the stress waves for 

different boundary conditions are analyzed. Then, the 

reflection and transmission characteristics of stress wave in 

viscoelastic rod are studied based on characteristics method. 

In Section 4, the characteristics of stress waves propagating 

in clearance joints with three states (separate, contact and 

impact) are illustrated, and the effects of different 

parameters on the propagation of stress wave are revealed.  

 

 

Finally, Section 5 presents some conclusions and 

discussions. 

 

 

2. Stress wave model of clearance joint 
 

The massless-link and spring-damper (MLSD) model 

was established by Senevirantne et al. (1996). In MLSD 

model, both the size and stiffness of clearance are 

considered. The joint clearance is equivalent to a bar 

composed of a parallel spring-damper system, as shown in 

Fig. 1. The bar length r is equal to clearance size. The 

dynamic equation can be described as 

F Kx Cx   (1) 

where, K and C are the contact stiffness and damping of 

clearance joint, respectively. x is the relative displacement 

of clearance joint, F is the external force. 

Inspired by MLSD model, we establish a stress wave 

model of clearance joint which is shown in Fig. 2, and 

where Ai (i=1, 2, 3) is the sectional area of rods. Rod 1 and 

3 are connected by clearance joint constituted of sleeve and 

pin shown in Fig. 3. The viscoelastic rod 2 whose length r is 

equal to the clearance size (r=r1-r3) is used to simulate  

 
Fig. 1 MLSD model 

 

 
Fig. 2 Stress wave model of clearance joint 
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clearance joint. 

The three states (separate, contact and impact) of 

clearance joint can be simulated by changing the material 

parameters of rod 2 in the stress wave model. 

1) For separate state, the section area A2=0 and the stress 

at the right boundary of rod 1 is 
1 ( , ) 0L t  . In this case, 

the stress wave cannot pass through the clearance joint, so 

we can set the material parameters of rod 2 as follows. 

0,  0E    (2) 

where E is the elastic module,   is the viscosity 

coefficient. 

2) For contact and impact states, the transmission and 

reflection phenomenon generated by the change of wave 

impedance will appear at the interface of rod 1 and rod 2. 

The new stress wave will generate at the interface for 

impact state while the contact state will not. We can get the 

parameters of rod 2 from Wang and Liu (2015) as follows 

1 3

2 1 3 1 3

4

3 ( )

r rL
E

A r r  
 

 
 

1.5 2

1 3

2 1 3 1 3

3 (1 ) 4

4 3 ( )

r
r ru cL

A v r r


  


  

 
 

21 i

i

iE







  

( 1,  3)i   

(3) 

where u  and v  are the axial displacement and axial 

speed respectively. cr is the restitution coefficient. i  and 

Ei are the Poisson’s ratio and the elastic modulus of rod i 

respectively. 

 

 

3. Propagation characteristics of stress wave 
 

The stress wave model of clearance joint is comprised of 

three rods and two interfaces, so in this section, the 

propagation of stress wave in rod is discussed, and the 

reflection and transmission characteristics of stress wave 

propagation at interfaces are investigated. 

 

3.1 Stress wave propagation in elastic rods 
 

Fig. 4 shows a microelement of slender elastic rod, 

where ρ is the density, A is the sectional area, and σ(X) is 

the stress at location X. 

 

 

We suppose that the section plane perpendicular to axis 

still keeps perpendicular after the deformation, and the 

shear wave is ignored. By the conservation law of 

momentum, the equilibrium equation of axial force of 

microelement can be established as 

( ) ( )
v

A dX A X dX A X A dX
t X


  

 
   

 
 (4) 

According to the definition of strain and velocity, we 

obtain 

,  
u u

v
X t


 

 
 

 (5) 

Supposing that u  is continuous and second order 

differentiable, we have 

2 2u u

t X X t

 


   
 (6) 

Combining Eq. (5) and Eq. (6), the following equation 

can be obtained 

0
v

t X

 
 

 
 (7) 

Eq. (7) is the continuous equation of axial motion of 

slender rod of which the wave velocity is defined as 

1 d
C

d



 
  (8) 

where ( )C C   or ( )C C   can be determined 

completely by the constitutive relation of materials. For 

elastic materials, we have /d d E   , then the strain rate 

can be obtained as 

2

1

( )

d

t d t tC

   

  

  
 

  
 (9) 

Substituting Eq. (9) into Eq. (7), yields 

2 ( ) 0
v

C
t X


 

 
 

 
 (10) 

Combining Eq. (4) and Eq. (10), the simultaneous 

differential equations can be expressed by  

2

1
0

( ) 0

v

t X

v
C

t X






 

 
   


   

  

 (11) 

 
Fig. 4 The microelement of elastic rod 
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The quasilinear system of partial differential equations 

is as follows 

0t XA W B W     (12) 

where 

2

1
0

,  ,  

0

v
W A I B

C






 
        

 
  

 (13) 

where WX and Wt can be derived by taking the derivative of 

W with respect to X and t, respectively. 

According to the method of characteristics, the points 

satisfied 
dX

dt
  can be solved on the X-t plane. Let 

dX
l B l l

dt
   , the following characteristics relations can 

be obtained 

( )t X t X

dW
l W l B W l W W l l b

dt
            (14) 

where, λ is the characteristic value of the two-order tensor 

B, l is the left eigenvector of B corresponding to λ, and then 

Eq. (14) can be transformed as 

 (along )
dW dX

l l b
dt dt

     (15) 

The characteristic values of B are 1 C  and 2 C   . 

The two left eigenvectors are 
1

1

C
l

 
  
 

 and 
2

1

C
l

 
  
 

. 

Substituting λ and l into Eq. (15), we can get the following 

compatibility equation 

0,  (along )

0,  (along )

d dv dX
C C

dt dt dt

d dv dX
C C

dt dt dt








  


    


 (16) 

Eq. (16) is the basic equations of characteristics method, 

which can be rewritten as follows 

    characteristics  equations 

 characteristic relation equations

dX
C

dt

d
C

d







 


 


  

 (17) 

Transforming the four differential equations in Eq. (17) 

into four difference equations, and if the boundary 

conditions are given, we can numerically solve σ and v by 

partitioning t or X into calculation points. 

 

3.2 Stress wave propagation at interfaces 
 

The reflection and transmission phenomena will occur 

when the stress wave propagates between two kinds of 

medium with different wave impedance (Wesolowski 

1994). According to the continuity conditions and Newton’s 

third law, the velocity and stress on both sides of interface 

are equal to each other when the interface is in contact, and 

the following relationships can be obtained 

i r tv v v     (18) 

1 2( )i r tA A       (19) 

where, Δv is the difference of speeds between wave front 

and wave back, Δσ is the difference of stresses between 

wave front and wave back, the subscript i, r, t represent the 

incidence, reflection and transmission waves, respectively. 

According to the momentum conservation equation of wave 

front, we have 

 

 

left traveling wave

 right traveling wave

C v

C v

 

 

   

   

 (20) 

Substituting Eq. (20) into Eq. (18), yields 

1 1 1 1 2 2

i tr

C C C

 

  

 
   (21) 

Combining Eq. (19) and Eq. (21), the transmission wave 

is described as 

1 2( ) /t iT A A     (22) 

( )t iv nT v    (23) 

And the reflection wave can be obtained as 

( )r iF     (24) 

( )r iv F v    (25) 

where, 1 1 1 2 2 2( ) / ( )n C A C A   is the generalized wave 

impedance, (1 ) (1 )F n n    is the transmission 

coefficient, and 2 (1 )T n   is the reflection coefficient. 

The stress wave propagation through interface can be 

determined from Eq. (18) to Eq. (25). 

 
3.3 Stress wave propagation in viscoelastic rods 
 

The velocity of viscoelastic wave, Cv (C2) can be 

obtained as 

2 24 / 2 ,  (4 )v v v v v vC E E        (26) 

where Ev and ρv are the elastic modulus and density of 

viscoelastic material respectively. 

The stress wave propagation in viscoelastic rods is 

described by the attenuation factor of viscoelastic material 

as follows (Yuan and Peng 2006) 

24

0( ,  ) ( ,  ) v v

X
E

v X t v X t e



 



  

(27) 

where v0(X, t) is the initial axial speed, 
24 v v

X
E

e



 



 is the 

attenuation factor of viscoelastic materials. 

Substituting Eqs. (26) and (27) into Eq. (17) yields the  
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basic equations of characteristics method for viscoelastic 

materials as follows 

2

2

2

4

0

4 characteristics
                    

equations2

4 characteristics

relation equations2

v v

v v

v

X
Ev v

EdX

dt

Ed
e

dv



 

 



 




 
  


 




 (28) 

In the same way, we can reveal the stress wave 

propagation in viscoelastic rod by numerically solving Eq.  

 

 

(28). 

As an example, Fig. 5 shows a viscoelastic rod. The 

initial load stress is 8

0 1 10  Pa   , and the loading time is 

4×10
-5

 s. The numerical results of stress wave propagation 

in viscoelastic rod are shown in Figs. 6 and 7. 

Fig. 7 shows the attenuation of stress wave with t and X. 

As shown in Fig. 7(a), the stress wave keep reducing at 

t<2×10
-4

 s. Afterwards, the reflection occurs at the right 

boundary of the rod and the amplitude of stress wave jumps 

to zero. This is because the reflected waves unload the  

 
Fig. 5 A viscoelastic rod 

 

 
Fig. 6 The propagation of stress wave in viscoelastic rod 

 

  
(a) Attenuation of stress wave with time (b) Attenuation of stress wave with location 

Fig. 7 Attenuation of stress wave 
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incident wave. At t>2.2×10
-4

 s, the reflected wave proceeds 

to reduce because of the energy consumption of viscoelastic 

material. Fig. 7(b) shows the amplitude of stress wave 

reduces along axial direction. The incident wave reflects at 

X=1 m and the reflected wave reduce to zero at X=0 m. 

 

 

4. Numerical examples 
 
In this section, the stress wave model of a clearance 

joint, as shown in Fig. 8, is as a numerical example. The 

three states of clearance joint are analyzed and the 

influences of different parameters of rod 2 on stress wave 

propagation are revealed. The section area ratio of rods is 

A1/A2=A3/A2=1.5, L1=L3=1 m, the joint clearance r=0.1 mm. 

The initial stress is σ0=5×10
8
 Pa, and the load time is 

t=4×10
-5

 s. ρ1=ρ3=7850 kg/m
3
, E1=E3=1.96×10

11
 Pa, the 

initial axial speed 0 0.1 m/ sv  . 2E  and   of rod 2 can 

be determined from Eqs. (2) and (3) for different states. 

Figs. 9, 10 and 11 show the results of stress wave 

propagation in clearance joint for three different states. 

Fig. 9 illustrates the stress wave propagation for 

separation state, which shows the stress wave cannot pass 

through the clearance joint. Fig. 10 illustrates the stress 

wave propagation for contact sate, which shows the stress 

wave propagating in rod 1 (X<1 m) generate the first 

reflection and transmission waves at the clearance joint 

(X=1 m). The wave strength weakens after passing through 

the clearance joint because of energy lost in clearance joint. 

Fig. 11 illustrates the stress wave propagation for impact 

state, which shows the stress wave generated in clearance 

joint propagates to rods 1 and 3 at the same time. With time 

increasing, the stress waves in rod 3 appear multiple 

reflections and because the reflected waves propagate in a 

direction contrary to the incident waves, which leads to a 

spallation at the region near clearance joint (X=1 m). The 

initial stress wave σ0(t) adds with the impact stress wave at 

the middle of rod 1, which generates a high stress region in 

rod 1. The results of contact and impact states show the  

stress wave strength reduces with the time increasing and 

the decaying law of stress wave coincides with the result 

from Tomihiko (2006). 

The curves in Fig. 12 illustrate the stress on the left 

boundary of rod 3 with different parameters for contact sate. 

Fig. 12(a) shows the effect of clearance sizes on stress wave 

propagation in clearance joint. With the increase of 

clearance size, the number of wave crests and the amplitude 

of stress waves reduce. Fig. 12(b) shows the influence of 

viscoelastic coefficients on the stress wave propagation. It  

 

 

can be seen that the stress decay rate increases with the 

viscoelastic coefficient. In addition, because the clearance 

size r is very small, the influence of viscoelastic coefficient 

on the time of stress wave arriving at rod 3 is little. Fig. 

13(c) shows the effect of initial axial speeds on the stress 

wave propagation. As the initial speed increases, the stress 

in rod 3 becomes larger, but the increase rate becomes 

smaller. And the viscoelastic coefficient η increases slower 

with the increase of axial speeds. 
 

 

 

Fig. 9 Stress wave propagation of separation state 

 

 
Fig. 10 Stress wave propagation of contact state 
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Fig. 8 Stress wave model of a clearance joint 
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Fig. 11 Stress wave propagation of impact state 

 

 

5. Conclusions 
 
In this paper, a stress wave model is established to 

describe the clearance joint with three states (separate, 

contact and impact). And based on this stress wave model, 

the propagation characteristics of stress wave generated in 

clearance joints is revealed. The main contributions of this 

paper are concluded as follows. 

1) The stress-wave model is first established to describe 

the three states of clearance joints inspired by MLSD 

model. 

2) The stress transmission and reflection waves in 

different boundary conditions and the propagations of stress 

wave in elastic and viscoelastic rods are investigated. 

3) The stress wave propagation in clearance joints with 

three states is analyzed, and the influences of clearance 

sizes, initial axial speeds and material parameters on the 

stress wave propagation are studied. The results show that 

new stress waves will generate when the clearance joint in 

contact and impact states, and there exist some high stress 

region near the contact area of clearance joints when the 

incidence waves are superposed with reflection waves, 

which may speed up the damage of joints. 
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