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1. Introduction  
 

To determine the reliability level of the structures, 

instead of using the deterministic values of capacity of the 

structure and applied loads, it is required to utilize statistical 

parameters of the load and/or resistance. The objective of 

the reliability analysis is to calculate the safety level of the 

structures or its components. The definition of reliability 

index was first given by Basler (1961), Cornell (1969) as 

𝛽 = −Ф−1(𝑃𝑓) (1) 

where,         

𝛽 = reliability index  

Ф−1 = inverse of the cumulative distribution of the 

standard normal function  

Eq. (1) is widely used to determine the reliability index 

of systems/structures. Okasha et al. (2012) utilized Eq. (1) 

to assess the lifetime reliability index for bridges. Der 

Kiureghian and Song, (2008) expanded the development of 

the reliability index analysis for the different aspects of the 

safety analysis such as Multi-scale reliability analysis. Shi 

et al. (2014) probabilistic response modeling, cost analysis. 

Yanaka et al. (2016) used Eq. (1) to determine the safety 

level for chloride penetration into pressteressed girder 

bridges. However, according to the proposed definition of 

the reliability index in Eq. (1), the reliability indices for all 

cases are determined with the inherently assumption of the 
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normally distributed limit state function for the given limit 

state function. Ghasemi and Ashatri (2014), Ashtari and 

Ghasemi (2013), Ghasemi et al. (2013) found that there are 

several phenomenon which are not follow normal 

distributions. Leira (2013) established a framework to 

consider the structures with time-varying load and 

resistance properties. In his framework he utilized the 

conventional methods to estimate the reliability index for 

non-normal distribution. Several researches have been 

conducted to determine the reliability index for different 

conditions. For example, Li and et al (2010) introduced a 

new high-order response surface method to calculate the 

structural reliability index. Following, Chowdhury and Rao 

(2011) proposed a method to predict the structural limit 

state function using Multiple High Dimensional Model 

Representation (Multicut-HDMR). Accordingly, Fang et al 

(2013) presented analytical method to determine structural 

dynamic reliability based on the probability density 

evolution. However, all of them considered Eq. (1) as a 

fundamental equation to compute the reliability index. Also, 

in an engineering application the Eq. (1) is wildly used to 

evaluate the safety level of systems or structures. For 

instance, Zhu and Frangopol (2014) investigated the 

material postfailure behavior on system reliability with 

consideration of the first given definition of reliability index 

for normal distribution. Jalayer and Zhou (2016) presented 

a new 24 approach to evaluating the safety risk of roadside 

features for rural two-lane roads based on reliability 

analysis. Ayyub et al. (2015) considered the reliability 

analysis to propose the optimal design case for steel box 

structures using the conventional reliability method. 

Ghasemi et al. (2016a, 2016b), Ghasemi and Nowak 
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Abstract.  Reliability analysis is a probabilistic approach to determine a safety level of a system. Reliability is defined as a 

probability of a system (or a structure, in structural engineering) to functionally perform under given conditions. In the 1960s, 

Basler defined the reliability index as a measure to elucidate the safety level of the system, which until today is a commonly 

used parameter. However, the reliability index has been formulated based on the pivotal assumption which assumed that the 

considered limit state function is normally distributed. Nevertheless, it is not guaranteed that the limit state function of systems 
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contribution of this paper is to define a sophisticated reliability index for limit state functions which their distributions are non-

normal. To do so, the new definition of reliability index is introduced for non-normal limit state functions according to the 

probability functions which are calculated based on the convolution theory. Eventually, as the state of the art, this paper 

introduces a simplified method to calculate the reliability index for non-normal distributions. The simplified method is 

developed to generate non-normal limit state in terms of normal distributions using series of Gaussian functions. 
 

Keywords:  reliability; convolution theorem; non-normal distribution; probability of failure; limit state function 

 



 

Seyed Hooman Ghasemi and Andrzej S. Nowak 

 

(2016a) used the conventional reliability index to evaluate 

the reliability level of highway systems. Nevertheless, it 

cannot be assured that the limit states of all case studies 

behave as a normal distributions. Lewis (1996) exhibited 

that there are several structural failure scenarios which their 

distribution of them follow Weibull destruction. For 

instance, Brake (2011) found that the represented historical 

data of fatigue failure of bearings mentioned by Moubray 

(2002) follows as the exponential distribution. Ghasemi and 

Nowak (2016b) developed a new approach to determine 

mean maximum values of non-normal distribution. 

However, there is a need to derive the reliability index for 

the limit states which their limit state functions of them are 

not normally distributed. The main objective of this paper is 

to propose a methodology to determine the reliability index 

for a non-normal distribution of the limit state function. 

 

 

2. Reliability analysis 
 

In structural engineering, probability failure is defined 

as a probability of structural failure during its design period 

(life-cycle). In other words, the reliability index can be 

defined as the probability of structural performance during 

its life-cycle. To assess the level of structural reliability, the 

reliability index, 𝛽 , is a commonly used quantify. The 

reliability index has been defined as the inverse of the 

coefficient of variation of the Cumulative Distribution 

Function (CDF) of the limit state function. The graphical 

definition of the reliability index is the shortest distance of 

the limit state function from the origin of the reduced 

variables space state. For instance, if 𝑅  represents the 

reduced variables of resistance, 𝑄 indicates the reduced 

variables of load and the limit state is defined by 𝑔 (see 

Fig. 1). 

𝑔 = 𝑅 − 𝑄 (2) 

Nowak and Collins (2013) summarized the procedure to 

determine the reliability index as follows 

Structural loading and load effect 

Consider the applied load on the structure  

Determine the statistical parameters of load 

Structural resistance 

 

 

 

Fig. 1 Graphical definition of the reliability index, by 

Nowak and Collins (2013) 
 

 

Fig. 2 Graphical integration approach to evaluate Pf, by 

Nowak and Collins (2013) 

 

 

Consider the structural resistance 

Determine the statistical parameters of resistance 

Balance between load effect and structural resistance 

Establish the limit state function 𝑔 = 𝑅 − 𝑄 

Determine the reliability index 

Depending on the limit state function, several 

approaches were introduced to compute the reliability 

index. For instance, if the variables follow normal 

distributions, the Hasofer-Lind (1974) method is one of the 

appropriate approaches; however, if one of the variables is 

treated as a non-normal distribution, the Rackwitz-Fiessler 

(1978) method is an alternative approach. If the limit state 

consists of several random variables with different 

distributions, the Monte Carlo method has been 

recommended. The state of the failure (𝑃𝐹) is the condition 

when the limit state function is less than zero 𝑔 < 0. 

          𝑃𝐹 = 𝑃(𝑅 − 𝑄 < 0) = 𝑃(𝑔 < 0) (3) 

Assuming statistical independence between 𝑅  and 𝑄 

leads to the joint PDF by way of the multiplication of the 

PDFs of R and 𝑄 (𝑓𝑅𝑄(𝑟, 𝑞) = 𝑓𝑄(𝑞)𝑓𝑅(𝑟)). Then, taking 

the integration of 𝑓𝑄(𝑞)  with respect to 𝑞  from 𝑟  to 

infinity associated with computing the integration with 

respect to 𝑟  over the entire possible domain, the 

probability of failure ( 𝑃𝑓 ) can be determined. Fig. 2 

illustrates the graphical approach to compute 𝑃𝑓.   

Pf = 1 − ∫ fR(r)FQ(r)dr
+∞

−∞

 (4) 

where,  

𝑓𝑅(𝑟) = PDF of resistance, 

𝐹𝑄(𝑟) = CDF of load. 

where 𝑓𝑅   and 𝑓𝑄 are the probability density functions, 

and 𝐹𝑄  and  𝐹𝑅  is the cumulative distribution functions 

(CDF). 𝑟 and 𝑞 are the random variables of the load and 

resistance, respectively..Alternately, first, by taking the 

integration over 𝑓𝑅(𝑟) from negative infinity to infinity 

with respect to 𝑞, 𝑃𝐹  can be calculated as follows 

Pf = ∫ fQ(q)FR(q)dq
+∞

−∞

 (5) 

where,  

𝑓𝑅(𝑟) = PDF of load, 

𝐹𝑄(𝑟) = CDF of resistance. 
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Fig. 3 Graphical relationship between the reliability index 

and 𝑃𝑓, Nowak and Collins (2013) 

 

 

Based on the reliability function definition, the 

reliability is the complementary function of the probability 

function; therefore, the reliability function can be 

demonstrated as follows (Nowak and Collins 2013) 

R = ∫ fR(r)FQ(r)dr
+∞

−∞

= 1 − ∫ fQ(q)FR(q)dq
+∞

−∞

 (6) 

Mathematically, if both functions are normally 

distributed, it can be proven that the limit state function also 

follows a normal distribution and the reliability index can 

be computed using Hasofer-Lind approach, which has been 

also shown by Ditlevsen and Madsen (1996), Nowak and 

Collins (2013). 

β =
μR − μQ

√σR
2 + σQ

2
 (7) 

where, 

𝜇𝑅 = mean value of resistance, 

𝜇𝑄 = mean value of load, 

𝜎𝑅 = standard deviation of resistance, 

𝑄 = standard deviation of load. 

Another technique to determine the reliability index for 

a normal distribution is a graphical method. Basically, as far 

as the distribution of the limit state function is given and 

follows a normal distribution, the graphical method would 

be beneficial (Fig. 3). Based on the graphical method, the 

reliability index is defined as the distance between the mean 

value and the safety margin (𝑔 = 0) in terms of the standard 

deviation. Eq. (8) shows the formula to compute the 

reliability index using the graphical method. 

β =
μg

σg
 (8) 

where,  

𝜇𝑔 = mean of the limit state function, 

𝜎𝑔 = standard deviation of the limit state function. 

However, if any of the aforementioned distributions 

(load and resistance) do not behave as a normal distribution, 

it is necessary to apply a different method to find the 

reliability index. Rackwitz-Fiessler (1978) method is a 

commonly used to determine the reliability. As an example, 

if the resistance has a log-normal distribution and the load 

has a normal distribution, the reliability index can be 

written as follows (Nowak and Collins 2013). 

β =  
μR (1 − k

σR
μR
) *1 − ln (1 − k

σR
μR
)+ − μQ

√(μR (1 − k
σR
μR
) (
σR
μR
))

2

+ σQ
2

 
(9) 

where 𝑘  is the multiplication factor of the standard 

deviation, indicating the distance between the design point, 

𝑥∗, and the mean value (Eq. (10)).  

where 

k = (
μr − x∗

r
) (10) 

It is worth mentioning that in this approach, the design 

point is a point on the failure distribution’s boundary; the 

CDF and the PDF of the investigated distribution are 

approaching the CDF and the PDF of a normal distribution, 

respectively (Eqs. (11) and (12)). 

F(x∗) = Ф(
x∗ − μe

x

σex
) (11) 

f(x∗) =
1

σex
φ(

x∗ − μeR
σex

) (12) 

where, 

𝐹𝑄(𝑟) = CDF of Probability of failure, 

𝑓𝑅(𝑟) = PDF of probability of failure, 

𝜇𝑒𝑥 = equivalent normal mean value, 

𝜎𝑒𝑥 = equivalent normal standard deviation.  

Rackwitz-Fiessler method’s result is sensitive to the k 

value because the distribution depends on the probability 

failure function, and there is no closed-form approach to 

recommend the 𝑘 value.   

The other popular method to compute the reliability 

index is Monte Carlo simulation. There are two traditions to 

determine the reliability index from Monte Carlo 

simulation:  

Approach 1: The probability of failure is the ratio of the 

number of failures, where 𝑔 < 0, to the total number of 

samples, therefore, the reliability index is the inverse 

function of the CDF with respect to obtained probability.   

Approach 2: The reliability index is the intersection of 

the limit state and the vertical coordinate.  

According to the definition of the reliability index in Eq. 

(1), which has been defined the reliability index as the 

result of the negative inverse function of normally 

distributed of CDF of the considered limit state function. 

However, the given limit state function does not necessarily 

behaves as a normal distribution function. Therefore, there 

is a need to define the reliability index for non-normal 

distributions. Hence, herein, authors of this paper introduce 

a new notion to compute the reliability index for a non-

normal limit state function as a negative inverse function of 

the CDF of limit state function as 

β = −FX
−1(Pf) (13) 

where, 𝐹𝑋
−1 is the inverse function of the CDF of a non-

normal distribution for the intended limit state function. In 

the next section based on the convolution theorem the 
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probability of failure is first defined, and then a formula is 

proposed to determine the reliability index for non-normal 

distributions.  

 

 

3. Convolution theorem for determination of the 
probability of failure of the limit states function 
 

If the Probability of failure, does not behave as a normal 

distribution, the current available  methods to determine 

the reliability indices do not conclude to the accurate result. 

Based on the examples shown by Nowak and Collins 

(2013), Hasofer-Lind methods would not be an accurate 

method to determine the reliability index for non-normal 

distributions, also Rackwitz-Fiessler gives a rough 

approximation and needs tedious iterations, and Monte-

Carlo requires numerous sampling to approach to the 

acceptable results. The aforementioned methods compute 

the reliability index based on the inverse of the CDF of 

normal distributions, which means the actual distributions 

of the probability of failure of the given limit state functions 

are ignored. As long as the PDF of limit state behaves as a 

normal distribution, achieved result would be precise; 

however, if the PDF of the limit state does not behave as a 

normal distribution, the obtained reliability index is not 

accurate. Therefore, in order to compute the precise 

reliability index for non-normally distributed limit state 

functions, it is required to propose a new approach with a 

closed-form formula. In doing so, the probability of failure 

first should be defined (Ghasemi 2014). In this research the 

convolution operation is applied to define the probability of 

failure. 

In mathematics world, convolution (𝑓 ∗ 𝑔) is defined 

as the integration of the product of the two functions (𝑓 and 

𝑔) after reversing and shifting one of them (with respect to  

𝜏 variable) (Dimovski 1990 and Weisstein 2014a). 

(𝑓 ∗ 𝑔)(𝑡) ≝ ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
+∞

−∞

 

= ∫ 𝑓(𝑡 − 𝜏)𝑔(𝜏)𝑑𝜏
+∞

−∞
 

(14) 

Based on the definition of convolution operator, in 

probability analysis, the convolution can be interpreted as 

the joint distribution function. In this research, by changing 

the variables the probability of failure is defined with regard 

to the convolution theorem. Therefore, for a given limit 

state function in Eq. (2), the probability of failure is 

expressed as follows 

𝑃𝑓 = (𝑅(𝑥) ∗ 𝑄(−𝑥)) ≝ ∫ 𝑅(𝜏)𝑄(𝑥 + 𝜏)𝑑𝜏
+∞

−∞

 

= ∫ 𝑅(𝑥 − 𝜏)𝑄(−𝜏)𝑑𝜏
+∞

−∞

 

(15) 

Accordingly, in order to determine the reliability index 

for those limit state functions which their probability of 

failures are not normally distributed, the following equation 

(Eq. (16)) is proposed. 

𝛽 = − 𝑖𝑛𝑣 ((∫ (𝑅(𝑥) ∗ 𝑄(−𝑥))𝑑𝜏
+∞

−∞

))|

(𝑅>𝑄)

 (16) 

where 𝑖𝑛𝑣  denotes the inverse function. Eq. (16) is a 

proposed closed-form solution to compute the reliability 

index for non-normal distributions. The validity and 

accuracy of the proposed closed-form formulas is 

accomplished using Monte Carlo simulation for different 

type of limit states. As an illustration, in this paper two 

examples are examined. 

The first example (E.g., No. 1) assumes that a beam 

subjected to the dead and live loads which their 

distributions follow normal distributions. The mean value 

and standard deviation of the dead load stresses are 1.5 and 

1 MPa. And, the mean value and standard deviation of the 

dead live stresses are 0.5 and 1 MPa. 

𝑄1 = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 1.5,1), 𝑄2 = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 0.5,1) 
Accordingly the load distribution is 

𝑄 = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 2,1) 
The resistance also is normally distributed with mean 

and standard deviation equal to 5.0 and 1.0 MPa, 

respectively.  

𝑅 = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 5,1) 
where, 

𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒𝑥𝑝 (−

1

2
(
𝑥 − 𝜇

𝜎
)
2

) 

Accordingly the limit state function can be written as 

follows. 

𝑔 = 𝑅 − 𝑄 = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 5,1) − 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 2,1) 
Fig. 4(a) illustrates the load and resistance distributions 

for E.g., No. 1. The probability of failure is determined 

based on the Eq. (15), which graphically displays in Fig. 

4(b).  

Pf = 1.7 × 10−2 

Accordingly, the reliability index using the proposed 

method is equaled to 𝛽 = 2.12 . However, the second 

example (E.g., No. 2) is the same as the first example, but 

assumed that the distribution of the loads behave as a 

Gamma distribution, also, the resistance distribution still 

behaves as a normal one. 

𝑄 = 𝐺𝑎𝑚𝑚𝑎(𝑥, 𝑎 = 2, 𝑏 = 1) =
1

𝑏𝑎𝛤(𝑎)
𝑥𝑎−1 exp (

−𝑥

𝑏
), 

𝑅 = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 5,1) 
where, 

Gamma function = 𝛤(𝑎) = ∫ exp(−𝑡)𝑡𝑎−1𝑑𝑡
∞

0
 

= 𝛤(𝑎) = (𝑎 − 1)! 
! = factorial operator 

Accordingly, the limit state function for E.g., No. 2 can be 

expressed as follows 

𝑔 = 𝑅 − 𝑄 = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 5,1) − 𝐺𝑎𝑚𝑚𝑎(𝑥, 𝑎 = 2, 𝑏 = 1) 
Fig. 5(a) shows the probability distributions of load and 

resistance for E.g., No. 2. Using Eqs. (15)-(16), the 

probability of failure and reliability index is calculated. The 

limit state function of E.g., No. 2 displays in Fig. 5(b). 

𝑃𝑓 = ∫ (𝑅(𝑥) ∗ 𝑄(−𝑥))
0

−∞

= 5.55 × 10−2 

𝛽 = −𝑖𝑛𝑣 ((∫ (𝑅(𝑥) ∗ 𝑄(−𝑥))𝑑𝜏
+∞

−∞

)) = 2.20 

Comparison between E.g., No. 1 and E.g., No. 2 

indications that although the resistance distributions are 

similar in both examples, the load distribution for E.g., No. 

1 behaves as a normal distribution, which does not have any 
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skewness, and the load distribution for E.g., No. 2 behaves 

as Gamma distribution. Since most of the frequency content 

of Gamma distribution is focused on the left side, it is 

expected that Gamma distribution for load terms results to 

 

 

 

 

the higher safety value, In other words, it is expected that 

the limit state function of E.g., No. 2 results to the greater 

the reliability index. In order to validate the results, these 

two examples are also examined using Monte Carlo 

  
(a) Load and resistance distributions (b) Graphical illustration of 𝑃𝑓 

Fig. 4     and reliability index while  =        ( ,  ,  ) and  =       ( ,  ,  ) 

  
(a) Load and resistance distributions (b) Graphical illustration of 𝑃𝑓 

Fig. 5     and reliability index        =        ( ,  ,  )      =      ( ,  =  ,  =  ) 

  
(a) Reliability index based on the Monte Carlo 

simulation, R=𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 5,1) and 𝑄 = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 2,1) 
(b) Reliability index based on the Monte Carlo      

simulation, R=𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 5,1) and 𝑄 = 𝐺𝑎𝑚𝑚𝑎(𝑥, 2,1) 

Fig. 6 Reliability index based on the Monte 

369



 

Seyed Hooman Ghasemi and Andrzej S. Nowak 

 

simulation (Janssen 2013).  

As can be seen in Fig. 6, the results from Monte Carlo 

simulation of E.g., No. 1 (load and resistance are normally 

distributed, for 100,000 sampling (Fig. 6(a)) is similar to the 

results from the convolution method,  

which can be claimed as a statistical validity for the 

proposed derived equations (Eq. (15) and Eq. (16)).   

However, in E.g., No. 2 load distribution behaves as 

Gamma distribution, the obtained probability of failure 

from Monte Carlo simulations was equaled to the 

probability of failure resulting from the convolution method 

(see Fig. 6(b)). Although the probability of failure of Monte 

Carlo simulation is accurate, the reliability index from this 

method is not necessary accurate. Since in order to 

determine the reliability index using Monte Carlo 

simulations Eq. (1) was utilized, this inherently assumed a 

normal distribution for the limit state functions. However, 

as discerned, the obtained limit state function was not 

normally distributed. Therefore, using the proposed 

equation (Eq. 16) the non-normality distribution of limit 

state functions can be taken into the account, accordingly, 

the reliability index can be precisely determined. 

Nevertheless, it should be mentioned that although using 

Eq. (16) leads to the closed-form solution, it requires the 

advanced mathematical knowledge which may not user 

friendly for engineering applications. Consequently, there is 

a need to introduce a simplified proposed method. 

 

 

4. Simplified procedure to calculate reliability index 
based on the proposed method 

 

This section proposes a simplified procedure to calculate 

the reliability index for non-normal distributions. As a 

creative idea, it is possible to formulate any function in 

terms of the infinite sum of known functions. Taylor (1715) 

developed an approach to formulate the function, which 

today is called as Taylor’s series. Based on Taylor’s series, 

under certain conditions (differentiable function), it is 

possible to formulate any function in terms of a polynomial 

function. Also, Fourier (1822) expressed that: under 

particular conditions (periodic function), any function can 

be formulated with regard to the summation of the series of 

the periodic functions (such as: 𝑠𝑖𝑛𝑒 and 𝑐𝑜𝑠𝑖𝑛𝑒). In this 

research, it is stated that under the certain conditions 

(continuity condition/continuous distribution) any 

distribution can be formulated in terms of the series of the 

Gaussian functions, Eq. (17), (see Weisstein 2014b) to see 

the properties of the Gaussian function). This assumption 

also was introduced by Hall (2013) in forms of bootstrap 

and Edgeworth expansion. 

𝑓𝑋(𝑥) =∑𝑎𝑖𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 𝜇𝑖 , 𝜎𝑖)

𝑛

𝑖=1

 (17) 

where,                                     

𝑎𝑖 =  constant coefficient, which can be positive or 

negative and can be determined using the regression 

methods 

Therefore, the limit state function can be written in 

terms of the series of Gaussian functions. Since Gaussian 

functions can be converted to the fraction of normal  

 
Fig. 7 Curve Fitting over the limit state function of while 

R=𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 5,1) and 𝑄 = 𝐺𝑎𝑚𝑚𝑎(𝑥, 2,1) 
 

 

distributions. Accordingly, the reliability index is defined 

based on the summation of the reliability indices of normal 

distributions. 

𝛽 = 𝑎1𝛽1 + 𝑎2𝛽2 +⋯+ 𝑎𝑖𝛽𝑖 +⋯+ 𝑎𝑛𝛽𝑛 (18) 

where,  

𝑎𝑖= constant coefficients 

𝛽𝑖= reliability indices 

Currently there is an accessibility to the advanced 

mathematical software, such as MATLAB, herein, the 

procedure to determine the reliability index is summarized 

as follows 

1- Using the convolution operator to compute the 

probability of failure based on the proposed Eq. (15). 

2- Fitting a distribution by utilizing the Gaussian 

function, this was defined in MATLAB curve fitting 

documentary. In this step the constant coefficients will 

be determined based on the regression methods. 

3- Calculating the reliability index based on the Eq. 18. 

To illustrate the proposed simplified method, herein, the 

presented examples (E.g., No. 1 and No. 2) from the 

previous section are considered. Considering E.g., No. 1, 

where both load and resistance are normally distributed, 

where it was observed that the limit state function is 

normally distributed for the given limit state function. 

Therefore, there is no need to fit Gaussian series over its 

limit state function (which was normally distributed). 

However, for the second example (E.g., No. 2), where the 

resistance is  normally distributed and load follows 

Gamma distribution, the obtained probability of distribution 

for the intended limit state function does not behave as a 

normal distribution, therefore, in order to simply determine 

the reliability index, it is decent to utilize the proposed 

simplified approach (Eq. (18)). Following is the procedure 

to determine the reliability index for E.g., No. 2 using the 

simplified approach. As it was stated, the first step is to 

determine the probability of failure by taking the advantage 

of the convolution operation. 

𝑃𝑓 = 𝐺𝑎𝑚𝑚𝑎(𝑥, 2,1) ∗ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 5,1) 

= ∫ 𝜏 𝑒𝑥𝑝(−𝜏)
1

√2𝜋
𝑒𝑥𝑝 (−

1

2
(𝑥 + 𝜏 − 5)2) 𝑑𝜏

+∞

−∞
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The equation above is implicitly solved by MATLAB. 

The second step is to fit a curve over the obtained 

distribution of limit state function using Gaussian series. 

This step is also accomplished by MATLAB. As can be 

seen in Fig. 7, using only the combination of two Gaussian 

functions can sufficiently provide an appropriate fitting 

curve. 

Eventually, the probability of failure and the reliability 

index is computed. The reliability index is calculated based 

on summation of the reliability index of two normal 

distributions (Eq. (18)). 

𝑓𝑋(𝑥) ≈ 0.55𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 3.7,1.25) 

+0.45𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 2.3,1.83) 

𝑃𝑓 = 0.056 

𝛽 = 𝑎1𝛽1 + 𝑎2𝛽2 = 0.55 (
3.7

1.25
) + 0.45 (

2.3

1.83
) = 2.19 

 

 

5. Conclusions 
 

The conventional definition of the reliability index was 

given by Basler based on normal distribution behavior of 

the limit state function, which is widely used in structural 

reliability analysis. However, if the distribution for the 

considered limit state function does not necessary behaves 

as a normal distribution, therefore, there is a need to define 

a new methodology to determine the reliability index for 

non-normal distributions. In this research, primarily, by 

taking the advantage of the convolution theorem, a new 

formula was defined to determine the probability of failure 

for the non-normal distribution of the limit states function 

(Eq. (15)). Accordingly, a closed-form solution was 

introduced to compute the reliability index. The proposed 

approach was verified using Monte Carlo simulation. It was 

observed that although the proposed formula can be 

concluded to the accurate result, because of the need for the 

advance mathematical knowledge, this approach is not 

perfectly convenient for engineering applications. 

Therefore, this paper introduced a simplified method to 

calculate the reliability index. The simplified method was 

established based on the fitting curve over the distribution 

of the limit state function. The fitting curve was generated 

with regard to the series of Gaussian functions. Eventually, 

as the state of the art, using a series of normal distributions 

is recommended to determine the reliability index for the 

non-normal limit state functions (Eq. (16) and Eq. (18)). 

The advantage of the proposed formulas in this paper is to 

determine the probability of failure and reliability index for 

the given limit state function which its distribution does not 

behave as normal distribution. In future, the influence of the 

proposed reliability index for non-normal distributions on 

design code calibration should be investigated for different 

limit state functions. In order to achieve this fact, it is 

required to perform extensive studies to first determine the 

reliability index for the intended limit state function and 

validity of the results based on past structural failure 

observations, which can be targeted for future studies. 

 

 

References 
 

Ashtari, P. and Ghasemi, S.H. (2013), “Seismic design of 

structures using modified non-stationary critical excitation”, J. 

Earthq. Struct., 4(4), 383-396.  

Ayyub, B., Akpan, U., Koko, T. and Dunbar, T. (2015), 

“Reliability-based optimal design of steel box structures. I: 

theory”, ASCE-ASME J. Risk Uncert. Eng. Syst., Part A: Civil 

Eng., 1(3), 04015009. 

Basler, E. (1961), Untersuchungen über den Sicherheitsbegriff von 

Bauwerken, Schweizer Archiv für angewandte Wissenschaft 

und Technik.  

Chowdhury, R. and Rao, B.N. (2011), “Multicut high dimensional 

model representation for reliability analysis”, Struct. Eng. 

Mech., 38(5), 651-674. 

Cornell, C.A. (1969), “A probability based structural code”, ACI 

J., 66, 974-985.  

Der Kiureghian, A. and Song, J. (2008), “Multi-scale reliability 

analysis and updating of complex systems by use of linear 

programming”, Reliab. Eng. Syst. Saf., 93, 288-297. 

Dimovski, I.H. (1990), Convolutional Calculus (Mathematics and 

its Applications), 2nd Edition, Kluwer Academic, Dordrecht, 

Boston. 

Ditlevsen, O. and Madsen, H.O. (1996), Structural Reliability 

Methods, John Wiley &Sons Inc., New York.  

Fang, Y., Chen, J. and Tee, K.F. (2013), “Analysis of structural 

dynamic reliability based on the probability density evolution 

method”, Struct. Eng. Mech., 46(6), 201-209. 

Hall, P. (2013), The Bootstrap and Edgeworth Expansion, 

Springer, New York.  

Hasofer, A.M. and Lind, N. (1974), “An exact and invariant first-

order reliability format”, J. Eng. Mech., ASCE, 100(EM1), 111-

121. 

Ghasemi, S.H. (2014), “Target reliability analysis for structures”, 

Doctoral Dissertation, Auburn University, Auburn, USA. 

Ghasemi, S.H. and Ashtari, P. (2014), “Combinatorial continuous 

non-stationary critical excitation in M.D.O.F structures using 

modified envelope functions”, Earthq. Struct., 7(6), 859-908.   

Ghasemi, S.H., Nowak, A.S. and Ashtari, P. (2013), “Estimation of 

the resonance-response factor regarding to the critical excitation 

methods”, Proceedings of the 11th International Conference on 

Structural Safety & Reliability, ICOSSAR 2013, New York, 

USA. 

Ghasemi, S.H. and Nowak, A.S. (2016a), “Reliability analysis for 

serviceability limit state of bridges concerning deflection 

criteria”, Struct. Eng. Int., 26(2), 168-175.  

Ghasemi, S.H. and Nowak, A.S. (2016b), “Mean maximum values 

of non-normal distributions for different time periods”, Int. J. 

Reliab. Saf., 10(2), 99-109. 

Ghasemi, S.H., Nowak, A.S. and Parastesh, H. (2016a), 

“Statistical parameters of in-a-lane multiple truck presence and 

a new procedure to analyze the lifetime of bridges”, Struct. 

Eng. Int., 26(2), 150-159.  

Ghasemi, S.H., Jalayer, M., Pour-Rouholamin, M., Nowak, A.S. 

and Zhou, H. (2016b), “A state-of-the-art model to evaluate 

space headway based on reliability analysis”, J. Tran. Eng., 

142(7), 04016023.   

Jalayer, M. and Zhou, H. (2016), “Evaluating the safety risk of 

roadside features for rural two-lane roads using reliability 

analysis”, Accid. Anal. Prevent., 93, 101-112. 

Janssen, H. (2013), “Monte-Carlo based uncertainty 

analysis: Sampling efficiency and sampling convergence”, 

Reliab. Eng. Syst. Saf., 109, 123-132. 

Leira, B.J. (2013), Optimal Stochastic Control Schemes within a 

Structural Reliability Framework, Springer. 

Li, H.S., Lu, Z.Z. and Qiao, H.W. (2010), “A new high-order 

response surface method for structural reliability analysis”, 

371

http://www.techno-press.org/?page=container&journal=eas&volume=4&num=4
http://www.techno-press.org/?page=container&journal=eas&volume=4&num=4
http://www.techno-press.org/?page=container&journal=eas&volume=4&num=4
http://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Ivan+H.+Dimovski&search-alias=books&text=Ivan+H.+Dimovski&sort=relevancerank
http://www.techno-press.org/?page=container&journal=eas&volume=7&num=6
http://www.techno-press.org/?page=container&journal=eas&volume=7&num=6
http://www.techno-press.org/?page=container&journal=eas&volume=7&num=6
http://www.crcnetbase.com/doi/abs/10.1201/b16387-603
http://www.crcnetbase.com/doi/abs/10.1201/b16387-603
http://www.crcnetbase.com/doi/abs/10.1201/b16387-603
http://www.crcnetbase.com/doi/abs/10.1201/b16387-603
http://www.crcnetbase.com/doi/abs/10.1201/b16387-603
http://www.crcnetbase.com/doi/abs/10.1201/b16387-603
http://www.crcnetbase.com/doi/abs/10.1201/b16387-603
http://www.crcnetbase.com/doi/abs/10.1201/b16387-603
http://www.ingentaconnect.com/contentone/iabse/sei/2016/00000026/00000002/art00010
http://www.ingentaconnect.com/contentone/iabse/sei/2016/00000026/00000002/art00010
http://www.ingentaconnect.com/contentone/iabse/sei/2016/00000026/00000002/art00010
http://www.inderscienceonline.com/doi/pdf/10.1504/IJRS.2016.078381
http://www.inderscienceonline.com/doi/pdf/10.1504/IJRS.2016.078381
http://www.inderscienceonline.com/doi/pdf/10.1504/IJRS.2016.078381
http://www.ingentaconnect.com/contentone/iabse/sei/2016/00000026/00000002/art00008?crawler=true
http://www.ingentaconnect.com/contentone/iabse/sei/2016/00000026/00000002/art00008?crawler=true
http://www.ingentaconnect.com/contentone/iabse/sei/2016/00000026/00000002/art00008?crawler=true
http://www.ingentaconnect.com/contentone/iabse/sei/2016/00000026/00000002/art00008?crawler=true
http://ascelibrary.org/doi/abs/10.1061/(ASCE)TE.1943-5436.0000851
http://ascelibrary.org/doi/abs/10.1061/(ASCE)TE.1943-5436.0000851
http://ascelibrary.org/doi/abs/10.1061/(ASCE)TE.1943-5436.0000851
http://ascelibrary.org/doi/abs/10.1061/(ASCE)TE.1943-5436.0000851


 

Seyed Hooman Ghasemi and Andrzej S. Nowak 

 

Struct. Eng. Mech., 34(6), 779-799. 

Lewis, E.F. (1996), Reliability Engineering, John Wiley & Sons 

Inc., New York, USA.  

Okasha, N.M., Frangopol, D.M. and Orcesi, A.D. (2012), 

“Automated finite element updating using strain data for the 

lifetime reliability assessment of bridges”, Reliab. Eng. Syst. 

Reliab., 99(1), 139-150. 

Moubray, J.M. (2002), Reliability-centred Maintenance, 

Butterworth-Heinemann, Oxford, United Kingdom. 

Nowak, A.S. and Collins, K.R. (2013), Reliability of Structures, 

CRC Press, New York.  

Rackwitz, R. and Fiessler, B. (1978), “Structural reliability under 

combined random load sequences”, J. Comput. Struct., 9(5), 89-

494. 

Shi, X., Teixeira, A.P., Zhang, J. and Soares, C.G. (2014), 

“Structural reliability analysis based on probabilistic response 

modelling using the maximum entropy method“, Eng. Struct., 

70(1), 106-116. 

Weisstein, E.W. (2014a), “Convolution theorem”, From Math 

World A Wolfram Web Resource, 

http://mathworld.wolfram.com/ConvolutionTheorem.html. 

Weisstein, E.W. (2014b), “Normal sum distribution”, From Math 

World A Wolfram Web Resource, 

http://mathworld.wolfram.com/NormalSumDistribution.html. 

Yanaka, M., Ghasemi, S.H. and Nowak, A.S. (2016), “Reliability-

based and life-cycle-cost oriented design recommendations for 

prestressed concrete bridge girders”, Struct. Concrete, 18(1), 

836-847 . 

Zhu, B. and Frangopol, D. (2015), “Effects of postfailure material 

behavior on system reliability”, ASCE-ASME J. Risk Uncert. 

Eng. Syst., Part A: Civil Eng., 1(1), 04014002. 

 

 

CC 

372

https://sotis.tecnico.ulisboa.pt/sotis-ui/#record/261993166667
https://sotis.tecnico.ulisboa.pt/sotis-ui/#record/261993166667
http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/NormalSumDistribution.html
http://onlinelibrary.wiley.com/doi/10.1002/suco.201500197/abstract
http://onlinelibrary.wiley.com/doi/10.1002/suco.201500197/abstract
http://onlinelibrary.wiley.com/doi/10.1002/suco.201500197/abstract
http://onlinelibrary.wiley.com/doi/10.1002/suco.201500197/abstract



