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1. Introduction 
 

In the recent years, smart materials and structures have 

attracted a considerable interest in the scientific and 

engineering communities. The drastic developments in the 

production of advanced composites have paved way for the 

enhanced utilization of smart structures in numerous 

applications. It is evident from the extensive research that 

among the smart materials, piezoelectric (PE) materials are 

the most widely used materials in smart structures. The self 

sensing and self diagnosing abilities of these materials 

enhances the performance of the structures. Hence, many 

researchers have devoted their study on analyzing the 

behavior of the PE structures (beams, plates, shells). 

Temperature is one of the important factor needs to be 

considered in the analysis of structures because of the fact 

that the behavior of the structure changes with change in 

temperature. Hence the analysis of structures made of smart 

materials in the thermal environment has gained more 

importance recently. Sharnappa et al. (2010) presented a 

numerical formulation to evaluate the thermally induced 

vibrations of the piezo-thermo-viscoelastic composite beam. 

Using the finite element method Rahman et al. (2015) 

presented the dynamic analysis and active vibration control 

of the piezoelectric beam subjected to thermal loading. The 

static and dynamic behavior of the thermo piezoelectric 

smart structures was analysed by Gornandt and Gabbert 

(2002) using a fully coupled FE iterative solution. Tauchert 

(1996) developed an exact solution for the piezo 

thermoelastic problem subjected to steady state temperature 
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distribution. The inherent low-control-authority of 

piezoelectric materials gave rise to the development of 

active vibration control of the smart structures. Ray and 

Batra (2008) proposed a FE formulation for the active 

vibration control of FG shells subjected to thermal loading 

using first order shear deformation theory (FSDT). Gupta et 

al. (2011) studied the active vibration control of the smart 

plate at elevated temperature analytically and compared the 

results experimentally. Further, the static analysis of these 

intelligent structures is carried out by many pioneers. 

Among them, Ray et al. (1994) developed a FE model for 

the static analysis of simply supported rectangular plate 

using higher order shear deformation (HSDT) theory. Panda 

and Ray (2008) studied the nonlinear static FE analysis of 

FG plates in thermal environment. Beni (2016) analysed the 

piezoelectric nano beam subjected to electrical and 

mechanical loading considering the size-dependant 

nonlinear geometry. 

The literatures reveal that integration of the ferroelectric 

and the ferromagnetic properties in a distinct material was 

cumbersome because of the fact that the atomic 

phenomenon involved for the ferroelectricity and 

magnetism do not meddle with each other. Hence, the 

strong coupling between these two properties was not 

ensured. With the remarkable progress in the field of 

material research, an interesting and responsive new smart 

material known as magneto-electro-elastic (MEE) material 

was developed. These typical materials are the combination 

of piezoelectric (BaTiO3) and piezomagnetic (CoFe2O4) 

phases. The distinct ability of the MEE materials is to 

interact with external disturbances and to produce the 

output signals (electrical / mechanical / magnetic) which 

makes them suitable for wide range of sensing application 

such as infrared detection, medical diagnostics, micro-
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electromechanical systems, sonar applications, imaging 

systems etc. The MEE materials simultaneously possess the 

coupling between electro-elastic, magneto-elastic and 

magneto-electric properties. The influence of these coupling 

effects can be observed in the composite as a whole, but are 

absent in the individual constituents. It is found that the 

magneto-electric coupling is many times better than 

monolithic piezoelectric or piezomagnetic materials. This 

unique property of the MEE composites makes them 

capable of converting energy from one form to another 

(among mechanical, electric and magnetic energies). Multi 

behavior properties of the MEE composites fetched it a 

significant importance in a very short span. Research 

related to magneto-electric effect in elastic media has 

attracted the focus of the researchers. Pan and Heyliger 

(2001) presented an exact solution for layered FG-MEE 

rectangular plate. They found that stacking sequence and 

boundary conditions have a significant effect on magnetic, 

electric and elastic fields. Also, they derived an analytical 

formulation to study the free vibration behavior of the plate. 

Ramirez et al. (2006) presented a solution for free vibration 

of a 2D MEE laminates using discrete layer approximate 

model. Kattimani and Ray investigated the active control of 

geometrically nonlinear vibrations of MEE plates (2014) 

and doubly curved shells (2014). They also extended their 

study for the functionally graded MEE plates also (2015). 

Chen et al. (2005) investigated the effect of magneto-

electric coupling on the natural frequency of a MEE plate. 

Chen et al. (2007) proposed a general approach to perform 

the modal analysis of MEE plates using state vector 

approach and propagator matrix. Bhangale and Ganeshan 

(2006) derived a semi analytical FE model to study the free 

vibration analysis of FG-MEE plates. They analysed the 

effect of exponential factor, mechanical and electrical 

loading on the induced field. Annigeri et al. (2007) studied 

the free vibrations of multiphase and layerwise MEE beam 

using FE procedures. Milazzo et al. (2009) derived an 

analytical solution to study the free and forced vibration 

behavior of MEE bi-morph beam applied with time 

dependant boundary conditions. Daga et al. (2009) 

investigated the transient response of multiphase MEE 

cantilever beam using FE method. They have studied the 

effect of volume fractions and the coupling effect on the 

response of the beam.  Ai-min and Li (2008) proposed an 

analytical solution which facilitates the analysis of a MEE 

beam subjected to complex loading and boundary 

conditions. Xin and Hu (2015) studied the free vibrations of 

the layered MEE beams using a semi analytical space state 

approach and discrete singular convolution algorithm which 

ease the consideration of different boundary conditions. 

Lage et al. (2004) derived a mixed layer wise FE 

formulation to study the static behavior of the MEE plates. 

Biju et al. (2012 and 2011) investigated the behavior of a 

MEE sensor patch on a steel beam subjected to harmonic 

loading. They analysed the transient dynamic behavior of 

MEE sensors considering the effect of patch location and 

different boundary conditions on the performance of the 

beam. In addition, the response of the MEE beam when 

applied with time harmonic electric potential has also been 

studied. Vaezi et al. (2016) analysed the influence of the 

electric and magnetic potentials on the natural frequency 

and buckling loads of the MEE microbeams. Extensive 

research is also devoted to the prediction of the effective 

properties of the MEE composites (2013). 

The MEE composite in the thermal environment exhibit 

an additional coupling properties i.e., the thermo-electric 

(pyroelectric effect) and thermo-magnetic (pyromagnetic 

effect) properties. They are generally known as the cross or 

product properties of the material s. These product 

properties will have a direct or an indirect effect on the 

stresses, displacements, electric and magnetic potentials of 

the system through the pyroelectric and pyromagnetic loads. 

The response of the MEE structures is not only influenced 

by the material constants, thickness, boundary conditions 

and the magnitude of the applied fields or loads but also 

with the variation of the temperature. The study of the 

response characteristics of the MEE structures under 

various thermal loading may help to determine the optimum 

operating conditions of the MEE structures in the thermal 

environment. Many pioneers have studied the behavior of 

the MEE structures in thermal environment. With the help 

of thermodynamic potential Sunar et al. (2002) derived the 

FE model for fully coupled thermopiezomagnetic 

continuum which has led a way for numerous researches in 

thermal analysis of the MEE structures. Badri and Kayiem 

(2013) used the first order shear deformation theory (FSDT) 

to study the static and dynamic analysis of magneto-thermo-

electro-elastic (MTEE) plates. Ebrahimi and Barati (2016) 

presented an analytical thermal vibration solution of a 

MTEE nanobeam and demonstrated the effects of thermal 

loadings, external electric voltage and magnetic potential. 

Kumaravel et al. (2007) investigated the influence of 

coupling effects on the free vibrations and buckling 

behavior of the MEE beams in thermal environment.  

Ansari et al. (2015) presented nonlocal nonlinear governing 

equations of a nano beams subjected to MTEE loads. They 

analysed the influence of external electric field, magnetic 

field and temperature changes on the natural frequencies. 

Jandaghian and Rahmani (2016) studied the free vibration 

analysis of MTEE beams resting on Pasternak foundation 

by using nonloacal and Timoshenko beam theory. They 

found that natural frequency is insensitive to temperature 

changes. Ootao and Tanigawa (2005) developed an exact 

solution for the transient behavior of multilayered MTEE 

strip subjected to non uniform and unsteady heating.  

Recently, research on the pyroelectric and pyromagnetic 

effects revealed a mysterious behavior of MEE structures in 

thermal environment. This interesting phenomenon is 

studied by many researchers, among them, Kim et al. 

(2012) derived an analytical expression to analyze the 

product properties of FG transversely isotropic MTEE 

multilayer composite with an arbitrary number of layers. 

Kumaravel et al. (2007) investigated the behavior of the 

MEE strip in thermal environment neglecti ng the 

pyroelectric and pyromagnetic effects. Challagulla et al. 

(2011) found out the pyroelectric and pyromagnetic 

constants for various volume fractions of piezoelectric and 

piezomagnetic materials with the aid of asymptotic 

homogenization method. Kondaiah et al. (2012, 2013a, 

2013b) studied  the behavior of the MEE beams and plates  
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Fig. 1 Magneto-electro-elastic beam 

 

 

subjected to uniform temperature considering the 

pyroelectric and pyromagnetic effects. The effect of 

boundary conditions and volume fractions on the behavior 

of MEE plates has also been presented.  The comprehensive 

literature review reveals that the research carried out on the 

MEE structures in thermal environment considering 

pyroelectric and pyromagnetic effects is limited. However, 

to the best of the author’s knowledge, no work has been 

reported on the FE analysis of multiphase MEE beam 

subjected to different thermal loading. Consequently, in the 

present investigation, the structural behavior of MEE beams 

under different temperature profiles has been carried out. 

Influence of temperature profile, product properties, volume 

fraction, aspect ratio and boundary conditions on the 

displacement, the electric and magnetic potentials of the 

MEE beam has been studied comprehensively. 

 
 
2. Basic equations 
 

2.1 Problem definition 
 
The schematic diagram of the MEE beam made up of 

50% BaTiO3 and 50% CoFe2O4 with Cartesian co-ordinate 

system is shown in Fig. 1. The beam length L is taken along 

the x-direction, while the width w and the thickness h of the 

MEE beam are taken along the y and z-coordinate axes, 

respectively. The boundary conditions employed for the 

simply-supported, clamped-clamped and clamped-free 

MEE beams are as follows: 

              for the simply supported end 

            for the clamped end 

            for the free end 

 

2.2 Constitutive equations 
 

The constitutive equations for the three dimensional 

magneto-electro-elastic (MEE) solid considering the linear 

coupling between thermal, electric, magnetic and 

mechanical properties in the cartesian co-ordinates can be 

written as 

 { }= { } { }} { { }  C e E q H T   

{ } { } { }    TD e E mH p T   

{ } { } { }    TB q mE H T                   (1) 

where, [C], {e}, {q}
 
and {α}

 
are the elastic co-efficient 

matrix, piezoelectric coefficient matrix, magnetostrictive 

coefficient matrix and thermal expansion co-efficient 

matrix, respectively;  , m, {p}, {τ} and µ are the dielectric 

constant, electromagnetic coefficient, pyroelectric constant, 

pyromagnetic constant and magnetic permeability constant, 

respectively; {σ}, D and B represent the stress tensor, 

electric displacement and the magnetic flux, respectively; 

{Ɛ}, E, H and ΔT are the linear strain tensor, electric field, 

magnetic field and temperature rise, respectively. The 

matrix notation considering all the coefficients appearing in 

the constitutive relations can be written as 
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2.3 Finite Element (FE) formulation 

 
The MEE beam is discretized into 10 finite elements 

(FE) using an eight noded 3D brick element. Each element 

is assumed to have five degrees of freedom viz. three 

translational [u v w], one electric and magnetic potential. 

The generalized translational displacement vector 

associated with the i
th

 (i = 1, 2, 3,…, 8) node of the element 

can be represented as 

   
     ti i i i

T
d u v w

 
(3) 

The generalized displacement vector  {  } , electric 

potential vector { } and magnetic potential vector { }  at 

any point within the element can be represented in terms of 

the nodal generalized displacement vector, the nodal 

electric potential vector and the nodal magnetic potential 
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vector, respectively as follows 

    e
t t td N d ,    eN  

 
,    eN    

 (4) 

The various elemental vectors appearing in Eq. (4) can 

be represented as 

       1 2 8 
T

T T T

t t t

e
td d d d 

 
,    1 2 8   

Te     , 

1 2 8

e{ }=[    ]T   ,    1 2 8  t t t tN N N N , 

ti i tN n I ,  1 2 8  N n n n
  
 

,  1 2 8N n n n    (5) 

where, ni is the natural coordinate shape function associated 

with the i
th 

node of the element; ‘It’ is the identity matrix; 

[  ] , [  ] and [  ] are (3 24), (1 8) and (1 8) shape 

function matrices, respectively. In the absence of free 

charge density, the Gauss law can be written as     . 

Then the relation between the electric field E and the 

electric potential   can be expressed as      .  

Similarly, in the absence of free current density, the 

magnetic field can be expressed as     , for which the 

relation between the magnetic field H and the magnetic 

potential   can be written as      . The gradient 

relation corresponding to the linear electric field (E) and the 

electric potential (ϕ) can be written using the Maxwell’s 

equation as follows 

  , ,
   

    
   

E
x y z

  

                           

(6) 

While the relation between the magnetic field (H) and 

the magnetic potential (ψ) can also be expressed as 

  , ,
   

    
   

H
x y z

  

                           
(7)

 

The strain vector, electric potential vector and magnetic 

potential vector of the system can be related to the nodal 

displacement, nodal electric potential and nodal magnetic 

potential, respectively, with the aid of the derivative of 

shape function matrices as follows 
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 (8) 

The shape function derivative matrices appearing in Eq. 

(8) are represented by
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where, i=1, 2, 3,..., 8 represents the node number 

 
2.4 Equations of motion 
 
The governing equations of the MEE beam in thermal 

environment can be derived by employing the principle of 

total potential energy as follows 
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where, { } is the surface force vector acting over an area A. 

The entire volume of the domain is represented by Ω. The 

surface electric charge density and surface magnetic charge 

density are represented by Q
ϕ 

and Q
ψ
, respectively. 

Substituting Eq. (1) into Eq. (11), we get 
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Now, on substituting Eq. (8) in Eq. (12), we obtain 

               

              

            

         

   

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

1

2

T TT Te e e e e

p t t t t t t

T TT Te e e

t t t t

T TT TTe e e e

t t

T TT Te e e

T T Te

T d B C B d d d B e B d

d B q B d d B C Td

B e B d d B B d

B m B d B p Td

B q





  

  





 

   

  



 

 

 

 



     

      

             

              

   

 

 

 

 

         

         

     

 

 

1

2

1 1

2 2

e
T T

e e
tt

T TT T
e e e

T Te e

t t

A

e

A

e

A

B d d B m B d

B B d B Td

d N f dA

N Q dA

N Q dA

 

  









 

    







 

        

              



   

   



 






 

(13) 

The total potential energy is minimized by setting its first 

variation of Eq. (11) to zero. 
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1

2

T T

t

A

H B d d f dA 


    

        = 0
A A

Q dA Q dA                 (14) 

Further, it is assumed that the temperature field is not 

fully coupled with MEE field. On simplification of the Eqs. 

(12)-(14), we obtain the equations of motions for the MEE 

Beam subjected to a temperature deviation of ΔT as follows 
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(15)
  

The various elemental stiffness matrices appearing in 

Eq. (15) are the elemental elastic stiffness matrix [   
 ], the 

elemental electro-elastic coupling stiffness matrix [   
 ], the 

elemental magneto-elastic coupling stiffness matrix [   
 ], 

the elemental electric stiffness matrix [   
 ], the elemental 

magnetic stiffness matrix [   
 ] , the elemental electro-

magnetic stiffness matrix [   
 ]. The explicit forms of these 

matrices are given as follows 
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                          (16) 

Similarly, the various elemental load vectors described 

in Eq. (15) are the elemental mechanical load vector {  
 }, 

the elemental thermal load vector {   
 } , the elemental 

electric charge load vector {  
 }, the elemental magnetic 

current load vector {  
 } , the elemental pyroelectric load 

vector {    
 } , the elemental pyromagnetic load vector 

{    
 }. These load vectors are given by 
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Considering only the thermal, the pyroelectric and the 

pyromagnetic loads, the elemental equations of motion are 

assembled in the straight forward manner into global 

equations of motion of the MEE beams as follows 
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(18) 

where, [   ], [   ], [   ], [   ], [   ] and [   ] are the 

global elastic stiffness matrix, global electro-elastic 

coupling stiffness matrix, global magneto-elastic coupling 

stiffness matrix, global electro-magnetic stiffness matrix, 

global electric stiffness matrix and the global magnetic 

stiffness matrix, respectively.  {   } , {    }  and {    }  are 

the global thermal load vector, global pyroelectric load 

vector and global pyromagnetic load vector, respectively. 

By eliminating the electric and magnetic potentials in Eq. 

(18) through the condensation method we obtain  

  [   ] { }  {   }                            (19) 

The nodal thermal displacements are obtained by 

solving the Eq. (19). The various stiffness matrices and load 

vectors involved in attaining Eq. (19) are presented in 

Appendix. The Gaussian integration with four points is 

invoked to evaluate the integrals of various elemental 

stiffness matrices and load vectors. Once the nodal 

displacements are obtained, the electric and the magnetic 

potentials are evaluated.  

 

 

3. Temperature fields 
 

In the real time application, the beam or structures 

generally experiences four different types of temperature 

variations which are considered here for the analysis. The 

one-dimensional temperature fields are assumed to vary 

along the length L of the beam. In all cases the maximum 

temperature (Tmax) is considered to be 100 K.  

 

3.1 Uniform temperature profile (Temperature 
Profile-1) 

 
The temperature of the MEE beam is uniformly raised 

from a reference temperature of T0 to the final temperature 

of Tmax. For the ease of calculation T0 is assumed to be 0 K. 

The general temperature variation relation can be written as    

                                     (20)  

 
3.2 Half-Sine temperature profile (Temperature 

Profile-2) 
 
The MEE beam is analysed for the half - sine 

temperature loading. The temperature of the beam is 

assumed to vary along the length of the beam resembling a 

half sine wave with a peak at the midspan of the beam. The 

general equation corresponding to the half-sine wave can be 

written as 

         {     
  

 
 }      0 ≤ x ≤ L            (21) 

in which, Tmax is the maximum temperature, L is the span 

length of the beam, x is the point of interest from the left 

support of the beam. 
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3.3 Linearly varying temperature profile. 
(Temperature Profile-3) 

 
In this case, the static analysis of the MEE beam is 

carried out for linearly varying temperature load varying 

from a certain initial temperature at the left end of the beam 

Ti to the maximum temperature Tmax. The corresponding 

general equation may be expressed as  

    {    }   {  }       0 ≤ x ≤ L            (22) 

 
3.4 Tent shaped or Bi-triangular temperature profile 

(Temperature Profile-4) 
 

In this case, the MEE beam is exposed to a bi-triangular 

distribution temperature profile i.e,, the temperature of the 

beam decreases from the Tmax at the left support to the 

lowest possible temperature at the mid span of the beam and 

again rises to the Tmax at the right end of the beam. The 

above characteristic temperature variation can be 

represented by the equation as follows 

    {    }                   

    {    }                                 (23) 

 
 
4. Results and discussion 
 

In this section, the numerical results are evaluated using 

the finite element (FE) model derived in the previous 

section. The static behavior of the magneto-electro-elastic 

(MEE) beam is analysed for different boundary conditions 

and temperature profiles. The boundary conditions 

considered for the analysis are clamped-clamped (C-C), 

clamped-free (C-F) and clamped-simply supported (C-S). 

The MEE beam is assumed to be transversely isotropic in 

both piezoelectric and piezomagnetic phases (symmetric 

about z-axis). The material properties for different volume 

fraction of the MEE material are tabulated in Kondaiah et 

al. (2012). The volume fraction (Vf ) of the MEE beam is 

taken as 0.5 (50% BaTiO3 and 50% CoFe2O4) unless 

otherwise stated. The dimensions of the beam considered 

for the analysis are length L=1 m, width w=0.1 m and 

thickness h=0.1 m. The influence of volume fraction and 

pyroeffects (coupling effects of thermo-electric and thermo-

magnetic properties) on the direct quantities (displacements 

and potentials) are studied for C-C and C-S boundary 

conditions and compared with the conventional approach 

(neglecting pyroeffects). Further, the effect of the ratio of 

the span length to the thickness of the beam (L/h) on the 

potentials of the MEE beam has been investigated. 

 

4.1 Validation of the present formulation 
 
The present FE formulation is validated with the results 

reported by Kondaiah et al. (2012) for the identical 

boundary conditions, geometry of the beam, loading 

conditions and material properties. Figs. 2(a)-(e) illustrate 

the validation of the displacements along longitudinal x-

direction (Ux), electric potential, magnetic potential and 

normal stresses. It may be observed from these figures that  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2 Validation of (a) longitudinal x-direction (Ux ) (b) 

electric potential (ϕ) (c) magnetic potential (ψ) (d) normal 

stress-σx 

 

 

the results are in excellent agreement with the results 

reported by Kondaiah et al. (2012). It is evident from these 

figures that the present FE formulation can faithfully 

produce the results for different boundary conditions and 

temperature profiles. 
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4.2 Static analysis of MEE beam 
 
4.2.1 Clamped-Free (C-F) boundary condition 
Influence of various temperature profiles on the 

structural behavior of the clamped-free (C-F) MEE beam 

has been investigated. The geometrical parameters and the 

material properties of the MEE beam remain invariant. The 

different temperature profiles mentioned in the Eqs. (20)-

(23) have been considered for the static analysis. It has been 

observed from the results reported in the literature by 

Kondaiah et al. (2012) that for the clamped free MEE beam 

subjected to uniform temperature rise of 100 K, the 

pyroeffects are dominant only in the variation of the electric 

potential. The same is verified in the present analysis and 

extended the analysis for different temperature profiles. It is 

observed from the numerical simulations that irrespective of 

the temperature profile, the influence of the thermo-electric 

(pyroelectric) and the thermo-magnetic (pyromagnetic) 

coupling effects exist only for the electric potential of the 

C-F MEE beam. Hence, for the sake of brevity, the 

comparison between the pyroeffects and the conventional 

approach is presented only for the electric potential as 

elucidated in Figs. 3(a)-(d). It may be observed from these 

figures that for all the temperature profiles the pyroeffects 

tends to improve the electric potential of the C-F MEE 

beam. Figs. 4(a)-(c) illustrate the influence of the 

temperature profiles on the displacement components along 

x, y and z-directions, respectively, at the nodes along the 

bottom edge of the MEE beam. It may be noticed from 

these figures that the longitudinal x-direction displacement 

component Ux varies almost linearly for all the temperature 

profiles and it is maximum at the free end of the MEE 

beam. Among all the temperature profiles, the maximum 

displacement of Ux, Uv and Uw is observed for the uniform 

temperature profile (temperature profile-1). The 

displacement components Uv and Uw are maximum at the 

region near the clamped end for the uniform (temperature 

profile-1) and bi-triangular temperature profiles 

(temperature profile-4) while for the half-sine (temperature 

profile-2) and linear temperature profiles (temperature 

profile-3), the maximum values of these displacement 

components are witnessed at the midspan and free end of 

the MEE beam, respectively. This may be due to the 

maximum temperature value at the respective regions. Fig. 

4(d) depict the magnetic potential variation along the MEE 

beam length for different temperature profiles. It may also 

be observed that the magnetic potential is maximum for the 

temperature profile-1 and 4 while the temperature profile 2 

and 3 exhibit negligible influence on the variation of 

magnetic potential.  
Figs. 5 (a)-(c) demonstrate the variation of normal 

stresses for clamped-free (C-F) MEE beam subjected to 
different temperature profiles. It may be observed from 
these figures that for the temperature profile-1 and 4, the 
maximum normal stresses are observed near the clamped 
end of the beam. This may be due to the presence of 
constraints and highest temperature in the corresponding 
profile. For the temperature profile-2, the normal stresses 
vary symmetrically along the beam length while a linear 
variation in the normal stresses is observed for temperature 
profile-3. At the mid-span of the beam, the maximum and 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3 Variation of electric potential (ϕ)-(a) uniform 

temerature (b) half-sine temperature (c) linear temperature 

profile (d) bi-triangular temperature profile for C-F 

boundary condition 
 

 

the minimum normal stresses are noticed for temperature 

profile-2 and 4, respectively. This may be due to the fact 

that the temperature at the midspan is maximum for the 

temperature profile-2 and minimum for the temperature  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4 Effect of temperature profiles on (a) longitudinal x-

direction displacement component (Ux) (b) y-direction 

displacement component (Uv) (c) z-direction displacement 

component (d) magnetic potential (ψ) -C-F boundary 

condition 
 

 

profile-4. It may be seen from these figures that the 

temperature profile-1 has a predominant effect on the 

normal stresses. The variations of the transverse shear  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 5 Effect of temperature profiles (a) normal stress (σx)  

(b) normal stress (σy) (c) normal stress (σz) (d) shear stress 

(τxy) (e) shear stress (τxz) along the length of the C-F MEE 

beam 
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(a) 

 
(b) 

 
(c) 

Fig. 6 Effect of temperature profiles on electric 

displacement (a) Dx (b) Dy (c) Dz 
 

 

stresses τxy and τxz are plotted in Figs. 5(d) and (e), 

respectively. It may be observed that for the temperature 

profile-2, the shear stresses τxy and τxz are zero at the mid 

span with a symmetrical variation along the beam length. 

However, for the temperature profile-3, the shear stresses 

along the beam length are constant. It may be observed 

from these figures that among all the temperature profiles 

considered, the shear stresses are maximum near the 

clamped end for temperature profile-4. The present 

numerical simulation reveals that irrespective of the 

teperature profiles, the pyroelectric and pyromagnetic loads 

have negligable effect on the displacements and stresses in 

comparison with the conventional approach. Therefore, 

these results are not included here for the sake of brevity. 

This may be because of the fact that the displacements are 

governed directly by the thermal loading in the system and 

indirectly by the pyroeffect. Pyroeffects exhibits a direct 

influence only on the potentials of the system. From the  

 
(a) 

 
(b) 

 
(c) 

Fig. 7 Effect of temperature profiles on magnetic induction 

(a) Bx (b) By (c) Bz 
 

 

Figs. 3 and 4(d), it is evident that the effect of thermo-

electric and thermo-magnetic coupling (pyroeffects) are 

dominant on the electric potential but have negligible effect 

on the magnetic potential. This may be due to negligable 

pyromagnetic effect on the uncoupled magnetic potential 

against the significant pyroelectric effect on the uncoupled 

electric potential (Kondaiah et al. 2012). 

The effect of the temperature profiles on the variation of 

the electric displacement components in x, y and z-direction 

are illustrated in Figs. 6(a)-(c), respectively. It may be 

observed from Fig. 6(a) that a similar trend of variation in 

x-direction electric displacement components Dx is followed 

by the temperature profiles 1 and 4. Also, Dx for 

temperature profile-2 varies symmetrically along the beam 

length. From Fig. 6(b), it is witnessed that y-direction 

electric displacement components Dy for the temperature 

profile-2 and 3 follows the corresponding temperature 

distribution. Further, z-direction electric displacement 
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components Dz for temperature profile 2 and 3 varies 

similar to that of Dy as depicted in Fig. 6(c). The magnetic 

flux density variation of the MEE beam with various 

temperature profile is shown in Figs. 7(a)-(c). It may be 

observed that the significant influence of the bi-triangular 

temperature profile (temperature profile-4) on the magnetic 

flux density components Bx, By and Bz  is noticed. 

 

4.2.2 Clamped-Clamped (C-C) Boundary condition 
The clamped-clamped (C-C) MEE beam subjected to 

different temperature loading profiles is considered for the 

analysis. It is known that the direct quantities 

(displacements and potentials) affect the derived quantities 

(stresses, electrical displacements and magnetic density) of 

the MEE beam. Hence, it is important to study the effect of 

the direct quantities on the behavior of the MEE beam. The 

effect of different temperature profiles on the direct 

quantities of the C-C MEE beam is presented in Figs. 8(a)-

(e). It may be noticed from Fig. 8(a) that when the beam is 

subjected to temperature profile-1 (uniform temperature), 

the displacement component Ux is minimum and this varies 

accordingly with the temperature profile. At the midspan of 

the beam, Ux is maximum for the temperature profile-3 

while it is zero for the remaining temperature profiles.  Fig. 

8(b) depicts the variation of Uv along the beam length. It 

may be observed from this figure that Uv reaches a higher 

value for the uniform temperature profile compared to the 

remaining temperature profiles. For the temperature profile-

3, Uv varies linearly along the beam length while the 

maximum displacement is noticed near the right end of the 

beam. For the temperature profile-2, Uv is maximum at the 

midspan whereas, it is minimum for temperature profile-4. 

These displacements variations are expected as an outcome 

of the respective temperature distribution. Also, it is evident 

from Fig. 8(c) that Uw follows the same characteristics of 

Uv.  It may also be observed from Fig. 8(d) that for all the 

temperature profiles, the maximum value of electric 

potential is noticed at the region near the clamped end while 

at the mid-span of the beam, the minimum electric potential 

is noticed for the temperature profile-2 compared to other 

temperature profiles. Also, along the beam length electric 

potential varies linearly for temperature profile-3 while for 

the temperature profile-4, the electric potential follows the 

same trend as that of the temperature profile-1. Fig. 8(e) 

demonstrates the effect of temperature loading on the 

magnetic potential. The maximum magnetic potential is 

observed when the MEE beam is subjected to uniform 

temperature (temperature profile-1). For the half-sine 

temperature profile (temperature profile-2), the maximum 

magnetic potential may be observed at the mid span of the 

beam. It may be noticed from this figure that among all the 

temperature loadings the temperature profile-1 has a 

significant effects on direct quantities. This may be due to 

the constant pyro loads (pyroelectric and pyromagnetic) 

generated along the length of the MEE beam. 
 

4.2.3 Clamped-Simply supported (C-S) boundary 
condition 

The variation of the direct quantities in a clamped-

simply supported (C-S) MEE beam for different 

temperature profiles are depicted in Figs. 9(a)-(e). It may be 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 8 Variation of (a) longitudinal x-direction (Ux) (b) y-

direction (Uv) (c) z-direction (Uw) displacement components 

(d) electric potential (ϕ) (e) magnetic potential (ψ) for 

various temperature profiles  for C-C boundary condition 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 9 Variation of (a) longitudinal x-direction (Ux) (b) y-

direction (Uv) (c) z-direction displacement components (Uw)  

(d) electric potential (ϕ) (e) magnetic potential (ψ) for 

various temperature profiles  for C-S boundary condition 

observed from Fig. 9(a) that the temperature profile-1 has 

more influence on the longitudinal x-direction displacement 

component Ux while temperature profile-3 has the least 

effect. Further, Ux varies along the length linearly from the 

clamped end to the free end of the MEE beam. From Figs. 

9(b) and (c), it is evident that the y-direction displacement 

component Uv and the transverse z-direction displacement 

component Uw follows the same trend as shown in Figs. 

8(b) and (c), respectively, for the clamped-clamped 

boundary condition. Figs. 9(d) and (e) illustrate the effect of 

temperature loading on the electrical potential and magnetic 

potentials, respectively. It may be observed from Fig. 9(d) 

that the variation of electric potential for temperature 

profile-1 and temperature profile-4 follows a similar trend. 

The unconstrained axial movement at the left support 

results in significant change of the electric potential as 

compared to the clamped-clamped (C-C) condition. While 

for the temperature profile-2, the variation of the electric 

potential in the clamped-simply supported beam is 

completely reversed than that of the clamped-clamped MEE 

beam (Fig. 8(d)). Further, it may be noticed from Fig. 9(e) 

that the variation of magnetic potentials for all the 

temperature profiles resembles the variation of the magnetic 

potential of the C-C MEE beam, but with a little higher 

magnitude. A smooth variation of magnetic potential is 

observed for temperature profile-2. 
 

4.3 Parametric study 
 

The pyroelectric and pyromagnetic effects are observed 

in the system through the pyroelectric load and the 

pyromagnetic load, respectively. Thus, the developed 

pyroeffects are the outcome of cross coupling of thermo-

electric and thermo-magnetic properties. These are 

generally termed as the cross properties or product 

properties of the system. These product properties 

influences the potentials directly, and displacements 

indirectly. Therefore, it is important to study the influence 

of boundary conditions on the product properties 

(pyroeffects). Also, the value of pyroelectric and 

pyromagnetic constants depends on the volume fraction of 

the system. Hence, the analysis of the MEE beam 

considering different volume fraction becomes prominent. 

 
4.3.1 Effect of product properties 
The clamped-clamped (C-C) and clamped-simply 

supported (C-S) MEE beams subjected to uniform 

temperature rise of 100 K is considered for the analysis. 

The material properties corresponding to the volume 

fraction Vf=0.5 are tabulated in Kondaiah et al. (2012). 

Influence of the product properties (pyroeffects) on the 

direct quantities (displacements and potentials) of the 

system is evaluated. Figs. 10-14 illustrate the comparison of 

the displacement components and the potentials for the C-C 

and C-F MEE beams with considering the pyro effects and 

conventional approach (without pyroeffects). It may be 

observed from these figures (Figs. 10-12) that the 

pyroeffects are negligible on the displacement components 

(Ux ,Uv ,Uw) of the MEE beam, while pyroeffects exhibit a 

significant variation in the electric potential for both the C-

C and C-S beam as depicted in Fig. 13. It may be due to the  
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(a) 

 
(b) 

Fig. 10 Effect of product property on x-displacement 

component (Ux): (a) C-C boundary condition (b) C-S 

boundary condition 
 

 
(a) 

 
(b) 

Fig. 11 Effect of product property on y-displacement 

component (Uv): (a) C-C boundary condition (b) C-S 

boundary condition 

 

 
(a) 

 
(b) 

Fig. 12 Effect of product property on z-displacement 

component (Uw): (a) C-C boundary condition (b) C-S 

boundary condition 
 

 

direct effect of the product properties on the electric 

potentials. For the C-S boundary condition, the pyroeffects 

tends to increase the electric potential of the MEE beam, 

whereas for the C-C MEE beam the pyroeffects reduces the 

electric potential. Fig. 14 depicts that the pyroeffects have a 

negligible influence on the magnetic potentials. 

 
4.3.2 Effect of volume fraction 
The effect of volume fraction of the BaTiO3 and 

CoFe2O4 on the primary variables (displacements and 

potentials) of the MEE beam has been investigated by 

considering a uniform temperature rise of 100 K. The 

comparison between the primary variables of clamped-

clamped (C-C) and clamped-simply supported (C-S) MEE 

beams are shown in Figs. 15-19.  It may be observed from 

Figs. 15(a) and (b) that the effect of volume fraction on the 

x- direction displacement component is scanty for the C-C 

MEE beam while noticeable variations may be observed in 

case of C-S MEE beam. Also it may be noticed from Figs. 

15(a)  and  16(a)  that  the  maximum longi tudina l 

displacement (Ux) and y-direction displacement (Uv) occurs 

for the volume fraction Vf =0.0. However, for the C-S MEE 

beam, it is observed for the volume fraction Vf=1.0 as 

shown in Figs. 15(b) and 16(b). The maximum transverse z-

direction displacement component for the C-C and C-S 

MEE beam is observed for Vf=0.2 and Vf =0.0, respectively. 

It may also be seen from Figs. 18(a) and (b) that for the 

volume fraction Vf =0.2, the electric potential is maximum 

for both the C-C and C-S MEE beams. Fig. 19(a) and (b)  
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(a) 

 
(b) 

Fig. 13 Effect of product property on electric potential (ϕ): 

(a) C-C boundary condition (b) C-S boundary condition 
 

 
(a) 

 
(b) 

Fig. 14 Effect of product property on magnetic potential 

(ψ): (a) C-C boundary condition (b) C-S boundary 

condition 
 

 
(a) 

 
(b) 

Fig. 15 Effect of volume fraction on x-displacement 

component: (a) C-C boundary condition (b) C-S boundary 

condition 
 

 

illustrate that the pure piezomagnetic material (Vf=0.0) 

exhibit the maximum magnitude of the magnetic potential 

while as expected for the volume fraction Vf=1.0, the 

magnetic potential is minimum for both the cases. 

 
4.3.3 Effect of aspect ratio (L/h) on electric and 

magnetic potentials 
The effect of span length to thickness ratio (L/h) on the 

electric and magnetic potentials has been investigated by 

considering the clamped-free (C-F) and clamped-simply 

supported (C-S) MEE beam. Based on the L/h ratio, the 

MEE beams are classified as deep (0.5<L/h<2), moderate 

(2<L/h<6) and shallow beams (L/h>6). In the present study, 

the thermal environment of uniform temperature rise 

ΔT=100 K is assumed and the numerical values of L/h 

considered for the analysis are 1.25, 3 and 10 for deep, 

moderate and shallow beams, respectively. Figs. 20(a) and 

(b) depict the characteristic behavior of the electric potential 

for the C-F and C-S beam, respectively. For both the 

boundary conditions, the deep MEE beam has a pronounced 

effect on the electric potential. Figs. 21(a) and (b) 

demonstrate the magnetic potential variation for the C-F 

and C-S MEE beams. It can be observed from these figures 

that for the C-F condition, moderate MEE beams (L/h=3) 

exhibit highest magnetic potential at the midspan of the 

beam whereas, for C-S condition, it is observed for the deep 

MEE beam. 
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(a) 

 
(b) 

Fig. 16 Effect of volume fraction on y-displacement 

component: (a) C-C boundary condition (b) C-S boundary 

condition 
 

 
(a) 

 
(b) 

Fig. 17 Effect of volume fraction on z-displacement 

component: (a) C-C boundary condition (b) C-S boundary 

condition 

 

 
(a) 

 
(b) 

Fig. 18 Effect of volume fraction on electric potential (ϕ) : 

(a) C-C boundary condition (b) C-S boundary condition 
 

 
(a) 

 
(b) 

Fig. 19 Effect of volume fraction on magnetic potential (ψ): 

(a) C-C boundary condition (b) C-S boundary condition 
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(a) 

 
(b) 

Fig. 20 Effect of aspect ratio on the electric potential: (a) C-

F (b) C-S boundary condition 
 

 
5. Conclusions 
 

In this paper, the static behavior of a MEE beam 

subjected to various form of thermal loading and boundary 

conditions is studied using the finite element procedures. 

Influence of the pyroelectric and pyromagnetic effects on 

the direct quantities of the MEE beam is analyzed. 

Incorporating the Maxwell electrostatic and electromagnetic 

equations, variation of stresses, displacements, electric 

potential and magnetic potential along the length of the 

MEE beam has been investigated. The results obtained in 

present analysis reveal that, irrespective of the boundary 

conditions and the temperature profile, the pyroeffects 

exhibit negligible influence on the displacements and 

stresses of the MEE beam. It may due to negligible indirect 

effects of the pyroeffects. However, the pyroeffects show a 

dominant influence only on the electric potential developed 

in the system. For a clamped-free and clamped-simply 

supported MEE beam, the pyroeffects influence the increase 

of the electric potential while for the clamped-clamped 

MEE beam, a deteriorating effect may be observed. Among 

all the temperature profiles considered, the uniform 

temperature profile exhibit significant effect on the direct 

quantities. The maximum electric potential is observed for 

clamped-clamped boundary condition at the region near the 

clamped end of the MEE beam. Further, the comprehensive 

investigation on the influence of the volume fraction, aspect 

ratio and boundary conditions on the direct quantities of the 

MEE beam in the thermal environment suggests that for the 

volume fraction Vf =0.2, the maximum electric potential can 

 
(a) 

 
(b) 

Fig. 21 Effect of aspect ratio on the magnetic potential: (a) 

C-F (b) C-S boundary condition 
 

 

be obtained. The moderate MEE beam (aspect ratio L/h=3) 

with clamped free boundary condition demonstrates the 

highest magnetic potential at the midspan of the beam, 

whereas for the clamped simply supported beam, it is 

observed for the aspect ratio L/h=1.25 (deep beam). It is 

expected that the results obtained in the present analysis can 

have a significant contribution in enhancing the design, 

performance and applicability of MEE smart structures in 

thermal environment. 
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Appendix 
 

The various stiffness matrices obtained during 

condensation method in the process of obtaining equivalent 

stiffness matrix and equivalent load vector are given below, 
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