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1. Introduction 
 

Some structure-dependent integration methods have 

been developed for time integration since they can 

simultaneously integrate unconditional stability and explicit 

formulation together (Chang 2002, 2007a, 2009, 2010, 

2014a, Chen and Ricles 2008, Gui et al. 2014). The most 

significant difference between this type of integration 

methods and the traditional integration methods (Newmark 

1959, Bathe and Wilson 1978, Hilber et al. 1977, Fung 

2001, 2002, Civalek 2006, 2007, 2013, Gao, et al. 2012, 

Hadianfard 2012, Alamatian 2013) is the coefficients of the 

difference equation for displacement and/or velocity 

increment. In general, these coefficients are scalar constants 

for conventional integration methods while for structure-

dependent integration methods they can be functions of the 

initial structural properties and step size. It is promising for 

structure-dependent integration methods to have an explicit 

formulation and unconditional stability together since this 

combination enables this type of the integration methods to 

be computationally efficient. An explicit formulation will 

involve no nonlinear iterations for each time step for a 

nonlinear system. Notice that an iteration procedure is 

generally very time consuming for each iteration and thus it 

costs many computational efforts for a traditional implicit 

integration method. Meanwhile, the unconditional stability 

might allow the choice of a relatively large time step for 

conducting step-by-step integration based on accuracy 
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consideration only. 

The above-mentioned structure-dependent integration 

methods have no numerical damping. A favorable numerical 

damping can effectively suppress or even filter out the 

spurious growth of the high frequency modes while the low 

frequency responses can be very accurately integrated. 

Thus, it is preferable for an integration method to possess 

such a dissipative property (Hilber et al. 1977, Wood et al. 

1981, Chung and Hulbert 1993, Krenk 2008, Bathe and Noh 

2012). For this purpose, some families of the structure-

dependent integration methods have been developed to have 

this desired numerical damping recently (Chang 2014b, c, 

2015a, Chang et al. 2015, Kolay and Ricles 2014, 2016). 

These family methods can have favorable numerical 

properties, such as unconditional stability, explicit 

formulation, second-order accuracy and numerical 

damping. However, some adverse properties are also found 

for the specific family methods, such as the weak instability 

and overshoot for nonzero initial conditions for the two KR- 

α family methods, a poor capability to capture structural 

nonlinearity for one of the KR-α family method, and the 

unusual overshoot in the high frequency forced vibration 

responses for both the two KR-α family methods and the 

two Chang-α dissipative family methods. As a result, it is of 

great interest to evaluate their actual performances in the 

step-by-step integration. For this purpose, the four family 

methods are chosen for this study. In this work, the basic 

numerical properties of the four family methods for linear 

elastic systems are summarized and compared first. In 

addition, the adverse properties are also thoroughly 

explored subsequently. 
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Abstract.  Two Chang- dissipative family methods and two KR- family methods were developed for time integration 

recently. Although the four family methods are in the category of the dissipative structure-dependent integration methods, their 

performances may be drastically different due to the detrimental property of weak instability or overshoot for the two KR- 

family methods. This weak instability or overshoot will result in an adverse overshooting behavior or even numerical instability. 

In general, the four family methods can possess very similar numerical properties, such as unconditional stability, second-order 

accuracy, explicit formulation and controllable numerical damping. However, the two KR- family methods are found to 

possess a weak instability property or overshoot in the high frequency responses to any nonzero initial conditions and thus this 

property will hinder them from practical applications. Whereas, the two Chang- dissipative family methods have no such an 

adverse property. As a result, the performances of the two Chang- dissipative family methods are much better than for the two 

KR- family methods. Analytical assessments of all the four family methods are conducted in this work and numerical 

examples are used to confirm the analytical predictions. 
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2. General formulation 
 

The first Chang- dissipative family method (CDM1) 

(Chang 2014c) has the same asymptotic form of the 

equation of motion and the difference equation for velocity 

increment as those of the HHT- method. However, its 

difference equation for displacement increment is 

significantly different from that of the HHT- method. In 

general, the general formulation of the first Chang- 

dissipative family method can be expressed as 
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On the other hand, the second Chang- dissipative 

family method (CDM2) (Chang 2015a) inherits both the 

asymptotic form of the equation of motion and difference 

equation for velocity increment from the WBZ- method 

although its difference equation for displacement increment 

is different from that of the WBZ- method. The general 

formulation of CDM2 can be written as 
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where di, vi, ai and fi are introduced to represent the 

approximate nodal displacement, velocity, acceleration and 

external force at the i-th time step, respectively. It is found 

from the second line of Eq. (1) that the determination of di+1 

will involve the two previously step data and thus CDM1 is 

a two-step method. Similarly, CDM2 is also a two-step 

method. Consequently, a distinct starting procedure is 

generally needed for both CDM1 and CDM2. The structure-

dependent coefficients β1, β2 and β3 for CDM1 and CDM2 

are found to be  
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(3) 

where Ω0=ω0(Δt) and 
0 0

/k m   is an initial natural 

frequency, where k0 is an initial stiffness. In addition, 
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and ξ is a viscous damping ratio; α, β and γ are the 

parameters to govern the numerical properties. Notice that σ 

is a stability amplification factor, which can be applied to 

enlarge the unconditional stability range for a general 

structure-dependent integration method (Chang 2015b). In 

order to have desired numerical properties, such as explicit 

formulation, unconditional stability and numerical damping, 

the following relationships are recommended for CDM1 

and CDM2 
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(4) 

Since the spectral radius ρ∞ in the limit Ω0→∞ can be 

considered as an indicator for numerical dissipation, it is of 

interest to construct the correlations between α and ρ∞ for 

both CDM1 and CDM2. As a result, they are found to be 
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The variation of α from 1/3 to 0 corresponds to the 

variation of ρ∞ from 1/2 to 1 for CDM1. Similarly, the 

variation of α from 1 to 0 corresponds to the variation of 

ρ∞ from 0 to 1 for CDM2. It is evident that both CDM1 and 

CDM2 can have controllable numerical dissipation. Notice 

that a zero-damping ratio can be generally achieved for both 

the two dissipative family methods. 

On the other hand, the general formulation of the first 

KR- method (KRM1) (Kolay and Ricles 2014) for a single 

degree of freedom system can be written as 
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and that for the second KR- method (KRM2) (Kolay and 

Ricles 2016) is found to be 
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where the structure-dependent coefficients α1, α2 and α3 for 

KRM1 and KRM2 are found to be 
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where 
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1 2D       ; and scalar coefficients αm, 

αf, β and γ are found to be 
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In Eq. (6), both the difference equation for displacement 

and that for velocity increment are structure dependent for 

KRM1. Whereas, for KRM2, only the difference equation 

for displacement increment is structure dependent. This is 

the major difference between KRM1 and KRM2 in 

formulations. Apparently, the free parameter ρ∞ can be 

applied to control the numerical properties of KRM1 and 

KRM2 and it varies in the range of 0≤ρ∞≤1. The case of 

ρ∞=1 implies zero damping while ρ∞=0 has the largest 

numerical damping. 

 

 

3. Numerical properties of linear elastic systems 
 

Since the basic analysis of each family method has been 

conducted before, thus, it will not be performed herein 

again. However, the basic numerical properties are 

summarized for comparison, such as stability, period 

distortion, numerical dissipation and overshoot. The cases  

 

 

 

Fig. 1 Variation of relative period error with Δt/T0 

 

 

Fig. 2 Variation of numerical damping ratio with Δt/T0 

 

of ρ∞=1 and 1
2  will be generally considered. Fig. 1 shows 

the variation of relative period error with Δt/T0 for the four 

family methods. The curves for the four family methods are 

overlapped together for ρ∞=1. Whereas, for 1
2


 , only 

CDM1, KRM1 and KRM2 are coincided together. 

Apparently, CDM2 exhibits a larger period distortion for a 

given Δt/T0 when compared to the other three family 

methods. The variation of the numerical damping ratio with 

Δt/T0 for each family method is plotted in Fig. 2. 

It is seen that the four family methods have no 

numerical dissipation for ρ∞=1 while for 1
2


  CDM2 

has larger numerical damping when compared to the other 

three family methods, whose curves are overlapped 

together. This figure confirm that the four family methods 

can have desired numerical damping. Variations of spectral 

radii with Δt/T0 for the four family methods are plotted in 

Fig. 3. It is found that the spectral radius is always equal to 

1 for any value of Δt/T0 for the four family methods for 

ρ∞=1. Whereas, for 1
2


 , the spectral radius is equal to 1 

for a small value of Δt/T0 and subsequently it decreases 

gradually with the increase of Δt/T0. Finally, it will become 

an asymptotic constant and is equal to ρ∞ as Δt/T0 is greater 

than a certain value. Notice that the curves for CDM1, 

KRM1 and KRM2 are coincided together for 1
2


 . 

An adverse overshooting property in the free vibration 

 

 

 

Fig. 3 Variation of spectral radius with Δt/T0 

 

 

Fig. 4 Comparison of overshoot response in displacement 
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Fig. 5 Comparison of overshoot response in velocity 

 

 

responses of the high frequency modes has been found in 

the Wilson- method by Goudreau and Taylor in 1972. 

Later, a technique to detect such an unusual overshoot 

behavior has been further proposed by Hilber and Hughes 

in 1978. The tendency of an integration method to 

overshoot the exact solution can be evaluated by calculating 

the free vibration response of a linear elastic, single degree 

of freedom system for the current time step based on the 

previous step data as Ω0→∞. As a result, the results for 

CDM1, CDM2, KRM1 and KRM2 for the limiting cases of 

Ω0→∞ are found to be 
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(10) 

This equation reveals that there is no overshoot behavior 

in displacement for any member of each family method 

while it generally has a tendency to overshoot linearly in Ω0 

in the velocity equation due to the initial displacement term 

for CDM1, CDM2 and KRM2. Notice that KRM1 exhibits 

no overshoot in velocity. 

In order to confirm the overshooting behaviors of the 

four family methods, the displacement and velocity 

responses are calculated by using the four family methods 

with ρ∞=1 and 1
2 . The initial conditions of d0=1 and v0=0 

are taken. The time step of Δt=10T0 is adopted for each 

family method. The velocity term is normalized by the 

initial natural frequency of the system in order to have the 

same unit as displacement. Calculated results are shown in 

Figs. 4 and 5. It is seen in Fig. 4 that CDM1, CDM2 and 

KRM2 generally show no overshoot in the displacement 

responses and these results are consistent with the analytical 

results. Whereas, an overshoot is found in the displacement 

response for KRM1 and this result is inconsistent with the 

analytical prediction. The cause of this overshoot will be 

further explored later. On the other hand, in Fig. 5, KRM1 

shows no overshoot both for ρ∞=1 and 0.5. Whereas, an 

overshooting behavior is found in the velocity response of 

CDM1, CDM2 and KRM2 for 1
2


  although there is no 

overshoot in the velocity response of CDM1, CDM2 and 

KRM2 for ρ∞=1. It is found that for ρ∞=1 one can have 

γ/(2β)−1=0 for the four family methods. Hence, the linearly 

proportional term in Ω0 in the velocity equation as shown in 

Eq. (10) will disappear for CDM1, CDM2 and KRM2. As a 

result, the overshoot behaviors in velocity is generally 

consistent with the analytical predictions. 

 

 

4. Numerical properties of nonlinear systems 
 

In the previous section, the numerical properties of the 

four family methods are summarized and compared. 

However, it is still very important to investigate their 

performances to solve nonlinear systems. A parameter 

named the instantaneous degree of nonlinearity has been 

introduced by Chang (2017b) to monitor the stiffness 

change for a nonlinear system. It is defined as the ratio of 

the stiffness at the end of the i-th time step over the initial 

stiffness and is δi=ki/k0. Thus, it is implied by δi=1 that the 

instantaneous stiffness at the end of the i-th time step is 

equal to the initial stiffness. Whereas, δi>1 means stiffness 

hardening and the instantaneous stiffness larger than the 

initial stiffness at the end of the i-th time step; and 0<δi<1 

means stiffness softening and the instantaneous stiffness 

less than the initial stiffness. 

A structure-dependent integration method can have 

unconditional stability for δi≤1 while it becomes 

conditionally stable for δi>1 (Chang 2002, 2007a, 2009, 

2010, Chen and Ricles 2008, Kolay and Ricles 2014). There 

is a technique to enlarge the unconditional stability range 

for a general structure-dependent integration method by 

using a virtual parameter σ (Chang 2015b). This parameter 

is named as a stability amplification factor and it can be 

applied to enlarge the initial stiffness from k0 to σk0. As a 

result, the unconditional stability range is modified from 

ki≤k0 to ki≤σk0 since a structure-dependent integration 

method has the unconditional stability range of δi≤1. 

Apparently, the unconditional stability range of a structure-

dependent integration method can be effectively enlarged 

by taking σ to be larger than 1. Hence, it is introduced into 

the structure-dependent coefficients of the four family 

methods as shown in Eqs. (3) and (8). 

It is important to find the variation of the upper stability 

limit, which is denoted by 
( )

0

u , with the instantaneous  
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Fig. 6 Variation of upper stability with instantaneous degree 

of nonlinearity 

 

 

degree of nonlinearity to confirm the effectiveness of the 

stability amplification factor. In general, the upper stability 

limit 
( )

0

u  for each family method for a given value of δ 

can be numerically calculated. As a result, the calculated 

results for ρ∞=1 and 0.5 for all the four family methods are 

plotted in Fig. 6. In each plot of this figure, it is found that 

each family method can have an unconditional stability 

range of δ≤σ for σ=1, 2 and 3 for ρ∞=1 while it will become 

conditionally stable in the range of δ>σ. Similarly, a slightly 

larger unconditional stability range can be generally 

achieved for 1
2


  for all the four family methods. 

Hence, it is verified that the stability amplification factor σ 

can enlarge the unconditional stability range from δ≤1 to 

δ≤σ for a general structure-dependent integration method. 

On the other hand, for a real structure, its instantaneous 

stiffness is very rare to become larger than twice of that of 

the initial stiffness. Hence, δ≤2 will be generally 

experienced for practical applications. This implies that the 

adoption of δ=2 is large enough to have the unconditional 

stability range of δ≤2. 

In addition to the stability problem for a general 

nonlinear system, the capability to capture the structural 

nonlinearity is also closely related to the performance of an 

integration method in solving a nonlinear system. This 

capability can be revealed by solving a highly nonlinear 

system, such as 

0
1

u
u

u
 


 (11) 

where u and ü denote the displacement and acceleration, 

respectively. The stiffness 1/(1+|u|) becomes softening after 

the system deforms. Clearly, a large initial displacement or 

initial velocity results in a large reduction of the stiffness. 

The period of the system is T0=2π
 

sec  determined from 

the initial stiffness. The displacement responses to the initial 

conditions of u(0)=0 and (0) 200u   are calculated and 

are shown Fig. 7. The result obtained from the Newmark 

explicit method (NEM) (Newmark 1959) with Δt=0.01sec is 

treated as a reference solution. Meanwhile, the four family 

methods with Δt=0.2 sec are also applied to compute the 

responses. The cases of ρ∞=1 and 0.5 are taken for each  

 

Fig. 7 Free vibration responses to a highly nonlinear system 

 

 

family method. It is seen in Fig. 7 that the results obtained 

from CDM1, CDM2 and KRM2 are reliable and have the 

about the same accuracy for both the two cases of ρ∞=1 and 

0.5. However, the numerical results obtained from KRM1 

display significant period distortion when compared to the 

reference solution. These results indicate that CDM1, 

CDM2 and KRM2 possess almost the same capability to 

capture structural nonlinearity while KRM1 shows a 

relatively poor capability for capturing the variation of the 

nonlinear stiffness when compared to the other three family 

methods. 

It is of interest to explore why KRM1 shows less 

capability to capture structural nonlinearity than for CDM1, 

CDM2 and KRM2. In general, a convergence rate can be 

treated as an indicator of the numerical accuracy of an 

integration method. Hence, it is natural to identify the 

convergence rate of each family method. A numerical 

technique has been employed to identify the convergence 

rate of displacement, velocity and acceleration for an 

integration method. In fact, the integration method can be 

used to solve a problem with a series of small different time 

steps and then the results can be used to assess the 

convergence rate of this integration method. In general, the 

displacement error Ed, velocity error Ev and acceleration 

error Ea at a given time can be obtained from 

     ,   ,   
d i i v i i a i i

E d u t E v u t E a u t       (12) 

where di, vi and ai are the calculated displacement, velocity 

and acceleration at the end of the time of ti while u(ti), 

( )
i

u t  and ( )
i

u t  are the exact displacement, velocity and 

acceleration at the time instant of ti although they are also 

obtained from a very small time step. The plot of each error 

versus step size on a log-log scale can be used to estimate 

the convergence rate of each error. 

For simplicity, the four family methods are used to solve 

Eq. (11) and the instant time to compute the response errors 

is chosen to be t=0.1 sec. The variations of Ed, Ev and Ea 

with t  are plotted on a log-log scale in Fig. 8. The 

convergence rate of the specific error for a given family 

method is equal to the slope of the corresponding curve. All 

the four family methods can have a convergence rate of 2 

for Ed, Ev and Ea for the case of ρ∞=1 except that for KRM1 
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Fig. 8 Convergence rate of displacement, velocity and 

acceleration 

 

 

only has a convergence rate 1 for Ev. On the other hand, for 

the case of 1
2


 , the very similar phenomena are found 

except that a convergence rate of 1 is found for all the 

family methods for Ea. Consequently, it seems that KRM1 

only has a convergence rate of 1 for Ev for both the cases of 

ρ∞=1 and 0.5 is responsible for the poor capability to 

capture the structural nonlinearity since its convergence rate 

for Ed and Ea are exactly the same as the other three family 

methods for both the two cases. Notice that a convergence 

rate of 1 for Ev for KRM1 might originate from the use of a 

structure-dependent difference equation for velocity 

increment since the other three family methods involve the 

constant coefficients of the difference equation for velocity 

increment. 

 

 

5. Unusual overshoot in forced vibration response 
 

Eq. (10) analytically reveals that there is no overshoot in 

displacement in the free vibration response obtained from 

the four family methods. However, an unusual overshoot 

behavior was still experienced in the high frequency forced 

vibration responses for the four family methods. This type 

of overshoot is different from that was found by Goudreau 

and Taylor as shown in Eq. (10) (Chang et al. 2016). 

In order to illustrate the unusual overshoot in the high 

frequency forced vibration response, an example is solved 

by the four family methods. 

     sinmu t ku t k t   (13) 

where   is the applied frequency of the sine loading. The 

exact solution is found to be 

     02 2

1
sin sin

1 1

r

r r

u t t t


 
 

 
 

 (14) 

where 
0

/
r

    is a frequency ratio. A large ωr implies 

a low frequency mode; and then the displacement u is 

dominated by the transient response. Whereas, a small value 

of ωr implies a high frequency mode; and then the 

displacement u is dominated by the steady-state response. 

In Eq. (13), the case of m=1, k0=10
6
 and 1   is 

 

Fig. 9 Forced vibration responses to a sine loading 

 

 

Fig. 10 Forced vibration responses to a sine loading (with a 

load-dependent term) 

 

 

considered. The natural frequency of the system is found to 

be 10
3
 rad/sec. The frequency ratio ωr is 10

-3
 and thus the 

total response is dominated by the steady-state response. 

Calculated results obtained from the four family methods 

with Δt=0.5 sec are shown in Fig. 9.  

It is anticipated that a reliable solution can be achieved 

if the steady-state response is reliably integrated. It has been 

shown by Chang (2006) that a harmonic load can be 

accurately represented if a time step corresponding to 
1

12/t T   is adopted, where T  is the period of the 

applied harmonic load. For this case, the value of 
1 1

4 12/t T     implies that the applied sine load can be 

very accurately captured and thus a reliable steady-state 

solution can be obtained. However, in Fig. 9, a very 

significant overshoot is found for all the four family 

methods. These numerical results are highly inconsistent 

with the analytical predictions. Hence, the cause of this 

overshoot must be further investigated.  

In order to scrutinize the effect from the dynamic 

loading to the local truncation error, the local truncation 

error for each family method is derived from a forced 

vibration response rather than a free vibration response. As 

a result, the local truncation errors for the four family 

methods for zero viscous damping are found to be 
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where       2

4 0 0
2 1 1 2 1

m f f
D             

 
. It 

can be found from this equation that the first line of the 

local truncation error for CDM1 and CDM2 will become 

zero since 1
2    is often adopted to have desired 

numerical properties as shown in Eq. (4). Hence, the local 

truncation error of CDM1 will be dominated by the term 

 2

0 1
/

i
f kD  for a high frequency mode since this term is 

quadratically proportional to Ω0. Similarly, the local 

truncation error of CDM2 is dominated by the term 

 2

0 2
/

i
f kD  for a high frequency mode. On the other 

hand, the first line of the local truncation error for KRM1 

and KRM2 will disappear since 1
2 m f

      is often 

taken in Eq. (9) so that the desired numerical properties can 

be achieved. As a result, the dominant error terms of KRM1 

and KRM2 are found to be  2

0 4
/

i
f kD  for high 

frequency modes. It is worth noting that the dominant error 

terms of the four family methods are quadratically 

proportional to Ω0. Thus, it is implied that the unusual 

overshoot will be significant for a high frequency mode 

while it might be insignificant for a low frequency mode. 

After figuring out the root cause of this type of 

overshoot, it is very important to propose a remedy to 

eliminate the unusual overshoot. For this purpose, a load-

dependent term is introduced into the difference equation 

for displacement increment to eliminate the adverse 

dominant error term. As a result, the load-dependent term 

for each family method is found to be 
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(16) 

After introducing the load-dependent term pi+1 into the 

difference equation for displacement increment for each 

family method, the dominant error term for each family 

method can be automatically eliminated. Hence, the unusual 

overshoot behavior in the high frequency forced vibration 

responses can be removed for each family method. In order 

to confirm the effectiveness of this load-dependent term, 

Eq. (13) is solved again by using the four family methods 

and the results are plotted in Fig. 10. Apparently, the results 

obtained from the four family methods are almost coincided 

together with the exact solution. Consequently, it seems that 

the load-dependent term must be included in the original 

formulation of a structure-dependent integration method so 

that there will be no overshoot phenomenon in the high 

frequency forced vibration responses. 

 

 

6. Unusual weak instability property 
 

In Fig. 4(c), a very significant overshooting behavior 

was experienced for KRM1 with ρ∞=1. This phenomenon is 

totally contradictory to the analytical prediction as shown in 

Eq. (10) for KRM1. Whereas, no overshoot was found for 

CDM1, CDM2 and KRM2 as shown in Figs. 4(a), 4(b) and 

4(d); and these results are consistent with the analytical 

predictions as shown in Eq. (10) for CDM1, CDM2 and 

KRM2. Hence, the unusual overshoot in Fig. 4(c) for 

KRM1 must be further investigated. In fact, it will be 

numerically illustrated first and subsequently analytically 

verified that an unusual overshoot will experience for 

KRM1 and KRM2 in the high frequency responses to 

nonzero initial conditions while there is no such an unusual 

overshoot property for CDM1 and CDM2. 

A linear elastic 2-degree of freedom system is designed 

to illustrate such an unusual overshoot behavior. As a result, 

the following equations of motion are considered 

2
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0 1 05 10 5 10

n n

n n

u u

u u
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        

         
 (17) 

The cases of n=1, 5 and 9 are adopted to simulate the 

three systems S1, S2 and S3, respectively. The natural 

frequencies of S1 are found to be ω1=6.18 and ω2=16.18 

rad/sec; and the modal shapes are 

1 2

0.236 4.236
,

1.000   1.000
 

   
    
   

 (18) 

Similarly, the natural frequencies for S2 are found to be 

ω1=10 and ω2=10
3
 rad/sec while those are ω1=10 and 

ω2=10
5
 for S3. The modal shapes for S2 and S3 are almost 

the same and are 
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,   

1 1
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 (19) 
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Fig. 11 Free vibration responses to three 2-DOF linear 

elastic systems 

 

 

The following initial conditions will be examined for 
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where u0 is made up of one time of the first modal shape 

and one-tenth of the second modal shape. 

The four family methods with 1
2


  are applied to 

calculate the free vibration responses for S1, S2 and S3 by 

Δt=0.02 sec. In addition, the constant average acceleration 

method (AAM) with Δt=0.02 sec is also used to yield the 

free vibration responses to u0 with a zero initial velocity 

vector and the solution is considered as a reference solution 

for comparison. As a result, numerical solutions of u2 for 

the three systems are plotted in Fig. 11. It is manifested 

from Figs. 11(a) and 11(d) that all the four family methods 

can provide accurate solutions for S1 with two relatively 

low frequency modes. However, very different phenomena 

are found for the numerical results of S2 and S3 for using 

different family methods. It is worth noting that the high 

frequency second mode of S2 and S3 cannot be accurately 

integrated for using the time step of 0.02t  sec  for all 

the four family methods and AAM. Hence, the result 

obtained from AAM includes an accurate response of the 

first mode and an inaccurate response of the second mode, 

where the amplitude of the second mode is preserved 

although period is significantly distorted for both S2 and 

S3. In Figs. 11(b) and 11(c), either CDM1 or CDM2 can 

suppress or even eliminate the high frequency second mode 

very rapidly and thus no overshoot is found in the free 

vibration responses. Whereas, a significant overshoot is 

found in the responses obtained from KRM1 and KRM2 for 

both S2 and S3 as shown in Figs. 11(e) and 11(f). It is also 

found that the overshoot phenomenon in the response of 

KRM1 is much more significant than for KRM2 for both S2 

and S3. 

In order to figure out the root cause of the unusual 

overshoot for KRM1 and KRM2 as well as no overshoot for 

both CDM1 and CDM2, an analytical scheme will be 

applied to derive the numerical solution, which is obtained 

from each family method, in a mathematical form. For this 

purpose, the free vibration response of an undamped, linear 

elastic single degree of freedom system will be solved by 

using the four family methods. Hence, the equation of 

motion can also be expressed as shown in Eq. (13) except 

that a zero dynamic loading is considered. The initial 

conditions are taken to be the initial displacement of d0 and 

initial velocity of v0. For comparison purpose, the free 

vibration response to these initial conditions of an 

undamped, linear elastic single degree of freedom system 

can be obtained from the fundamental theory of structural 

dynamics. As a result, the theoretical solution is found to be 

 
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d n d t v


   


 (21) 

where dn=u(tn) and tn=n(Δt). 

Meanwhile, the step-by-step integration procedure of 

applying each family method to solve the same problem can 

be written as a recursive matrix form and is 

2
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, ,d t v t a   
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X . 

Hence, for the given initial conditions of d0 and v0, the 

initial acceleration a0 can be determined from the equation 

of motion and is found to be 
2 2

0 0 0 0 0
( ) 2 ( )t a t v d       for the free vibration 

response. In general, if there exist three linearly 

independent eigenvectors, Eq. (22) can further reduce to be 
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Λ Φ  (24) 

where Λ is a diagonal matrix and its diagonal term λi, 

i=1,2,3, is an eigenvalue of the matrix A; Φ is an 

eigenvector matrix and each column ϕi, i=1,2,3, is the 

eigenvector corresponding to λi. On the other hand, an 

amplification matrix A might not be diagonalized for an 

integration method if it is lack of three linearly independent 

eigenvectors. In this case, Eq. (23) is not applicable. 

However, there will exist a non-singular matrix Ψ to 

transform the matrix A into a Jordan canonical form such as 

A=ΨJΨ
-1

, where J is the Jordan form of the matrix A. As a 

result, Eq. (22) can be rewritten as 

1
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n n

n

 X A X ΨJ Ψ X  (25) 

Hence, the following equation can be achieved 
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if the amplification matrix A has a triple root and there is 
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only a linearly independent eigenvector. As a result, either 

Eq. (23) or (25) can be applied to analytically derive the 

numerical solution in a mathematical form. 

Since the overshoot behaviors were found in the high 

frequency responses to nonzero initial conditions for KRM1 

and KRM2, it is of interest to obtain the numerical solution 

in a mathematical form for each family method in the limit 

Ω0→∞. It is very complex to analytically obtain the three 

linearly independent eigenvectors for a general value of α 

for either CDM1 or CDM2 and then to apply Eq. (23) to 

derive the numerical solution in a mathematical form. For 

simplicity, the special case of α=0 is considered for CDM1 

and CDM2. Notice that they will become exactly the same 

integration method for α=0. In addition, the three 

eigenvalues of this integration method are found to be 

λ1,2=−1 and λ3=0 in the limit Ω0→∞. In addition, the 

corresponding eigenvector matrix is found to be 
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Since these three eigenvectors are linearly independent 

and thus the amplification matrix A of CDM1 or CDM2 for 

α=0 is diagonalizable. Consequently, using Eq. (23), it is 

very straightforward to obtain the numerical solution in a 

mathematical form for dn and it can be simply expressed as 
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4 40 0 0

cos 1 / 1        
. 

Similarly, it is found that both KRM1and KRM2 have 

the same the characteristic equation in the limit Ω0→∞. In 

addition, a triple real root is found for the characteristic 

equation and it is 
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For this case, there is only one linearly independent 

eigenvector for either KRM1 or KRM2 and is found to be 
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(30) 

Both KRM1 and KRM2 have no three linearly 

independent eigenvectors. Hence, their amplification 

matrices cannot be diagonalized. However, a non-singular 

matrix Ψ can be found to transform the matrix A into a 

Jordan canonical form as shown in Eq. (25). As a result, the 

non-singular matrix for KRM1 is found to be 
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while that for KRM2 is 
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Meanwhile, the term J
n
 in Eq. (25) can be obtained after 

a simple calculation and the result is found to be 
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where the upper off-diagonal terms of the matrix J
n
 are 

nonzero. 

After substituting Eqs. (31) to (33) into Eq. (25), the 

numerical solutions of dn in mathematical forms for KRM1 

and KRM2 are found to be 
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(34) 

Either the first line or the second line of this equation 

reveals that the numerical solution obtained from KRM1 or 

KRM2 is entirely different from the theoretical solution as 

shown in Eq. (21) since the basic forms of the numerical 

solutions are drastically different from those of the 

theoretical solutions. It is of great interest to consider the 

special case of ρ∞=1 for both KRM1 and KRM2. As a 

result, Eq. (34) becomes 
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(35) 

For comparisons, the coefficients of d0 and (Δt)v0 are 

summarized in Table 1 for α=0 for CDM1 and CDM2 as 

well as ρ∞=1 for KRM1 and KRM2. Both the third and 

fourth rows of Table 1 reveal that the coefficients of 
0

d  

and (Δt)v0 for CDM1 and CDM2 with α=0 are almost the 

same as those of the theoretical solution except for the 

period distortion from Ω0 to 
0

 . Thus, there will be no 

overshoot for CDM1 and CDM2 with α=0 since both the 

sine and cosine terms are bounded in the range of 1 and 1.  
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Table 1 Comparisons of coefficients for d0 and (Δt)v0 

Method Coefficient of d0 Coefficient of (Δt)v0 

Exact cos(nΩ0) sin(nΩ0)/Ω0 

CDM1 (α=0) )cos( 0n  
00 /)sin( n

 
CDM2 (α=0) )cos( 0n  

00 /)sin( n  

KRM1 (ρ∞=1)  (2n+1)(1)n n(1)n+1 

KRM2 (ρ∞=1) (1)n 2
0

1 /)1(4  nn  

 

 

On the other hand, for the general case of 1
3 0    for 

CDM1, the three eigenvalues are λ1,2=−ρ∞ and λ3=ρ∞−1 in 

the limit Ω0→∞ while for the case of −1≤α<0 for CDM2, 

the eigenvalues are found to be λ1,2=−ρ∞ and λ3=0. In 

addition, it is numerically verified that either CDM1 or 

CDM2 has three linearly independent eigenvectors and thus 

their amplification matrices are diagonalizable. Hence, they 

have no unusual overshoot. 

It is manifested from the fifth row that the coefficients 

of d0 and (Δt)v0 for KRM1 with ρ∞=1 increases with the 

increase of time step and are drastically different those the 

theoretical solution. Hence, a significant overshoot behavior 

is expected. Similar results are also found in the first line of 

Eq. (34) for KRM1 with 0≤ρ∞<1 except that overshoot 

behaviors will be reduced due to 0≤ρ∞<1. On the other 

hand, the last column shows that the coefficient of d0 for 

KRM2 with ρ∞=1 will jump from 1 to 1 alternatively while 

that of (Δt)v0 will increase with the increase of the number 

of time step for a given Ω0. Consequently, an overshoot 

behavior is also expected. However, the overshoot 

phenomenon for KRM2 will be less significant than for 

KRM1 due to smaller coefficients. Again, the behavior for 

KRM2 with 0≤ρ∞<1 will be similar to that of KRM2 with 

ρ∞=1 except that the overshoot phenomenon will become 

less significant due to 0≤ρ∞<1. This is confirmed by Figs. 

11(e) and 11(f). 

These analytical results may be applied to explain the 

phenomena found in Fig. 4. In Fig. 4, the period of the 

system is taken as 0.1sec and a step size Δt=1 sec is adopted 

for time integration. Thus, ω0=20π rad/sec and Ω0=20π, 

which is not very large when compared to Ω0→∞. Since the 

value of Ω0=20π is not very large, no overshoot was 

generally found in Figs. 4(c) and 4(d) for KRM1 and 

KRM2 except that for KRM1 with ρ∞=1 the solution shows 

an overshoot behavior. This might be manifested from the 

first line of Eq. (35), where both the absolute coefficients of 

d0 and (Δt)v0 are much larger than those of the theoretical 

solution. In fact, they are found to be (2n+1) and n for d0 

and (Δt)v0, respectively, for KRM1. Whereas, they are 

found to be 
0

cos( ) 1n   and 
0 0

sin( ) / 1/ (20 )n     

in theoretical solution correspondingly. 

Since the growth of the numerical solution dn is linear in 

n for both KRM1 and KRM2 as ρ∞=1, thus a weak 

instability will experience for both the two family methods 

as ρ∞=1. In general, a weak instability is referred to the 

polynomial growth in n of arbitrary order (Belytschko and 

Hughes 1983). Notice that the growth of the weak 

instability is considerably weaker than that of the instability 

caused by the spectral radius larger than 1. As a summary, 

Table 2 Comparison of numerical properties 

Property CDM1 CDM2 KRM1 KRM2 

Unconditional stability Yes Yes Yes Yes 

Second-order accuracy Yes Yes Yes Yes 

Explicit formulation Yes Yes Yes Yes 

Controllable numerical damping Yes Yes Yes Yes 

Overshoot (old type) No No No No 

Overshoot (new type) No No No No 

Weak instability No No Yes Yes 

Nonlinear performance Good Good Poor Good 

Overshoot (old type = independent of dynamic loading; 

found by Goudreau and Taylor) 

Overshoot (new type = dependent upon dynamic loading; 

removed by adding a load-dependent term) 

 

 

either KRM1 or KRM2 has an adverse weak instability 

property as ρ∞=1 for nonzero initial conditions due to the 

lack of three linearly independent eigenvectors for high 

frequency modes. Hence, they are hardly acceptable for 

practical applications (Penzien 2004, Su and Xu 2014). On 

the other hand, CDM1 and CDM2 have no such an adverse 

weak instability property since they can have three linearly 

independent eigenvectors and thus their performances are 

much better than for KRM1 and KRM2 based on stability 

consideration. 

 

 

7. Conclusions 
 

For brevity, Table 2 summarizes the major numerical 

properties of the four family methods. It is found that the 

numerical properties of period distortion, numerical 

damping ratio and spectral radius for linear elastic systems 

are exactly the same for the four family methods of CDM1, 

KRM1 and KRM2. Whereas, CDM2 generally shows more 

numerical damping ratio, more period distortion and thus 

less spectral radius when compared to the other three family 

methods. It is confirmed by the four family methods that a 

structure-dependent integration method generally has 

unconditional stability for linear elastic and stiffness 

softening systems, i.e., δi≤1, while it is conditionally stable 

for stiffness hardening systems, i.e. δi>1. A stability 

amplification factor σ can be applied to enlarge the 

unconditional stability range from δi≤1 to δi≤σ. Since it is 

very rare to experience that the instantaneous stiffness of a 

real structure will become larger than twice of the initial 

stiffness, the choice of σ=2 seems large enough for general 

applications. Although an unusual overshoot in the high 

frequency forced vibration response will generally 

experience for the four family methods, the introduction of 

a load-dependent term into the difference equation for 

displacement increment for each family method can 

effectively eliminate the adverse overshooting behavior. 

The most detrimental property to KRM1 and KRM2 is a 

weak instability or overshoot in the high frequency 

responses to nonzero initial conditions. Thus, the numerical 

solutions obtained from either KRM1 or KRM2 may 

experience an overshoot or even numerical instability for 
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nonzero initial conditions. This is a very severe limitation 

and therefore its applications might be of no interest. The 

cause of this weak instability is due to the lack of three 

linearly independent eigenvectors for the high frequency 

modes and thus the amplification matrix cannot be 

diagonalized. On the other hand, CDM1 and CDM2 can 

have three linearly independent eigenvectors for the high 

frequency modes and thus their amplification matrices are 

diagonalizable and they have no such an adverse weak 

instability property or overshooting. Although KRM1 and 

KRM2 can generally have the same properties as those of 

CDM1 and CDM2, the weak instability or overshoot for 

nonzero initial conditions will stringently prevent them 

from practical applications. Thus, CDM1 and CDM2 are 

preferable over KRM1 and KRM2 although they are 

classified as the two-step integration methods. Since CDM1 

and CDM2 can integrate unconditional stability, explicit 

formulation and controllable numerical dissipation 

simultaneously, they can be competitive with the traditional 

implicit dissipative methods, such as the HHT- method, 

WBZ- method and the generalized- method due to no 

involvement of nonlinear iterations for each time step. 
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