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1. Introduction 
 

Beams on elastic foundation have wide applications in 

many engineering problems. They are used extensively in 

structures such as aircrafts, boosters, missiles, vibrating 

machines, pipelines, buildings, bridges, railroad tracks etc. 

Several foundation models already exist in the literature. 

Nonlinear vibration of beams were studied by many 

researchers (Boyaci and Pakdemirli 1997, Oz et al. 1998, 

Pakdemirli 2001, Pakdemirli and Ozkaya 2003, Oz and 

Pakdemirli 2006, Ozhan and Pakdemirli 2009, Ozhan and 

Pakdemirli 2010, Ozhan and Pakdemirli 2012, Ghayesh and 

Paidoussis 2010, Ghayesh et al. 2011a, Ghayesh et al. 

2011b, Ghayesh et al. 2012a, Ghayesh et al. 2012b, 

Ghayesh 2012a, Ghayesh 2012b, Boyaci 2006, Maccari 

1999, Ozkaya and Tekin 2007, Ozkaya et al. 2008, Ding et 

al. 2012, Hosseini and Hosseini 2015). 

Generally speaking, exact analytical solutions of 

nonlinear equations cannot be obtained for most of the 

cases. In the absence of exact solutions, the researchers 

resort to approximate analytical solution techniques which 

can be considered as the next best choice. Perturbation 

methods are one of the most common approximate 

techniques used in nonlinear vibrations. One of the major 

limitation of the perturbation methods is the need for a 

small parameter in the equations or artificial introduction of 

the small parameter to the equations. The classical 

perturbation methods are only efficient for solving weakly 

nonlinear systems because of this limitation. In recent years, 

many methods have been developed to determine valid 

solutions for strongly nonlinear systems such as the 

homotopy analysis method (Liao 2004), the modified 
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Lindstedt Poincare method (Cheung 1991), the linearized 

perturbation method (He 2003), the Lindstedt Poincare 

method with frequency transformations (Hu 2004), 

improved and residue harmonic balance method (Wu et al. 

2006, Leung and Guo 2011). Iterations techniques such as 

the modified Mickens procedure (Lim and Wu 2002), the 

perturbation iteration method (Pakdemirli 2015a), the 

variational iteration method (He 1999) were also used to 

solve approximately the nonlinear systems. 

A relatively new method, namely the Multiple Scales 

Lindstedt Poincare (MSLP) method has been proven to be 

effective in solving nonlinear systems. For extremely high 

values of the perturbation parameter, the method produced 

compatible results with the numerical simulations for the 

ordinary differential systems (Pakdemirli et al. 2009, 

Pakdemirli and Karahan 2010, Pakdemirli et al. 2011, 

Pakdemirli 2015b, Pakdemirli and Sari 2015a, Pakdemirli 

and Sari 2015b, Karahan and Pakdemirli 2017). The direct 

application of the method to partial differential systems 

needs to be exploited in detail and one of the goals of this 

study is to show that the method produces better results than 

the classical versions. 

To reach this aim, the mathematical model of a simply 

supported beam resting on a nonlinear elastic foundation is 

treated. The multiple scales (MS) and the multiple scales 

Lindstedt Poincare (MSLP) methods are applied directly to 

the governing partial differential equation to obtain 

approximate solutions. Primary resonance case is 

considered only. The amplitude and phase modulation 

equations and the steady state solutions are obtained. The 

effect of physical parameters on the nonlinear behavior are 

investigated via frequency response curves and the curves 

of MS and MSLP are contrasted with each other. It is shown 

that the MS and MSLP solutions are in qualitative and 

quantitative agreement for weakly nonlinear systems. For 

strong nonlinearities however, backward curves which do 

not have correspondence in physical systems occur in MS  
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Fig. 1 A simply supported beam resting on a nonlinear 

elastic foundation 

 

 

whereas the jump regions for MSLP do not exhibit such 

unphysical behavior.  

 
 
2. Equation of motion 
 

A simply supported Euler-Bernoulli beam resting on a 

nonlinear elastic foundation (Raju and Rao 1993 and 

Coskun and Engin 1999) is considered (Fig. 1). 

For the beam w
*

 is the transverse displacement, A is the 

cross-section of the beam, I is the moment of inertia with 

respect to the neutral axis, l is the length of the beam, ρ is 

the density, E is Young’s modulus, k1 
and k2 are the linear 

and nonlinear coefficients of the elastic foundation, 

respectively. 

The equation of motion for an Euler-Bernoulli beam 

with inclusion of the mid-plane stretching effect due to 

immovable boundaries is 

4 * 2 * *
* * *3

1 2*4 *2 *

2
2 * *

* * * *

*2 *
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     (1) 

The model includes damping, external excitation and 

nonlinear elastic foundation terms. x
*
 and t

*
 are the spatial 

and time variable, respectively. The boundary conditions for 

the simply-simply supported beam are 
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The equations are made dimensionless using the 

following definitions 
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w
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            (3) 

where r is the radius of gyration of the beam cross-section. 

The final dimensionless system 
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and the non-dimensional parameters are 
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where T is a time scale chosen as 
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                  (6) 

The associated non-dimensional boundary conditions 

read 
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3. Analytical solutions 
 

In this section, the multiple scales (MS) and the multiple 

scales Lindstedt Poincare (MSLP) methods are applied 

directly to the partial differential system to seek 

approximate solutions. In order to incorporate the stretching 

effects at order ε, a transformation of the dependent variable 

w
u


  is introduced. For the case of primary resonances, 

the damping and the forcing terms are reordered so that they 

appear at the last order of approximation 

2 2, F f                    (8) 

where ε is the artificially introduced perturbation parameter. 

The partial differential system reduces to  

4 2
2 3

1 24 2

212
2

2

0

2

1
cos

2

u u u
u u

tx t

u u
dx f t

xx

   

 

  
   

 

  
   

  


         (9) 

 

 

2

2

2

2

0
0 0 0

1
1 0 0

u( ,t )
u ,t , ,

x

u( ,t )
u ,t ,

x


 




 



       (10) 

 
3.1 The multiple scales method 

 
Solutions are assumed to be of the form 
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where T0=t is the usual fast time scale and T1=εt, T2=ε
2
t are 

the slow time scales. Time derivatives are defined as 
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where 
n

n

D
T





. Substituting Eqs. (11) and (12) into Eq. 

(9) yield after separation 
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At order 1, the solution may be expressed as 
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where cc denotes the complex conjugates of the preceding 

terms. The mode shapes satisfy the following differential 

system 
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where λ
4

 is defined as 
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Solution of Eq. (17) is  
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where Yn are the mode shapes and ωn0 are the natural 

frequencies. The eigenfunctions are normalized such that 
1

2

0
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The first order solution is inserted into the right hand 

side of order ε equation leading to 
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Since the homogenous part of Eq. (20) possesses a non-

trivial solutions, the non-homogenous equations admits 

solutions only if a solvability condition is satisfied (Nayfeh 

1981). At order ε solvability condition is 

2
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A solution can be written at this order of the form 
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Substituting Eq. (23) into Eq. (14) yields 
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The mode shapes at this order are 
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The solution at order ε
2
 is 
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where φ and U are the functions for the secular and non-

secular terms, respectively. For the primary resonances of 

the external excitation, the excitation frequency can be 

taken as 

2
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where σ is detuning parameter of order 1. 

Inserting Eqs. (27), (26), (23) and (16) into Eq. (15) and 

considering only the terms producing secularities, one has 
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with boundary conditions 
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The homogenous part of Eq. (28) has a non-trivial 

solution so that the non-homogenous part can be solved 

only if the following solvability condition is satisfied 
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For determining amplitude and phase modulations, for 

higher order solutions, the usual reconstitution method 

(Nayfeh 2005) will be employed. D2A can be written as 

2 3 2

0 2 02 2 0
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The complex amplitude modulations are  
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Insertion of the polar form 
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and separation into real and imaginary parts finally yield the 

amplitude and phase modulation equations 
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where dot denotes differentiation with respect to time t and 

phase  is defined to be 

2T                   (39) 

For steady state solutions, 0 a  in Eqs. (37) and 

(38). Frequency detuning parameter σ can be calculated by 

elimination of , which upon substitution into Eq. (27) 

yields the frequency response relation 
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The approximate solution is  
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where real amplitudes a and phases  are governed by Eqs. 

(37) and (38).  

 
3.2 The multiple scales lindstedt poincare method 
 
Details of the method can be found in Pakdemirli et al. 

(2009). First the time transformation 

t                    (42) 

is applied to Eq. (9) 

2 4
2 2 3

1 22 4

212
2

02

0

2

1
cos

2

u u u
u u

x

u u
dx f T

xx

    


 


  
   

 

   
  

  


     (43) 

Fast and slow time scales are 
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and substituting the expansions 
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into Eq. (43) yields after separation 
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Note that, the method requires expansion of the 

frequency in the above given form rather than the normal 

frequency expansion as usual in Lindstedt-Poincare method. 

At order 1, the solution may be expressed as 
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where cc denotes the complex conjugates of the preceding 

terms. The mode shapes satisfy the following differential 
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4 0

(0) (0) (1) (1) 0

ivY Y

Y Y Y Y

 

    
        (52) 

where λ
4
 is defined to be 

4 2

0 1n                   (53) 

Solution for Eq. (52) is  
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frequencies. The eigenfunctions are normalized such that 
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At order ε, the solvability condition requires 
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0 1 1 1 22 0ni D A A A A               (56) 

where 
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      (57) 

In the MSLP as outlined in Pakdemirli et al. (2009), first 

D1A=0 is selected and if the frequency correction is real, 

this choice is admissible. If 1 turns out to be complex, then 

D1A0 which implies 1=0 and secularities are eliminated 

by choosing D1A. A complex 1 implies that there is 

amplitude variation and LP method fails to produce 

physical solutions (Nayfeh 1981). The method allows 

switching back and forth with MS and LP type of 

eliminating secularities thereby augmenting the advantages 

of both methods. For Eq. (56), selection of 

1 20 ( )D A A A T           (58) 

produces 
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which is suitable because 1 is real. 

A solution can be written at this order of the form 

0 033

1 0 2 2 2

( )
( , , ) ( ( ) )ni T x

u x T T A T e cc
 


       (60) 

Substituting Eq. (60) into Eq. (49) yields 
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The mode shapes at this order are 
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The solution at order ε
2
 is 

0 0

2 0 2 2 0 2( , , ) ( , ) ( , , )ni T
u x T T x T e U x T T

      (63) 

where φ
 
and U are the functions for the secular and non-

secular terms, respectively. For primary resonances case, 

external excitation frequency can be taken as 

2

0( )n                   (64) 

Inserting Eqs. (64), (63), (60) and (51) into Eq. (50) and 

considering only the terms producing secularities, one has 
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with boundary conditions  
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The solvability condition is 
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where 

1 1

3

3 2

0 0

1 1 1 1

2

4 5

0 0 0 0

, 3 ,
2

1
,

2

f
F Ydx Y dx

YY dx Y dx Y dx Y dx

 

 

   

       

 

   

    (68) 

D2A cannot be selected as zero, since 2 would then be 

complex. Therefore the admissible choice is 

2 0                     (69) 

and the remaining equation is 

2 3 20
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where 

3 4 5                    (71) 

Since the application processes are different, the 

solvability conditions are different for MS (i.e., Eq. (21)) 

and MSLP (i.e., Eq. (56)) methods. To write the solvability 

condition for MS, the reconstitution method taken into 

account. Note that in the first level of approximation in 

MSLP, the mechanism from LP is used, whereas at this 

level of approximation, the mechanism from MS is used. 

This choice of flexibility increases the success of the 

method. 

The polar form 
1

2

iA ae  is substituted into the 

solvability condition and the real and imaginary parts are 

separated leading to 
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where 
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2T                  (74) 

For steady state solutions, D2a=0, D2γ=0 and 

elimination of γ between Eqs. (72) and (73) yields 

22
4

4 2 2 4

0 032 n n

F
a

a




   

  
    

 
     (75) 

From Eq. (64), frequency-response relation is  
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Eq. (77) is obtained by substituting Eqs. (69) and (59) 

into (47). The approximate solution is  
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The amplitude and phases are governed by the equations 
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4. Comparisons of the results 
 

For perturbation solutions to be valid, the correction 

term should be much smaller than the leading term. For 

both methods, the requirements are 

2 ( )
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The only difference in the criteria is ω
2
 being in the 

denominator of MSLP method. For strong nonlinearities, 

nonlinear elastic foundation coefficient (α2) should be large. 

For MS method, taking the limit 

2

2 ( )
lim

4 ( )

a x

Y x





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yields infinity as expected. Hence, the MS method solution 

cannot be valid for large values of α2. In contrast, for 

MSLP, the corresponding limit is 
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)(4

)(
lim

2

2

2


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
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Which satisfies the perturbation requirement for large 

parameters. 

In Figs. 2-7, frequency response curves obtained by the 

MS and the MSLP methods are contrasted with each other 

with respect to the effects of physical parameters such as 

the elastic foundation coefficients and the external 

excitation amplitude. In Figs. 2 and 3, the frequency 

response curves of both methods are obtained for various 

linear elastic foundation parameter (α1) values when 

nonlinear elastic foundation parameter (α2) is fixed. As α1 

increases, the frequency response curves of both methods 

shift to the right side with maximum amplitudes decreased. 

The effect of cubic nonlinearity is amplified by 

increasing the nonlinear elastic foundation parameter (α2) in 

Figs. 4 and 5. When the nonlinear elastic foundation  

 

 

 

Fig. 2 Frequency response curves of MS method for various 

α1 values. (n=1, ε=1, α2=10, μ=0.2, f=5) 

 

 

Fig. 3 Frequency response curves of MSLP method for 

various α1 values. (n=1, ε=1, α2=10, μ=0.2, f=5) 

 

 

Fig. 4 Frequency response curves of MS method for various 

α2 values. (n=1, ε=1, α1=10, μ=0.2, f=5) 
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Fig. 5 Frequency response curves of MSLP method for 

various α2 values. (n=1, ε=1, α1=10, μ=0.2, f=5) 
 

 

Fig. 6 Frequency response curves of MS method for various 

f
 
values. (n=1, ε=1, α1=10, α2=1, μ=0.2) 

 

 

coefficient (α2) is increased from 10 to 100, for the MS and 

the MSLP, the multivalued regions considerably increase as 

expected. If the nonlinear elastic foundation coefficient is 

further increased (α2=200−500), the MS solutions produce a 

backward curve which is unphysical. However, this 

anomalous behavior is not observed for the MSLP, as 

expected. 

Figs. 6 and 7 depict the effect of external excitation 

amplitude (f) on the frequency response curves for the MS 

and the MSLP methods. In Figure 6, the frequency response 

curves of the MS method are plotted for various external 

excitation amplitude values. Increasing the external 

excitation amplitude results in the backward curves for the 

MS method. As can be seen from Fig. 7, reliable results can 

still be obtained from the MSLP method for high excitation 

amplitudes. 

 

 
5. Conclusions 

 

Nonlinear vibrations of a simply supported beam resting 

on a nonlinear elastic foundation are treated using the MS 

and the MSLP methods. The case of primary resonances of 

the external excitation is investigated. The amplitude and 

the phase modulation equations are obtained from which the 

steady state solutions are retrieved. The effects of the 

physical parameters on the nonlinear behavior are 

investigated using the frequency response curves of both 

methods. The following conclusions can be listed as 

follows. 

 

Fig. 7 Frequency response curves of MSLP method for 

various f values. (n=1, ε=1, α1=1, α2=1, μ=0.2) 
 

 

1) The MSLP method is successfully applied to partial 

differential equation. 

2) MS and MSLP are in good agreement when the 

parameter values are within the range of weak 

nonlinearity. 

3) Comparisons of the frequency response curves of the 

MS and the MSLP reveal that the MSLP solutions are 

reliable for high excitation amplitudes and for high 

nonlinear elastic coefficients whereas the MS produces 

unphysical backward curves for such high parameter 

values. 

4) MSLP definitely improves the classical and well 

established MS solutions to have a wider range of 

validity. 

A further study would be to apply MSLP method to 

quadratic and cubic partial differential equations. The 

nonlinearities arising in partial differential equations are 

classified using a suitable operator notation and general 

solution algorithms were developed for the models 

previously (Pakdemirli 1994, Pakdemirli and Boyaci 1995, 

Pakdemirli 2001). 
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