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Bending analysis of functionally graded plates using new eight-unknown
higher order shear deformation theory
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Abstract. In this paper a new eight-unknown higher order shear deformation theory is proposed for functionally graded (FG)
material plates. The theory based on full twelve-unknown higher order shear deformation theory, simultaneously satisfy zeros
transverse stresses at top and bottom surface of FG plates. Equations of motion are derived from principle of virtual
displacement. Exact closed-form solutions are obtained for simply supported rectangular FG plates under uniform loading. The
accuracy of present numerical results has been verified by comparing it with generalized shear deformation theory. The effect of
power law index of functionally graded material, side-to-thickness ratio, and aspect ratio on static behavior of FG plates is
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investigated.
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1. Introduction

Functionally graded materials (FGMs) are new types of
composite materials whose mechanical properties vary
continuously through a certain direction; and thus avoid the
delamination in the laminated composite materials. Typical
FGMs are made from two isotropic materials such as metal
and ceramic. The ceramic constituent of FGMs, having high
temperature resistance in combination with metal, gives
high toughness. Because of the above advantages, FGMs
are widely used in many fields such as aerospace, nuclear,
civil engineering, automotive, biomechanics, optics... With
the development in manufacturing process, completing
appropriate theoretical models for structural analysis is an
attractive topic for researchers. Many computational models
for functionally graded (FG) plates and shells are
developed, and they can be classified into three main
categories according to displacement field: classical plate
theory, first-order shear deformation theory and higher-
order shear deformation theory. A review of various
methods of studying the static and dynamic behaviors of FG
plates and shells is presented in works done by Birman and
Byrd (2007), Jha et al. (2013), Swaminathan et al. (2015).

The classical plate theory (CPT) ignores the transverse
shear deformation effect and gives accurate results for thin
plates. Analytical solution for bending analysis of Kirchhoff
plates are given by Apuzzo at al. (2015), Barretta and
Luciano (2014), Chi and Chung (2006). Based on the
tolerance averaging technique, Jedrysiak and Michalak
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(2011) analyzed dynamic and stability behaviors of thin FG
plates. Yang and Shen (2001) studied dynamic response of
initially stressed FG rectangular thin plates subjected to
partially distributed impulsive lateral loads. A thin-plate
model including the surface effects which can be used for
size-dependent static and dynamic analysis of plate-like thin
film structures has been proposed by Lu et al. (2006). Arani
et al. analyzed nonlinear transverse vibration of an
embedded piezoelectric plate reinforced with single-walled
carbon nanotubes (SWCNTSs).

For moderately thick plates, first-order shear
deformation theories (FSDTSs) are utilized. FSDTs take into
account the transverse shear deformation effect, but their
accuracies depend on the shear correction factor, which is
difficult to compute. Closed-form solution for free vibration
of Reissner-Midlin FG plates with different combinations of
boundary conditions is presented by Hosseini-Hashemi et
al. (2010, 2011). Nguyen et al. (2008) performed numerical
analysis for the cylindrical bending of sandwich plate with
functionally graded faces. By finite element method,
Alieldin et al. (2011), Della Croceand Venini (2004),
Singha et al. (2011) investigated the bending behavior of
FG plates. Lee et al. (2010) analyses post buckling response
of FG plates under edge compression and temperature field
conditions are presented using the element-free kp-Ritz
method. Shaat et al. (2012, 2013) developed ananalytical
solution and finite element model for continuum
incorporating surface energy to study the behavior of ultra-
thin functionally graded (FG) Mindlin plates. For
microelectromechanical systems (MEMS) and
nanoelectromechanical systems (NEMS), carbonnanotubes
(CNTs) are widely used. Based on FSDT, Kolahchi et al.
(2015b) carried out a nonlocal, nonlinear buckling analysis
of embedded polymeric temperature-dependent microplates
resting on an elastic matrix as an orthotropic temperature-
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dependent elastomeric medium. Kolahchi et al. (2016a,
2016b) presented the temperature-dependent nonlinear
dynamic stability of functionally graded CNT reinforced
visco-plates resting on orthotropic elastomeric medium and
the dynamic stability response of an embedded piezoelectric
nanoplate made of polyvinylidene fluoride.

To avoid using the shear correction factor, higher order
shear deformation theories (HSDTs) are proposed. Using
Navier's solutions and finite element models based on third
order shear deformation theory, Reddy (2000) presented
theoretical formulation for static and dynamic analysis of
rectangular FG plates. Baseri et al. (2016) presented an
analytical solution for buckling of embedded laminated
plates resting on elastic foundation using Reddy’s HSDT.
L et al. (2009) developed a generalized and refined theory
for functionally graded ultra-thin films including the surface
effects. Using refined trigonometric shear deformation
theory, Tounsi et al. (2013) studied the thermo elastic
bending of functionally graded sandwich plate. Kolahchi et
al. (2015a) investigated bending analysis of functionally
graded (FG) nano-plates based on a new sinusoidal shear
deformation theory. Yahia et al. (2015) investigated wave
propagation in functionally graded plates with porosities
using various higher-order shear deformation plate
theories.The displacement field with five unknowns
accounts for the thermo-mechanical coupling, time
dependency, and the von Kérmén type geometric non-
linearity. Gulshan Taj et al. (2013) also utilized Reddy’s
third order shear deformation theory to analyze the static
behavior of FG plates by applying finite element method.
Using higher order shear deformation theory (11 unknowns)
and finite element models, Talha and Singh (2010) studied
free vibration and static analysis of FG plates. A higher
order shear and normal deformation theory with 12
unknowns is used by Jha et al. to determine the natural
frequency of FG plates (Jha et al. 2012). Navier’s solution
technique employing double Fourier series is used to give
analytical solution. Swaminathan and Naveenkumar (2014)
presented analytical formulations and solutions for the
stability analysis of simply supported FG plates by various
shear deformation theories, one of which is with twelve
displacement’s unknowns.

To describe the wrapping throughout the thickness of
the plate during rotation due to transverse shear, Touratier
(1991) proposed employing the sine function. Later,
Zenkour (2005a, 2005b, 2006, 2009) used Touratier’s
sinusoidal shear deformation theory to investigate the
mechanical behavior of FG plates. Analytical solutions for
bending, buckling and free vibration analyses are presented
in his work. Most of the above mentioned HSDTs require
additional computation efforts due to the additional
unknowns introduced to them (usually nine, eleven or
thirteen unknowns depending on the particular theory).

In the following work, a new higher order displacement
field based on twelve unknowns higher order shear
deformation theory is developed. The new form is dictated
by the satisfaction of vanishing transverse shear stress at the
top and bottom surfaces of plate. By this approach, the
number of displacement unknowns are reduce from twelve
to eight, thereby saving computational time and optimizing

the storage capacity of computers. The accuracy of the
present theory is verified by comparing with previous
studies.

2. Kinematics

The full higher order displacement field is given in the
following form

U(X, Y, 2) = Uy (X, ) + 26, (%, ) + 2°Us (X, ) + 2°0 (X, Y);
V(XY 2) =Vo (X, V) + 20, (X ) + 2, (%, V) + 20, (%, ¥): - (1)
W(X, Y, 2) = Wy (X, ¥) + 26, (X, ¥) + 2°Wy (x,¥) + 2°6; (x, Y).

where u,v,w denote the displacements of a point along the
(x,y,z)  coordinates;  UgVo,W, are  corresponding
displacements of a point on the midplane; 6y, 6, and 8, are
the rotations of the line segment normal to the midplane
about the y-axis, x-axis and z-axis, respectively. The

functions ug,vg,W;, 6,6, and 6, are the higher order

terms in the Taylor series expansion defined in the mid-
plane.

For bending plates, the transverse shear stresses oy, oy,
must be vanished at the top and bottom surfaces. These
conditions lead to the requirement that the corresponding
transverse strains on these surfaces be zero. From

V2 (x, y,ig) =7y (x, y,igj =0, we obtain

. 1 h> . . . 4 1.
u0 :_EHZ,X _ggz,x’gx :_W(QX +W0,x)_§WO,x’ (2)
vi=-1p L '9*:—i(¢9 +W, )—lw*
0 2y 8 z,y1 %y 3h2 y 0y 3 0y*
The displacement field (1) becomes:
7 oy .
U=u, +26, —?(9“ +016?ZYX)—§[(:2 (6, +w,, )+, |;
2 3
" . 3
v=v0+2¢9y—%(ez‘y+010Ly)—%[cz(0y+W0‘y)+wo‘y} 3

_ 20, * 3"
W=W,+20,+7°W, +7°0,.

with: ¢ —hz'c _4

B 4' 2 hz'

The strain components and strain displacements
relationships can be expressed as

e =& +iK) + 1%, + 'K,
£, =&+ 1K)+ 106, + K, 6, = &) + 1K, +1°¢,,

Ty = 5fy + ZK;J + Zza‘:y + ZSK:y; 4
Vo =rVe 2Kk + 2y + K,

) 0 2, * 3 *
Vye =V tIK, + 27y, +TK,,.

where
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Fig. 1 Geometry of FG plate with positive set of reference
axes

0 0 0 0 .
{5X18y182 ’J/xy} :{uo,xvvo,yvez'uo,y +Vo,x}'

0 0 0 0 > .
{KX,KV,KZ ,ny} :{ XVX,¢9y,y,2Wo,€X,y +6’y,x},

e e 1 " 1 "
{gx ’ gy &, ’yxy} = {_E(ez,xx + Clez,xx )’ _E(QZ,W + Clezvyy )'

(®)

30],~(0,,, +¢.0; )}; (Tt} = {Wo +0,, W, +6, };

{ng ' K)(/)z } = {_Clgz*,x ' _cle:,y } ; {7:2 ' 7;2} =
{—c2 (W, +6,),—C, (W, +6, )} K, ) =160,.6,, ).

In the above formulas, a comma followed by x or y
denotes differentiation with respect to the coordinates x or y
respectively.

3. Constitutive equation

Consider a linearly elastic rectangular simply supported
FG plate of uniform thickness h as shown in Fig. 1. The
Poisson’s ratio v is assumed to be constant across the plate
thickness. The Young’s modulus of the FG plate is assumed
to follow the power law distribution in the thickness
direction, and expressed as

p
E(z):Em+(Ec—Em)(%+%) (6)
here subscript ¢ refers to the ceramic material and subscript
m refers to the metal material of the FG plate. It is clear
from the expression that the top surface (z=h/2) of the FG
plate is ceramic-rich and the bottom (z=-h/2) is metal-rich
in constituents.
The stress-strain relationship for the FG plate can be
written as

O-X Qll Q12 Q13 0 0 0 X
O'y QZl QZZ Q23 O O O y
O-Z — Q31 Q32 Q33 0 O O z (7)
o,/ |0 0 0 Q, 0 0 ||5
o, |0 0 0 0 Q; 0 ||[r
c.] |0 0 0 0 0 Qllr.

in which (oy, 6y, 0;, 00, 0y, 0xy) are the stresses, and (e, &,
&, Pxor Wy Vxy) @re the strains with respect to axes x, y, z. The
elements of stiffness matrix Qj; are defined as follows

0,=0Q,=0 =ﬂ-
TR (L) (1-2v)
vE .
Q,=Q,;=0Q; = m =Q,; =Qy, =Qyy; (8)
E

Qus = Q55 = Qg6 :m-

4. Equilibrium equations

The principle of virtual displacement when applied to
the plate can be written in analytical form as (9)

h/2
0 :I J. (O'X58X + ayé'gy +0,0¢, +0'Xy57/xy +0,,07,, +
A-h/2

0,,07,, JAAdz— [q;ow dA = [{N,8u,, +M,50,,
A A
'\;* (66, +c0

M
)_

Z,XX 3 (CZ (5€x,x +5W0,xx)+5w(:,xx)

N, \
+N,8V,, +M, 56, , —7(592,yy +¢,0 Z,yy)—

*

M ) ,
_?y(cz((sey,ywwo,w)ww )+NZ592+2|\/|25W0 )

0,yy

+3N;506; + N, (8u, +5voyx)+ M, (56,,+36,,)

N, (86,,, +¢,56,,,)- M3*y (c2 (86,,+56,,+25wW,,, )+

20W,

0,xy

)+QX (856, + 8wy, )-5,656;, —Qic, (56, + 5w, )

+8,56,, +Q, (56, +5w,, )-S,c0;, —Qic, (56, + oW, )+

2

3
S,60, ,+0; (5W0 +g59Z +h75wg +%59:j}dA

where symbol ¢ denotes the variational operator, , the

transverse load applied at the top surface of the plate, and
(10)

NX O-X MX
h/2
Ny _ J‘ oy dz: My _
NZ bz | Oz Mz
ny Oy MXy
o, N, o,
h/2 * h/2
(o2 N o
Yilzdzs Vb= Y Lz%dz;
b2 | 92 Nz -h2 | Oz
O-xy Xy O-Xy
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h/2 o S h/2 o
I { Xz}dz;{ X}z { XZ}Zdz;
—h/2 O-Yz SY —h/2 Gyz

(10)
* h/2 * h/2
{Qi}= _[ {ze}zzdz;{si}= I {ze}ze’dz.
Q) 200y Syl 2%
From Eqgs. (4), (7), and (10) we obtain
N, A, A, A, 0 B, B, By
N, A A, Ay 0 B,y B, By
N, Ay A Ay 0 By By, By
N,, 0 0 0 A, O 0 0
M, B, B, B; 0 C, C, Cg
M, By, By By 0 G, G Cy
M, By By, By 0 Gy G, Gy
M,t=| 0 0 o B, O 0 0
Ny C., C, C; 0 D, D, Dy
N; Ch Cp Cpy 0 D, D, Dy
NE Cy G G 0 Dy Dy Dy
N, 0 0 C., O 0 0
M, D, b, b, 0 E, E, E;
M; D,y D, Dy 0 By Ep Ey
M, 0 0 0o Db, O 0 0
- (11a)
0 ¢, C, ¢ 0 D, D, 0]fg
0 C, G, C3 0 D, C, O ‘93
0 G, C, C; 0 D Dy, O &
B, O 0 0o ¢, O 0 D, }/Sy
o D, D, D, 0 E, E, 0 (|«
¢ b, b, D, 0 E; E, O KS
0 Dy D, D, 0O E, E, 0]«
C, O 0 0o Db, O 0 E, Kfy ;
0 E, B, B; 0O F, F, O &
0 E, Ep, Ey 0O F, F, O 5;
0 E, E, B3 0 R F, 0 g,
D, O 0 0 E, O 0 F, }/:y
R, R, HRs G, G, 0 ||«
0 F, F, Fy 0 G, G, O K;
E, O 0 0 F, 0 G, K:y
Q, _Ass 0 B, 0 C, 0 D O ] 732
Q, 0 As 0 By 0 Cio 0 Dgl|ry,
S, B, 0 C, 0O D, O E, O KSZ
S 0 B 0 C 0 D 0 E K°
Qi* “lc, 0 Dy 0 E., 0 Fis 0 7y - (110)
Qg Co 0 Dy 0 Ey 0 Fyllry
S, D, E.. F, 0 G, O K;Z
S; L Dy 0 B 0 Fy 0 G| K;Z

where A;, By, Cij, Dy, Ej, Fy,
coeficients, defined by

Gj; are the plate stiffness

(A;.B;.C;. Dy, E; . Fy. Gy ) =

ijr ~ij Hijr Sij Vi
h/2
2 5,3 ,4 5 .6 .
[ Q(1z2.2% 24, 2,2 dz;
-h/2

Integrating the expression in equation (9) by parts and
setting the coefficients of

SUy, Sy, SW,,56,,56,,56,,6W,,56, to zero separately,
we obtain the following equilibrium equations

(i,j=1234,5,6)

o, : Nx,x + ny'y =0;
oV, : Nw + ny,x =0;

oW, %2( XXX+2Mxyxy+Myyy)

¢, (Q,+Q;,)+(Qu, +Q,, ) +a; =0;

5@132('\/' ML) =(M, M) -6,Q0 +Q, =0; W
50,12 (M3y, My, )=(Myy, + M, ) -6,Q) +Q, =0
501:%(N:XX+2N:WY+N”Y) N +2q; 0;
5W;:%(M:,XX+2M:%W+ vy )—2M +h—2qz =0;
50;:C—21(N:YXX+2N:WY+ s )-3NI+(Sh, +S0, )¢l

5. Navier’s solution

Consider a simply supported rectangular FG plate
subjected to transverse distributed loading. The associated
simply supported boundary conditions are as follows:

At edge x=0 and x=a:

Vo =0w, =0;6, =0;6, =0;

. . . (13a)
w, =0;6, =0;M,=0;M, =0
At edge y=0 and y=b:
U, =0;w, =0;6, =0;9, =0;
(13b)

W, =0;6, =0;M, =0;M =0

Following Navier’s solution procedure the displacement
variables satisfying the simply supported boundary
condition are written in the form (14)

Up = DD Upn, COSXSin By;
m=1 n=1

Vo =2 ) Von SiNarXCOS By;
m=1 n=1

Wo =D > Wy, sinaxsinBy;
m=1 n=1

0,=Y.> O COSaXSInBY;

3
I
5N
>
I
5N
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0, =iiﬁymnsinaxcosﬁy;
m=1 n=1
o, :ii@mnsinaxsinﬂy;
m=1 n=1 (14)
Wy =D Wy, sinaxsin By;
m=1 n=1
o, =ii@;mnsinaxsinﬂy.

3
I
JuN
>
I
JiN

mr nrz
where g =—; f=—"—.
a b

The applied transverse load @, (X,y) is also expanded
in double-Fourier sine series

qZ(x,y):iiqmnsinaxsinﬂy (15a)

m=1 n=1

The coefficients g, are given below for any typical
loads

ab
qmn=%.ﬂq;(x, y)sinaxsin Sydxdy (15b)

16q, .
z*mn’
for sinusoidally distributed load: qmW=0o

Substituting Egs. (14) and (15) in to Eg. (8) and
collecting the coefficients, we obtain an 8x8 system of
equations

for uniformly distributed load: q,,, =

Sll SlZ 513 sl4 SlS S16 Sl7 518 omn
SZl SZZ 323 524 S25 SZG SZ7 SZS omn qmn
531 S32 S33 S34 535 s36 S37 s38 WOmn 0
541 342 543 544 S45 S46 547 S48 9xmn — 0 (16)
S51 SSZ SSS SS4 SSS S56 s57 s58 eymn Eqmn
sﬁl 562 S63 564 S65 SGG SG7 568 Hzmn h22
S71 S72 S73 S74 S75 s76 s77 s78 W;mn T qmn
SSl SBZ SS3 584 S85 386 S7 588 i e;nn 3
0} Onn

for any fixed values of m and n. The elements s;; of the
coefficient matrix [s] are given in Appendix A.
The analytical solutions can be obtained from Eq. (16).

6. Results and discussion

A Matlab codes are built based on the present theoretical
formulation for bending analysis of simply (diaphragm)
supported FG plates. The material properties of FG plates
are presented in Table 1. The deflection, in-plane and
transverse stresses are presented in the following
dimensionless form for convenience

Table 1 Material properties of FG plate

. Metal Ceramic
Properties - -
Aluminum (Al) Alumina(Al,03)
E (GPa) 70 380
% 0.3 0.3

_,,_h ab ) _ 7LG )
O-V(Z)__O-y[??zj'o-xya)_q a xy(o’o’z)’ (17)

9,2 o
o,,(2) = Loxz (OE Zj;&yz (2) = Layz (3,0, zj.
0,2 2 g,a 2

In order to validate the accuracy, Example 1 gives the
numerical results using present eight-unknown HSDT.
Obtained results are compared with other shear deformation
theory available in literature. In the next examples, the
various numerical results are presented to investigate the
effects of power-law index, aspect ratio, side-to-thickness
ratio on the bending behavior of FG plates. Those numerical
results also reinforce the efficiency of present eight-
unknown HSDT in comparing with other shear deformation
theories. The following models of shear deformation
theories are used in this section

_ 20 3n*.
U=Uu,+26, +2°U,+2°0,;

HSDT-12: V=V, +26, + 77V, +2°6};
W=W, +26, +2°W, + 2°6,.
u=u,+260, +z°u, +2°6;;
HSDT-O: o
V=V +260,+ 2V, +2°6,; W=W,.
u=u,+26, —23;%(@ +0W, / 0X);
HSDT-5: , 4 _
V=V, +120, -1 W(Qﬁawolay),
W=W,.
u=u,+20, +2°6;;
Quasi-3D _ 3%,
HSDT: V=V, +260,+7°0,;

W=W, +26, +Z°W,.

Example 1 - Verification: A moderately thick (a/h=10)
simply supported square FG plate under uniformly
distributed transverse load is considered. Table 2 presents
the dimensionless deflection and stresses for different
values of power-law index p. The numerical results using
present eight-unknown HSDT are compared with those
using five-unknown Zenkour’s generalized shear
deformation theory (Zenkour 2006) and four-unknowns
Thai’s simple first-order shear deformation theory (Thai and
Choi 2013). It can be seen that a good agreement is
obtained for all values of power law index p. There is a

more significant difference for stresses &,,,5,, due to the

neglecting of ¢, in the works of Zenkour and Thai.
The dimensionless central deflection and normal stress
5,(h/3) from present higher-order shear deformation
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theory are given in Table 3. The results are those of a
simply supported square FG plate with a bi-sinusoidal
transverse mechanical load applied at the top plate surface.
Three side-to-thickness ratios (a/h=4, 10 and 100) and five
power-law indexes (p=0, 0.5, 1, 4 and 10) are considered.
The results, which account for &, are compared with those
from Neves et al. (2013) using a quasi-3D higher-order
shear deformation theory done by meshless techniques,
those from Neves et al. (2012) using a quasi-3D sinusoidal
shear deformation theory, and those from Carrera et al.
(2008, 2011). From Table 3, it could be concluded that the
present HSDT presents very close results to quasi-3D
higher-order shear deformation theory.

Fig. 2 plots the through-the-thickness distributions of
the dimensionless in-plane stresses and transverse shear
stresses at the specified positions of square FG plate under
uniform load with power-law index p=2. It is shown that the
present results are in a good agreement with those predicted
using nine-unknown (HSDT-9) and twelve-unknown

(HSDT-12) higher order shear deformation theories for the
. _f(ab _
in-plane stresses &, (E,E,z), ,,(0,0,z). Note that the

present eight-unknown HSDT and HSDT-12 take into
account the thickness stretching effect (&, =0), but HSDT-

9 neglects the thickness stretching effect. Present HSDT
presents better representation of the transverse shear

stresses 0,,,0,, , they are zero at the top and bottom of the

FG plates; while according to the HSDT-9 and HSDT-12
the vanishing of transverse stresses at the top and bottom
surfaces is not satisfied.

Example 2. A moderately thick simply supported square
FG plate (a = b = 10h) under uniform load is considered.
Table 4 contains dimensionless deflection and stresses for
different values of power-law index p. Figure 3 shows the
variation of dimensionless deflection W, in-plane stresses

and transverse stress &, versus the power law

O, ny 1 Xz

Table 2 Dimensionless deflection and stresses of square plates under uniform loads (a/h=10)

p Method W 5. (h12) 5,(h/3) G, (-n13) 5,.(0) 5,,(h/6)
Zenkour (2006) 0.4665 2.8932 1.9103 1.2850 0.4429 0.5114

0 Thaiand Choi (2013)  0.4666 2.8732 1.9155 1.2990 0.4004 0.4004
Present 0.4640 2.9050 1.9229 1.2855 0.4881 0.4351

Zenkour (2006) 0.9287 4.4745 2.1692 1.1143 0.5446 0.5114

1 Thaiand Choi (2013) 0.9288 4.4407 2.1767 1.1218 0.4923 0.4004
Present 0.9266 4.4851 2.1819 1.1113 0.4871 0.5349

Zenkour (2006) 1.1940 5.2296 2.0338 0.9907 0.5734 0.4700

2 Thaiand Choi (2013)  1.1909 5.1853 2.0441 0.9998 0.4799 0.3407
Present 1.1925 5.2394 2.0466 0.9909 0.4457 0.5610

Zenkour (2006) 1.3200 5.6108 1.8593 1.0047 0.5629 0.4367

3 Thai and Choi (2013) 1.3123 5.5576 1.8719 1.0160 0.4393 0.2952
Present 1.3187 5.6173 1.8724 1.0074 0.4123 0.5201

Zenkour (2006) 1.3890 5.8915 1.7191 1.0298 0.5346 0.4204

4 Thai and Choi (2013) 1.3770 5.8316 1.7338 1.0427 0.3981 0.2711
Present 1.3874 5.8940 1.7331 1.0341 0.3959 0.5201

Zenkour (2006) 1.4356 6.1504 1.6104 1.0451 0.5031 0.4177

5 Thai and Choi (2013) 1.4205 6.0857 1.6252 1.0591 0.3647 0.2622
Present 1.4338 6.1493 1.6240 1.0504 0.3930 0.4893

Zenkour (2006) 1.4727 6.4043 1.5214 1.0536 0.4755 0.4227

6 Thai and Choi (2013) 1.4555 6.3364 1.5364 1.0683 0.3406 0.2622
Present 1.4706 6.4005 1.5350 1.0594 0.3979 0.4629

Zenkour (2006) 1.5049 6.6547 1.4467 1.0589 0.4543 0.4310

7 Thaiand Choi (2013)  1.4867 6.5847 1.4615 1.0740 0.3245 0.2666
Present 1.5026 6.6489 1.4599 1.0649 0.4062 0.4429

Zenkour (2006) 1.5343 6.8999 1.3829 1.0628 0.4392 0.4399

8 Thai and Choi (2013) 1.5158 6.8287 1.3973 1.0782 0.3147 0.2730
Present 15317 6.8929 1.3958 1.0689 0.4152 0.4289

Zenkour (2006) 1.5617 7.1383 1.3283 1.0662 0.4291 0.4481

9 Thaiand Choi (2013)  1.5433 7.0663 1.3422 1.0819 0.3095 0.2799
Present 1.5590 7.1306 1.3408 1.0723 0.4236 0.4197

Zenkour (2006) 1.5876 7.3689 1.2820 1.0694 0.4227 0.4552

10 Thai and Choi (2013) 1.5697 7.2963 1.2953 1.0853 0.3074 0.2867
Present 1.5847 7.3608 1.2940 1.0755 0.4310 0.4141
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Table 3 Dimensionless deflection and stresses of square plates under bi-sinusoidal loads

G,(h/3) w
p a/h
4 10 100 4 10 100
Neves et al. (2013) 0.5278 1.3176 13.161 0.3665 0.2942 0.2803
0 Present 0.5475 1.3252 13.1726 0.3665 0.2943 0.2804
05 Neves et al. (2013) 0.5860 1.4680 14.673 0.5493 0.4548 0.4365
' Present 0.6028 1.4713 14.6458 0.5534 0.4520 0.4325
Neves et al. (2013) 0.5911 1.4917 14.945 0.7020 0.5868 0.5647
Carera et al. (2008) 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
1 Carera et al. (2011) 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
Neves et al. (2012) 0.5925 1.4945 14.969 0.6997 0.5845 0.5624
Present 0.6114 1.5021 14.9688 0.7020 0.5875 0.5625
Neves et al. (2013) 0.4330 1.1588 11.737 1.1108 0.8700 0.8240
Carera et al. (2008) 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
4 Carera et al. (2011) 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
Neves et al. (2012) 0.4404 1.1783 11.932 1.1178 0.8750 0.8286
Present 0.4724 1.1909 11.9221 1.1517 0.8808 0.8287
Neves et al. (2013) 0.3097 0.8462 8.6010 1.3334 0.9888 0.9227
Carera et al. (2008) 0.3695 0.8965 8.9077 1.3745 1.0072 0.9361
10 Carera et al. (2011) 0.1478 0.8965 8.9077 1.3745 1.0072 0.9361
Neves et al. (2012) 0.3227 1.1783 11.932 1.3490 0.8750 0.8286
Present 0.3493 0.8885 8.9070 1.3748 1.0069 0.9362
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Fig. 2 Variation of dimensionless stresses through the thickness of square plates under uniform loads

(a=b=10h, p=2)
index p of square plates under uniform loads. It is observed increasing power law index. Transverse stress oy, oy,
that the dimensionless deflection W and normal stress &, slightly changes in range of p from O to 1, decreases in
increase as the power law index increases. In-plane stress range of p from 1 to 5, and then increases slowly with

o,y decreases in range of p from 0 to 2, then increases with increasing power law index. Effect of HSDT is significant
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Table 4 Dimensionless deflection and stresses of square plates under uniform loads (a/h=10) with
different value of power-law index p

p Method w G,(h12) G,(h!3) G, (-h13) 5,.(0) &, (h16)
FSDT 0.4666 2.8726 1.9150 1.2975 0.3927 0.3927
HSDT-5 0.4666 2.8901 1.9105 1.2861 0.4890 0.4347
0 HSDT-9 0.4666 2.8905 1.9104 1.2870 0.4877 0.4342
HSDT-12 0.4640 2.9064 1.9226 1.2892 0.4864 0.4364
Present 0.4640 2.9050 1.9229 1.2855 0.4881 0.4351
FSDT 0.9288 4.4397 2.1762 1.1205 0.3927 0.4829
HSDT-5 0.9288 4.4694 2.1696 1.1144 0.4890 0.5345
1 HSDT-9 0.9289 4.4730 2.1700 1.1135 0.4876 0.5222
HSDT-12 0.9268 4.4881 2.1821 1.1122 0.4855 0.5236
Present 0.9266 4.4851 2.1819 1.1113 0.4871 0.5349
FSDT 1.3123 5.5564 1.8715 1.0148 0.2896 0.4310
HSDT-5 1.3197 5.6030 1.8605 1.0057 0.4144 0.5482
3 HSDT-9 1.3209 5.6183 1.8596 1.0032 0.4254 0.5336
HSDT-12 1.3199 5.6301 1.8715 1.0059 0.4231 0.5346
Present 1.3187 5.6173 1.8724 1.0074 0.4123 0.5487
FSDT 1.4205 6.0843 1.6249 1.0579 0.2572 0.3577
HSDT-5 1.4349 6.1411 1.6120 1.0466 0.3950 0.4883
5 HSDT-9 1.4360 6.1573 1.6099 1.0447 0.4080 0.4861
HSDT-12 1.4349 6.1649 1.6215 1.0494 0.4059 0.4871
Present 1.4338 6.1493 1.6240 1.0504 0.3930 0.4893
FSDT 1.5696 7.2947 1.2950 1.0840 0.2812 0.3015
HSDT-5 1.5872 7.3588 1.2834 1.0711 0.4326 0.4123
10 HSDT-9 1.5875 7.3644 1.2822 1.0711 0.4415 0.4199
HSDT-12 1.5850 7.3694 1.2921 1.0767 0.4397 0.4213
Present 1.5847 7.3608 1.2940 1.0755 0.4310 0.4141
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Table 5 Dimensionless deflection and stresses of square plates under uniform loads (a=b, p=5) with
various value of side-to-thickness a/h

ah Method w G.(h/2) o, (h/3) &,(-h/3) 5,,(0) 5,,(h/6)
FSDT 1.6358 3.0422 0.8124 0.5289 0.2572 0.3577
HSDT-5 1.6929 3.1578 0.7863 0.5079 0.3895 0.4815
5 HSDT-9 1.6969 3.1909 0.7820 0.5066 0.4003 0.4793
HSDT-12 1.6911 3.2097 0.8052 0.5090 0.3914 0.4796
Present 1.6871 3.1804 0.8103 0.5070 0.3813 0.4810
FSDT 1.4205 6.0843 1.6249 1.0579 0.2572 0.3577
HSDT-5 1.4349 6.1411 1.6120 1.0466 0.3950 0.4883
10 HSDT-9 1.4360 6.1573 1.6099 1.0447 0.4080 0.4861
HSDT-12 1.4349 6.1649 1.6215 1.0494 0.4059 0.4871
Present 1.4338 6.1493 1.6240 1.0504 0.3930 0.4893
FSDT 1.3666 12.1686 3.2497 2.1157 0.2572 0.3577
HSDT-5 1.3703 12.1968 3.2434 2.1099 0.3966 0.4903
20 HSDT-9 1.3705 12.2044 3.2424 2.1085 0.4109 0.4885
HSDT-12 1.3703 12.2087 3.2480 2.1127 0.4106 0.4888
Present 1.3700 12.2018 3.2490 2.1141 0.3963 0.4908
FSDT 1.3516 30.4216 8.1243 5.2893 0.2572 0.3577
HSDT-5 1.3521 30.4328 8.1217 5.2869 0.3971 0.4909
50 HSDT-9 1.3522 30.4358 8.1214 5.2863 0.4118 0.4893
HSDT-12 1.3521 30.4379 8.1235 5.2883 0.4118 0.4893
Present 1.3521 30.4353 8.1239 5.2890 0.3971 0.4910
FSDT 1.3494 60.8432 16.2486 10.5785 0.2572 0.3577
HSDT-5 1.3496 60.8488 16.2473 10.5774 0.3972 0.4910
100 HSDT-9 1.3496 60.8503 16.2471 10.5770 0.4120 0.4894
HSDT-12 1.3496 60.8514 16.2482 10.5781 0.4120 0.4894
Present 1.3495 60.8501 16.2484 10.5784 0.3972 0.4910
1.75 T T T T T T 7
—o—FSDT
17 B-- HSDT-5 |- ol .
-=4-- HSDT-9
1661 —a— HSDT-12 |4
=-—#—- Prasent 50+

Dimensionless deflection

20 30 40 50

ath

60 70

Xy
=

Dimensionless sigma,

—o— FSDT

B-- HSDT-5
==%-- HSDT-9 [
—&— HSDT-12
——#%=- Present

0 10

Fig. 4 Variation of dimensionless deflection W, in-plane stresses

20 30 4

.
0 50
ah

60 70

80 90 100

ey

Dimensionless sigma

Xz

Dimensionless sigma

401

30+

20F

—o— FSDT

--¢- HSDT9 ||

—&— H3DT-12

—-—#=- Present
T

B-- HSDT-5

042

04r
038 ¢
0.36F
0.34 -
0.32r

031
028
0.26 -

024
0

50 6
ath

0

70

80 90 100

—o—FS0T
B-- HSDT-5
=== HSDT-9 ||
—a— HSDT-12
——=--Present | |

]

10 20

X!

to-thickness ratio a/h of square plates under uniform loads (a=b, p=5)

50
a’h

60

0y, Oyy s transverse stress

70

Oy,

80 a0 100

versus side-

319



320

Tran Minh Tu, Tran Huu Quoc and Nguyen Van Long

Table 6 Dimensionless deflection and stresses of rectangular plates under uniform loads (a/h=10, p=5)
with various value of aspect ratio b/a

b/a Method W G,(h/2) &,(h/3) a,,(-h/3) 5., (0) 5, (h/6)
FSDT 1.4205 6.0843 1.6249 1.0579 0.2572 0.3577
HSDT-5 1.4349 6.1411 1.6120 1.0466 0.3950 0.4883
1 HSDT-9 1.4360 6.1573 1.6099 1.0447 0.4080 0.4861
HSDT-12 1.4349 6.1649 1.6215 1.0494 0.4059 0.4871
Present 1.4338 6.1493 1.6240 1.0504 0.3930 0.4893
FSDT 3.4736 12.9202 1.5719 1.5049 0.3570 0.3818
HSDT-5 3.4960 13.0021 1.5649 1.4943 0.5490 0.5227
2 HSDT-9 3.4976 13.0245 1.5637 1.4921 0.5678 0.5205
HSDT-12 3.4960 13.0121 1.5843 1.4982 0.5657 0.5211
Present 3.4943 12.9902 1.5857 1.5002 0.5471 0.5236
FSDT 4.1807 15.1016 1.3763 1.5378 0.3784 0.3724
HSDT-5 4.2048 15.1891 1.3705 1.5282 0.5821 0.5102
3 HSDT-9 4.2066 15.2129 1.3696 1.5260 0.6021 0.5082
HSDT-12 4.2048 15.1963 1.3921 1.5323 0.6000 0.5085
Present 4.2030 15.1731 1.3933 1.5344 0.5801 0.5108
FSDT 4.3768 15.6838 1.2994 1.5338 0.3825 0.3614
HSDT-5 4.4012 15.7725 1.2939 1.5249 0.5885 0.4954
4 HSDT-9 4.4031 15.7966 1.2930 1.5228 0.6087 0.4935
HSDT-12 4.4013 15.7791 1.3159 1.5290 0.6066 0.4937
Present 4.3995 15.7557 1.3171 1.5311 0.5864 0.4959
FSDT 4.4274 15.8291 1.2743 1.5257 0.3830 0.3504
HSDT-5 4.4519 15.9180 1.2688 15174 0.5893 0.4804
5 HSDT-9 4.4537 15.9421 1.2680 1.5154 0.6096 0.4786
HSDT-12 4.4520 15.9246 1.2910 1.5215 0.6075 0.4788
Present 4.4501 15.9011 1.2921 1.5234 0.5873 0.4808
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for transverse shear stress; there is a big difference between
FSDT and HSDT results. Present eight-unknown HSDT
results show good agreement with twelve-unknowns HSDT.

Example 3. A simply supported square FG plate under
uniform load is considered. Table 5 shows dimensionless
deflection and stresses with side-to-thickness ratio varies
from 5 to 100 (p=5).

Fig. 4 presents the variation of dimensionless deflection
W, in-plane stresses &,,5,,, transverse stress & = with
respect to a/h ratio. It can be seen that the proposed new
HSDT and full HSDT give almost identical results of
deflections as well as tresses for all values of side-to-
thickness ratio. The difference of deflection and transverse
stress between FSDT and HSDT increases when the side-to-
thickness ratio decreases.

The presented results on Table 5 and the graph in Figure
4 also show that for thick plates (a/h=5), the proposed
HSDT gives more accurate results in comparison with
FSDT and other HSDT. The consideration of a non-zero
normal strain &, produces greater differences in the
transverse shear stresses between present HSDT and FSDT,
HSDT-5, HSDT-9. The effect of the zero transverse shear
stresses at the top and bottom surfaces is evident by close
results between proposed HSDT and HSDT-5 for oy,, ay,.

Example 4. A simply supported square FG plate under
uniform load is considered (a/h=10, p=5). Dimensionless
deflection and stresses with various aspect ratios are given
in Table 6. The variation of dimensionless deflection and
stresses with aspect ratio is plotted in Fig. 5. As can be seen
from the results, the computations based on the present
eight-unknown HSDT are again in good agreement with
those predicted by other HSDT. The deflection and stresses
increase as the aspect ratio increases. There is a bigger
difference of transverse stresses between the present HSDT
results and those predicted by full HSDT-12.

7. Conclusions

The new eight-unknown HSDT is proposed based on
full twelve-unknown HSDT and satisfies vanishing
transverse stresses at the top and bottom surface of FG
plates. Static behavior of simply supported FG plates is
studied, the deflection and stresses under uniformly
distributed loading is analyzed. The accuracy of numerical
solutions has been established with respect to known results
in available literatures. The present HSDT gives more
accurate results for thick FG plates than other HSDT by
taking to account the normal stretching stresses and zeros
transverse shear stresses on the top and bottom surfaces of
FG plates. Additionally, the presented formulation for FG
plates involves smaller computation compared to full
twelve-unknown higher-order shear deformation theory.
The numerical results for uniform loading should serve as a
reference for any other analytical/computational model of
FG plates.
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Appendix A. Definition of coefficient in Eq. (16 c
PP g.(16) +(Dgs = BegCy + FoaC, = FigCy + DG, ) B + 22C1 2B
Sy = Auaz + AAAﬂZ: S, =Su =(A, +&4)aﬁ; Sas :{Gléczz B ZECIJ,ICZ Jrcnja2 '
5132531:_D11C2 as_[Dlzcz +2D44C2jaﬂ2; G,c? 2E,C
3 3 3 { e g‘uc j/32+E55c§7205502+A55;
Siq 2841:(311—%)1124—(844—%][)’2; 2 2
3 3 =s,=|C,+C, + 12C2 +GAAC2 _2E12C2 _2E44C2 op;
D,c, DyC 9 3 3
S15:551:(812"'844_ e — z]aﬂ;
3 3 S,.=§ :7(&7':1102)0!3 ( 132 Blj
C11 3 C12 2. N o 2 6 8
8162861:—705 - Ao - 7+C44 af’;
D, F,c, FuC
D 2D _(i_'_DM_ 12v2 _ Ta Zjaﬂz;
317:571:——05 -2B,a— 12+ 3 af; 2 6 3
Cuc CpC, 2 2 S =S = (Eﬂ chzjas (ZEB ; 2C13j
Sig =Sy ="~ 2 a’~3Cua - ( +C44C1Jaﬂ Sy = Ay + Ay,
(B, 2B, Guc, 2G,c, 2.
523=532=_[D21Cz +2D44czj0!2ﬁ— Dyc, B [ 3 * 3 9 9 b
3 3 3
D, F.cc
D,c, D,c, 548:384=_( it uClZja3+(D55_3D13_Bssc1+Flscz_
Sps =Sip =| By T By — 3 3 728 2 6
C C.
S =(B44 3 DMCzJaz +(Bzz _%jﬂz. FisC, + DesCiCy ) — ( 122c1 +D,c — 1221 2 _ 44;31 Zjaﬁz;
3 3 '
C C G,C¢ 2E,c
Sz = Se2 Z_(f*’CMjazﬂ_Azzﬂ_%ﬂs; 555=[ 4; 2 ;A z24+C j
D G,C: 2E,C
Sy =5,= ( 321 + 344)0‘ B- Zstﬁ_iﬂ [%*%JrczzJﬂZ*EeeC§*2C6502+A56;
C
R :_(%+0Mq]a2ﬂ_3023ﬁ_%qﬂs; Ss6 = Ses = _(%+ D — Fz(licz - F“;czjazﬂ
G,C’ G, +G, +4G,)c:
Sy = lé Lot +(&5 +EgC; _chscz)“2 +( = 219 ) +[D2§CZ - %Jﬂ*(%*iﬁéczjﬁs;
@B+ (A Bt 200, )+ S (E?%GT%}”’
c c
Sz =Su3 [Gié 2 %ja3+(&5—2C5ECZ+EESC§)a +[L§c2—zczsjﬂ—(%—%)ﬁs;
E,c, 2E,c, G, 2G,c? )
7[ 2:;2+ 1;427 2527 54;2}1'82' 3582535:*(D221Cl+D44C1’F21glc MCIC )aﬂ+(
E12C2 ZEMCZ _GIZCZZ _2(344C22 2 Dyt P
S =% = [ 3 9 9 ) p BeoCy + FoaCy, — FeCo + Dseclcz)ﬂ*[%*%jﬂs;
_ 2 Gzzczz _ ExC, | pa. Cy,
+(A56 2C66C2+E6602)ﬂ+( 9 3 i S6G=%a4+( 2 +7)0{ +(%+T+E44j0{ﬂ
F.c Dy,C.
[%*%Jrigcz)azﬂz +%ﬁ2 sy B Se =S :%a“ +(D13 + D;)a +(Féz +%+—2§“4)a2ﬂ2
G,c 2E,C
337=373=7152a"+7E§ o+ (D23+ jﬁ + 22[1 +2By;
(Gucz 291(:2 4G34Czjazﬂz 2E,C, B+ chz B Sy = 5y :%a4+(37§13+03T101j062 +(%+E371C1+E44c1ja2ﬂ2
Sy = Sg3 = 11(:1 2 0* +(Dg — BysC, + FiC, — 4 3E; +C32C1 N ExC B +3Cy,:
2 2 4 ®

RaCC, | FucC, | 2FRucCc, Jaz 5
6

F.sC, + DyC,C, ) o +
5502 ssclz)a ( 6 3



324 Tran Minh Tu, Tran Huu Quoc and Nguyen Van Long

Sy =Gy +(@+—2E“)a2 +(%+%+—4G‘”jazﬂ2
9 3 3 9 9 9

2 E23 2 E32 2 GZZ 4 .
+ + +—== 3" +4C,,;
( 3 v 3 )PP &

S5 =Sy ZLéClaA +(Fy + Dyt )’ +(F17écl+FZTl(:1+2FTMC1]a2ﬁZ

+(F32 + D3201)ﬁ2 + F262£1 B +6Dy;

2
Sap = Eifl o +(G55 +Cy €} +3ElT301 +3E3Tlcl— 2E55c1)o:2

2 2
+(E1%+IEZ%+ EMcf]azﬁz +

2
(Ges +CE36C12 + 3E;3Cl + SEZZQ _ZEGGCIJIBZ +7E22c1 ﬁ4 +9E,,.





