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1. Introduction 
 

Nowadays, the concept of vibration control (Lu et al. 

2016b) has become more and more important in structural 

engineering, and various strategies have been proposed to 

attenuate the responses (Zhou et al. 2016, Gong and Zhou 

2016, Lu et al. 2017b). When Frahm invented a vibration 

control device called dynamic vibration absorber in 1909 

(Rana and Soong 1998), people began to use mass dampers 

to control the vibration (Lu et al. 2010, Lu et al. 2012, Lu et 

al. 2014, Lu et al. 2017a). In the past decades, numerous 

studies have focused on the development of Tuned Mass 

Damper (TMD) system design and it has been widely used 

in actual projects (Lu et al. 2012, Lu et al. 2016c, Dai et al. 

2016). As passive control devices, TMDs have simple 

characteristics, favorable controlling effects under specific 

tuned frequencies and low cost, thus they are widely used in 

wind- or earthquake-induced (Xiang and Nishitani 2015, 

Chakraborty and Debbarma 2016, Lu et al. 2016a) vibration 

control.  

One of the classical methods for design of TMDs is the 

Den Hartog method (Abubakar and Farid 2009). Recently, 

new methods have been proposed to determine the optimum 

parameters of TMDs. For example, a robust optimal design 

criterion in case of random vibration was developed by 

Marano et al. (2008). Anh and Nguyen (2012) obtained the 

optimum tuning ratio of a TMD attached to a damped 
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primary system by using equivalent linearization method. 

Salvi and Rizzi (2015) suggested a tuning procedure to deal 

with the optimum parameters of a TMD applied to frame 

structures, which consisted of a numerical minimax 

optimization algorithm within MATLAB. Mrabet et al. 

(2015) adopted the reliability based optimization strategy 

where the failure probability was related to the primary 

structure displacement to design TMD. Tubino and Piccardo 

(2015) proposed a numerical optimization criterion based 

on the maximization of an efficiency factor, defined as the 

ratio between the uncontrolled acceleration standard 

deviation and the controlled one to design TMD in 

footbridges. 

However, in the aspect of tuning TMD to the desired 

structural frequency, uncertainty exists due to the 

difficulties in predicting the structure’s natural frequencies 

in a practical implementation. Consequently, Multiple 

Tuned Mass Dampers (MTMDs) have been proposed to 

broaden the bandwidth of suppression frequencies. To 

effectively reduce the responses in different modes of the 

primary structure, the natural frequencies of MTMD are 

usually equally distributed over a range. Researchers have 

shown that MTMDs can not only improve the control 

robustness of the system and reduce the sensitivity to mis-

tuning design of dampers (Singh et al. 2002), but efficiently 

control the seismic responses of structures where multiple 

modes are dominant. Xu and Igusa (1992) examined a main 

oscillator with multiple sub-oscillators and found these sub-

oscillators were more effective than a single TMD at low 

damping values when subjected to wide-band input. The 

effectiveness of MTMDs has also been validated by 

investigating the seismic energy dissipation of inelastic 
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structures with MTMDs under earthquakes (Wong and 

Johnson 2009).  

MTMDs are also widely applied for pedestrian bridges. 

Carpineto et al. (2010) investigated the dynamic responses 

of a suspension footbridge under pedestrian-induced 

excitations and its passive mitigation by using MTMD. 

Chen et al. (2012) proposed a design method for long-span 

floors installed with a MTMD system and conducted field 

tests of several large scale buildings, showing that the 

MTMD system was capable of effectively mitigating the 

vertical vibration of long-span floor structures. In terms of 

the optimum design of MTMDs, Li et al. (2010) 

investigated the vibration characteristics of a footbridge 

with MTMD based on crowd-footbridge random vibration 

model, and an optimization procedure based on the 

minimization of maximum root-mean-square acceleration 

of footbridge was introduced to determine the optimum 

design parameters of MTMD system. Based on all these 

efforts, as for vibration control of pedestrian bridges, more 

effective and realistic methods for the optimum design of 

MTMD should be proposed with deep understanding of the 

physics of the MTMD.  

In this paper, a new optimization design method for 

MTMD in pedestrian bridges was proposed by determining 

the minimum norm of the transfer function to obtain each 

TMD’s optimum stiffness and damping. Different from the 

aforementioned method by Li et al. (2010) that may 

consider two ultimate excitation scenarios and determine 

the optimum parameters of the MTMD system in each case 

to ensure safety and comfortability, the new proposed 

method took both the input excitations and output responses 

into account. Systematic simulations of pedestrian 

excitations were firstly described. The motion equation of a 

typical MTMD system attached to a Multi-degree-of-

freedom (MDOF) system was presented followed, and the 

transfer function from the input pedestrian excitations to the 

output acceleration responses was defined. By solving the 

minimum norm of the transfer function, the parameters of 

the MTMD which resulted in the minimum overall 

responses can be obtained. Two applications of lightly 

damped pedestrian bridges showed that MTMDs designed 

through this method can significantly reduce the structural 

responses when subjected to pedestrian excitations, and the 

vibration control effects were better than the MTMD when 

it was considered as being composed of equal number and 

mass ratios of TMDs designed by classical Den Hartog 

method. 
 

 

2. Excitation simulation 
 

Pedestrian walking induces excitations including 

vertical forces, lateral forces and torsional forces. Since 

torsional forces are relatively low compared to vertical and 

lateral forces, the simulation of excitations was focused on 

vertical forces resulting from people walking and jumping, 

and lateral forces in the following sections. 
 

2.1 Vertical excitation of walking 
 

The vertical excitation of people walking can be seen as 

a cyclic excitation. The period of this excitation, known as 

gait cycle, is the interval between adjacent ground touches 

by the same foot. By applying the Fourier transform to the 

time history of the walking force, the force can be 

expressed as a periodic function as follows (Allen and 

Murray 1993). 

   1 cos 2i s iF t p if t         (1) 

where p is the weight of the people walking. αi is the 

dynamic factor of the i th order harmonic wave. fs is the 

frequency of the gait cycle. t is the time and ψi is the phase 

angle in i th order harmonic wave. Generally, the dynamic 

factor αi continuously decreases as the order of the 

harmonic wave increases. 

Different methods including first-order and third-order 

harmonic excitations have been proposed by researchers to 

simplify the expression of the walking force. This paper 

only considered the first three order harmonic excitations to 

decide the single-person walking loads, which was 

suggested by the International Association for Bridge and 

Structure Engineering (IABSE). The continuous contact 

model was selected to present single-person walking 

excitation (Da Silva et al. 2003), as shown in Fig. 1(a). 

However, for most of the time, excitations applied to a 

structure are induced by more than one people. The upper 

limit of people density walking in group without interfering 

with others is 0.3 people per square meter (Yang and Ke 

2008). When the pedestrian density reaches 0.6-0.8 people 

per square meter, the blockage of other people will hinder 

the normal movement. In that situation, people are forced to 

adjust their step length and speed to coordinate with other 

people around, thus the walking group tends to walk in the 

same manner with the same frequency. According to Fujino 

et al. (1993), the number of people walking with the same 

frequency when they are on a pedestrian bridge is 0.2n, 

where n is the total number of people walking on a bridge 

and can be approximated obtained through the following 

equation. 

0n T  (2) 

where λ is the number of people passing over the width of 

the bridge per second and T0 is the time needed to walk 

through the bridge. 

 

2.2 Vertical excitation of jumping (running) 
 

When the movement is performed by a group of people, 

it is necessary to consider the excitation caused by people 

jumping or running. The excitation of jumping or running is 

different from the excitation of walking as sudden changes 

of force are existed in jumping or running. A model for 

excitation of jumping or running is proposed, in which there 

is a force when the foot touches the ground and a zero-force 

when the feet are in no contact with the ground as shown in 

Eq. (3) (Da Silva et al. 2003). 

 
sin( / ) 0,

0 ,

    
 

   

p p p

p

p

K G t t t t
F t

t t T

 

(3) 

where Kp is the impact factor and Kp=Fmax/G. Fmax is the  
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(a) Single-person walking excitation (2Hz) 

 
(b) Jumping/running excitation (2Hz) 

Fig. 1 Pedestrian excitation time history 

 

 

maximum of the force and G is the weight of people. tp is 

the contacting time and T is the time period of the jumping 

or running excitation. With the assumption that the weight 

of a single people is 600 N, Kp is 4.7, and the contacting 

time tp is one third of T, the time history of a 2 Hz jumping 

(running) excitation is shown in Fig. 1(b). 

 

2.3 Lateral excitation of walking 
 

The lateral force of walking pedestrian is calculated 

according to the British standard 5400 (2006). A simple 

sinusoidal function is used in the following equation. 

 
 

 
0 0

0 0

0.033 700sin 2 0.8Hz 1.2Hz

0.009 700sin 2 1.6Hz 2.4Hz
pv

f t f
F t

f t f





  
 

  

 (4) 

where f0 is the fundamental lateral frequency of the 

pedestrian bridge.  

 
2.4 Force on handrail 

 
The forces on the handrail from people’s leaning are 

considered as static loads in current practice as described in 

the Chinese code “Technical Specifications of Urban 

Pedestrian Overcrossing and Underpass” CJJ69 (1995). 

However, in real situation, the handrail bears sudden forces 

which usually cause the lateral vibration of the structure. 

The vibration caused by the forces applied on the handrail is 

even stronger than that caused by the lateral excitations of 

walking pedestrian. Consequently, modelling the forces on  

 

Fig. 2 Computational model of pedestrian bridge system 

with MTMD 

 

 

handrail from people’s leaning as static loads is not 

appropriate and should be considered in the lateral vibration 

analysis. For convenience, distributed sudden pushing 

forces (250 N/m) were selected to equivalently model the 

handrail forces. 

 

 

3. MTMD design 
 

The proposed design method for MTMD system was 

based on structures (Singh et al. 2002, Li 2002, Miguel et 

al. 2016). Once the frequencies of the primary structure 

were determined, the TMDs of MTMD system can be 

designed to correspond to the dominant vibration modes of 

the primary structure. Then the optimization design of 

MTMD focuses on the determination of each TMD’s 

optimum stiffness and damping coefficient to obtain overall 

satisfied structural performance. This can be achieved by 

solving problems of transfer function concerning the input 

and output, given a predefined displacement and velocity 

(Yang et al. 2010). Assuming that the state of the system is 

known, the transfer function from the excitations to the 

structural responses is related with the gains of TMD’s 

stiffness and damping coefficient. Combining the initial 

parameters with gains that give the minimum norm of the 

transfer function, the optimum stiffness and damping 

coefficient can be obtained. 

 

3.1 Motion equations of MTMD system 
 

Fig. 2 shows the analytical model of the pedestrian 

bridge system attached with MTMD consisting of n 

distributed TMDs. The primary structure that was 

symbolizing a typical MDOF system was characterized by 

the generalized mass m0, damping coefficient c0 and 

stiffness k0. mi, ci and ki are the mass, damping coefficient 

and stiffness of the i th TMD, respectively. f(t) is pedestrian 

excitation, which is directly applied on the primary 

structure. y is the displacement response, and ui is the 

passive control force between the primary structure and the 

i th TMD, which is relevant to the stiffness and damping 

coefficient of the i th TMD.  
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The motion equation of the MTMD system can be 

written as 

               s sM q C q K q E f t P u     (5) 

where [M], [C] and [K] are the mass, damping, and stiffness 

matrix of the whole system, respectively. [Es] and [Ps] are 

the direction matrixes of the excitation f(t) and the passive 

control force vector {u}, respectively. {q}, }{q , and }{q  

are the displacement, velocity, and acceleration vector, 

respectively. Full expressions of these matrixes are shown 

as follows. 
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3.2 Transfer function of MTMD system 
 

The passive control force vector {u} is related with the 

relative movement of each TMD to the primary structure. 

To present the system motion equations in terms of relative 

response of TMD to the primary structure, the absolute 

displacement vector {q} can be transformed into relative 

displacement vector {p} as  

    

0

1 0

0

1 0 0

1 1 0

1 0 1

s

n

y

y y
q T p

y y

  
       

   
      

 (6) 

where [Ts] is the transfer matrix.  

Substituting Eq. (6) in Eq. (5), then Eq. (5) in terms of 

state equation can be written as 

           x A x E f t P u    (7) 

where {x} is the state vector {p, p }
T
, 

 
 

             
1 1 1 1

0

s s s s

I
A

T M K T T M C T
   

 
  

   

, 

 
 

     
1 1

0

s s

E
T M E

 

 
  
  

,

 

 
 

     
1 1

0

s s

P
T M P

 

 
  
  

 Considering that the absolute acceleration of the primary 

structure can be easily measured, the matrix of structural 

absolute acceleration z is set as the output matrix of the 

system, as shown in Eq. (8). 

The passive control force vector {u} is determined by 

gains of continuously varying displacement and velocity, 

and can be presented as Eq. (9), where Δki and Δci are gains 

of the i th TMD’s stiffness and damping. 

Substituting Eq. (9) in Eq. (7) and Eq. (5), respectively, 

then, Eq. (10) and Eq. (11) can be obtained. 
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(8) 
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 (9) 

            ( )x A P F x E f t    (10) 

          1( ) 0z C D F x f t    (11) 

Therefore, the transfer function from the input 

pedestrian excitations to the output acceleration responses is 

defined as 
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(12) 

 
3.3 Optimization design procedure of MTMD system 

 

The steps that one can follow to design an optimum 

MTMD attached to a SDOF primary structure are 

summarized as follows: 

(1) Determine the initial values of each TMD’s stiffness 

ki and damping coefficient ci according to the classical 

Den Hartog method. This method is usually used to 

optimize the stiffness and damping of a TMD attached 

to a SDOF system when subjected to sinusoidal 

excitations (Masaki and Hirata 2004; Iba et al. 2006). 
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The frequency ratio and damping ratio of the i th TMD 

to the primary structure is 

 TMD 1 1 iif    (13) 

 TMD 3 8 1i ii     (14) 

where μi 
is the mass ratio of the i th TMD to the primary 

structure 

𝜇𝑖 =
𝑚TMDi

𝑚0

 (15) 

fTMDi and εTMDi 
can also be presented as follow 

  

TMD TMDTMD
TMD

0 0 0

i ii
i

k m
f

k m




   (16) 

  

TMD
TMD

TMD TMD2

i
i

i i

c

k m
   (17) 

Thus, given the mass of each TMD mTMDi, 

corresponding stiffness ki and damping coefficient ci can be 

obtained. 

(2) Define H2 norm of the system transfer function 

[Gzf(t)] as the objective function. H2 norm of the transfer 

function, as shown in Eq. (12), is 

  
       

2

2

1

2
zf t zf t

H tr G j G j d  






    
      (18) 

where tr[M] is the trace of matrix [M], meaning the 

algebraic sum of the primary diagonal elements of [M]. 

(3) Solve for the minimum value of Eq. (18) to obtain 

the gain matrix of TMD’s stiffness and damping, as 

shown in Eq. (9). To avoid negative stiffness and 

damping, Δki and Δci are confined in the following 

ranges, 

i i ik k k   
          i i ic c c     

Finally, the optimum stiffness and damping coefficient 

of each TMD can be obtained as 

Ti i ik k k   (19) 

Ti i ic c c   (20) 

 

 

4. Application in pedestrian bridges 
 

Two applications in pedestrian bridges enhanced by 

MTMD were introduced in this and next section. Since the 

TMDs are usually demanded and expected to achieve good 

vibration control effects for lightly damped structures, two 

applications with damping ratios of 0.02 and 0.01 were 

presented. In the first application, a vertical excitation of 

walking pedestrians was applied to the bridge and the 

MTMD only functioned in the vertical direction. In the 

second application, more complicated excitations were 

considered and both vertical and lateral TMDs were 

attached to the bridge. The excitation simulation and 

optimum design of MTMD utilized the methods described 

in this paper. The responses of the pedestrian bridge without 

MTMD, with MTMD that was regarded as consisting of 

TMDs with same number and mass ratios designed by the 

classical Den Hartog method (refered to as Den Hartog’s 

MTMD) and that by the new proposed method were 

compared.  

 
4.1 Primary structure and MTMD design 

 

The primary structure was a two-span steel pedestrian 

bridge with a 32 m left span and a 36 m right span, and the 

width of the bridge is 15 m. For each span, it can be 

considered as a simply supported beam. The natural 

frequencies were 2.763 Hz, 3.737 Hz, and 3.991 Hz for the 

first three vibration modes. The first mode was a symmetric 

bending mode, and the second and the third modes were 

asymmetric and symmetric torsional modes, respectively. In 

this case, the first mode was the primary focus, and only the 

vibration control in the vertical direction was taken into 

consideration. The damping ratio of the primary structure 

was 0.02. 

The optimization design of the MTMD followed the 

procedure in Section 3. Considering several engineering 

experiences, the total mass of the MTMD system was 

chosen to be 2% of the mass of the primary structure 

(308.56 t). 16 TMDs were equally distributed along the 

bridge with 6 TMDs on the left span and 10 TMDs on the 

right span. The mass of each TMD was thus 1000 kg. Take 

the optimization design for the left span as an example, and 

the steps were described as follows. 

(1) Determine the initial values of each TMD’s stiffness 

ki and damping coefficient ci by applying Eqs. (13)-(17). 

The parameters of the primary bridge and the initial 

values of the TMD on the left span based on preliminary 

design are listed in Table 1.  

(2) Determine the gains of each TMD’s stiffness and 

damping coefficient by solving the H2 norm for its 

minimum. H2 norm of the transfer function was defined 

by Eq. (18). The optimum parameters of the MTMD  

 

 
Table 1 Parameters of the primary structure and preliminary 

design of MTMD 

m0 

(kg) 

k0 

(kN/m) 

c0 

(kNs/m) 
ξ0 

mi 

(kg) 

ki 

(kN/m) 

ci 

(kNs/m) 

308560 37760 136.536 0.02 1000 239.282 0.767 

 
Table 2 Optimization process of TMDs on the left span 

MTMD 

No. 

Gain Optimum value 

Δki (kN/m) Δci (kNs/m) kTi (kN/m) CTi (kNs/m) 

1 1.6775 0.017 237.6004 0.784 

2 -14.389 -0173 253.6710 0.940 

3 16.6003 -0.253 222.6816 1.020 

4 -34.022 -0.241 273.3039 1.007 

5 31.6853 -0.185 273.3039 0.952 

6 -2.7117 -0.216 241.9936 0.983 
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Table 3 Unified optimization results of the MTMD 

Group No. 
Stiffness 

(kN/m) 

Damping 

(kNs/m) 

Frequency 

(Hz) 

220 1 2.67 3.34 

270 1 2.36 0.290 

240 1 2.47 23.63 

0.021 0.161 0.161 0.042 

 

 

were the sum of the initial values and the gains. The 

gains and optimum stiffness and damping coefficient of 

six TMDS on the left span are listed in Table 2. The 

minimum value of the H2 norm was 7.6483. 

(3) To be economical and convenient for industry 

construction, all the TMDs were categorized into three 

groups and in each group, values of TMD parameters 

were very close. For each group of TMDs, a set of 

unified stiffness and damping coefficient was decided, 

as listed in Table 3, as well as corresponding 

frequencies. 

 
4.2 Excitation and structural response 
 
Vertical excitation from walking pedestrians was 

considered in this application, as shown in Eq. (1). The 

walking speed was assumed to be 3.25 m/s and the 

pedestrian density was one person per square meter. The 

frequency of the excitation was set as 2.5 Hz which was in 

line with the walking speed in normal situation. 

Fig. 3 compares the acceleration time histories at the 

middle position of each span of pedestrian bridge with and 

without MTMD. In addition, the acceleration responses of 

the bridge designed by the proposed optimization method 

and that by the classical Den Hartog method are compared. 

It can be observed that an overall reduction of the absolute 

acceleration responses in both spans can be achieved with 

both two kinds of MTMD. However, the vibration control 

effects of new MTMD were better than that of the classical 

Den Hartog’s MTMD. By attaching with the new proposed 

MTMD, the peak acceleration of both spans can be 

significantly reduced. For example, this value of the right 

span was reduced from 1.68 m/s
2
 to 0.89 m/s

2
, whereas it 

was reduced from 1.68 m/s
2
 to 1.14 m/s

2
 by the classical 

Den Hartog’s MTMD, suggesting an improvement of 

28.5% of new method.  

In the steady-state range, the performance of the left 

span was less satisfied compared to that of the right span. 

There were two possible reasons. For one thing, in this 

application, 6 TMDs were attached on the left span, 

whereas 10 TMDs were attached on the right span. 

Generally speaking, the vibration reduction effects increase 

as the auxiliary mass ratio increases for TMDs. For another 

thing, the responses of the right span were larger than the 

left span, which may make TMDs fully take effects.  

Theoretically speaking, the optimization method 

proposed in this paper improved the vibration control 

effects on the basis of the classical Den Hartog method. It 

firstly determined the initial parameters of MTMD in the 

way of the classical Den Hartog method, and then 

optimized the transfer function, and finally obtained the  

 
(a) Right span 

 
(b) Left span 

Fig. 3 Comparison of acceleration time histories without 

MTMD, with new MTMD and with Den Hartog MTMD 

 

 

optimum stiffness and damping coefficient. As a result, the 

comparison results showed that the new optimization 

method in this paper was more efficient in designing 

MTMD. 

 
 
5. Application in an art museum connecting bridge 

 
5.1 Primary structure and MTMD design 
 
The primary structure was a connecting bridge located 

in an art museum. The bridge was a single-span truss 

structure consisting of upper and lower chords, and web 

members, which were made of box shape steel. The bridge 

was 2.2 m in height and 1.25 m in width, with a length of 

56 m. A layer of 100 mm thick reinforced concrete was 

paved on the top of the truss with outstretched width of 575 

mm on both sides in the lateral direction. The total weight 

of the bridge was 231.83 t. And the damping ratio of the 

primary structure was 0.01. 

The first and third modes of the structure vibrated in the 

lateral direction with frequencies of 1.49 Hz and 3.88 Hz, 

respectively. The second and fourth modes of the structure 

were bending modes in the vertical direction with 

frequencies of 1.64 Hz and 5.58 Hz, respectively. The fifth 

mode was the torsional mode along the longitude direction 

with a frequency of 5.80 Hz. In this case, the first mode and 

the second mode were mainly paid attention to, and the 

vibration control both in the lateral and vertical directions 

were taken into consideration. 

The optimization design of the MTMD followed the  
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Table 4 Parameters of vertical TMDs 

Mass 

(kg) 

Stiffness 

(kN/m) 

Damping 

ratio (%) 

Damping 

Coefficient (kNs/m) 

2000 53.04×4 10 4.12 

 

Table 5 Parameters of suspension TMDs 

Mass 

(kg) 

Pendulum 

length (mm) 

Damping 

ratio (%) 

Damping 

Coefficient (kNs/m) 

2000 112 10 3.74 

 

 

procedure in Section 3. A total number of 5 TMDs were 

installed on the bridge, including 3 TMDs attached to the 

lower chords to control the vertical vibration and 2 

suspension TMDs attached to the upper chords to control 

the lateral vibration. Both kinds of TMDs were positioned 

around the middle of the bridge, and Fig. 4 shows the 

location of MTMD. The mass ratio of each TMD to the 

primary structure was set as 0.86%, resulting in 2 t of each 

TMD. The natural frequency of the vertical TMDs was 1.64 

Hz, and that of the suspension TMDs was 1.49 Hz. The 

detailed optimization results for vertical and suspension 

TMDs are listed in Tables 4-5, respectively. 

  

5.2 Excitations 
 
Excitations including vertical and lateral excitations 

from walking, vertical excitation from jumping (running), 

and the lateral sudden force on the handrails were 

considered. 

Assume that the average weight of a person was 600 N 

and 13 people were walking in the same gait cycle. 

According to the International Association for Bridge and 

Structural Engineering (IABSE), the pedestrian walking 

loads were applied to the structure in the mid-span with 

frequencies of 1.2 Hz, 1.5 Hz, 1.7 Hz, 2.0 Hz, 2.2 Hz, and 

2.4 Hz in the vertical direction, and with frequencies of 1.2 

Hz, 1.5 Hz, 2.0 Hz and 2.4 Hz in the lateral direction. The 

same weight and number of people were used for the 

 

 

simulation of jumping excitation. The frequencies for the 

simulation of vertical jumping excitation were 1.2 Hz, 1.5 

Hz, 2.0 Hz, and 3.0 Hz. The bridge was excited in the mid-

span. A sudden force of 250 N/m was applied to the full 

length of the bridge as the simulation of lateral force on 

handrails. 

 
5.3 Structural response 
 
The dynamic characteristics of the bridge were slightly 

changed after attaching with the MTMD. The first mode 

was the in-phase lateral vibration of the bridge and the 

suspension TMDs with a frequency of 1.388 Hz. The 

second mode was the in-phase vertical vibration of the 

bridge and the vertical TMDs with a frequency of 1.49 Hz. 

At this mode, the suspension TMDs vibrated in the 

longitudinal direction. The fifth mode was similar to the 

second mode with a frequency of 1.50 Hz. The sixth mode 

was the out-of-phase lateral vibration of the bridge and the 

suspension TMDs with a frequency of 1.626 Hz. In the 

third, the fourth, the seventh, and the eighth modes, only the 

movement of the TMDs can be observed. In the ninth mode, 

the vertical TMDs vibrated in the opposite direction of the 

bridge with a frequency of 1.856 Hz. 

 
5.3.1 Vibration control in the vertical direction 
The peak responses of displacement, velocity, and 

acceleration of the bridge at mid span with and without 

MTMD when subjected to walking excitations are 

compared in Table 6. Also, the responses of the bridge with 

the new optimum MTMD and that with the classical Den 

Hartog’s MTMD (referred to as DH in Tables 6-8) are 

compared in Table 6. It can be found that with the designed 

MTMD, the responses of the bridge were significantly 

reduced in a wide band of frequencies, which showed the 

robustness of MTMD. The reduction effects for 

displacement and velocity ranged from 22.38% to 66.37 %, 

from 33.33% to 78.26%, respectively. The acceleration 

response of the bridge without MTMD was above 10 cm/s
2
,  

 
(a) Bridge attached with MTMD 

 
(b) Zoom in MTMD part 

Fig. 4 Model of bridge in SAP2000 
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the upper limit required by the owner for all frequencies. 

However, with the control by MTMD, the acceleration 

responses can meet the requirement and the best reduction 

effects for acceleration can achieve 78.55%.  

In addition, the closer the frequency of excitation to the 

frequency of the bridge was, the better the vibration control 

effects were. For example, the highest response reduction 

occurred at 1.7 Hz walking excitation which was close to 

the natural frequency of the bridge. Besides, the designed 

MTMD can achieve better vibration control effects 

compared with the classical Den Hartog’s MTMD, which 

demonstrated that the optimization method proposed in this 

paper was efficient in designing MTMD. For example, 

under 1.2 Hz walking excitations, the displacement 

vibration control effects of the new MTMD were almost 

twice of the classical Den Hartog’s MTMD. 

Table 7 lists the responses under jumping/running 

excitations. When subjected to 1.5 Hz excitations, which 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 8 Accelerations at mid span under lateral excitations 

Frequency 
1.2 Hz 1.5 Hz 2.0 Hz 3.0 Hz Lateral 

force 
New DH New DH New DH New DH New DH 

MTMD 

off (cm/s2) 
0.89 1.19 0.77 0.59 3.46 

MTMD 

on (cm/s2) 
0.61 0.65 0.70 0.81 0.60 0.65 0.35 0.39 2.25 2.58 

Reduction 

(%) 
31.46 26.97 41.17 31.93 22.07 15.58 40.67 33.90 34.97 25.43 

 

 

were the closest frequency to the natural frequency of the 

bridge, the bridge vibrated the most due to the resonance. 

As the frequency of the excitation deviated away from the 

natural frequency of the bridge, the responses decreased. 

And the MTMD reduced the structural responses the most 

when the bridge resonated, where the reduction effects were 

59.97%, 65.76%, and 52.11% for displacement, velocity, 

Table 6 Responses at mid span under walking excitations 

Frequency 
1.2 Hz 1.5 Hz 1.7 Hz 

New DH New DH New DH 

Displacement 

(mm, %) 

MTMD off 1.43 2.13 3.42 

MTMD on 1.11 1.27 1.14 1.33 1.15 1.29 

Reduction 22.38 11.19 46.48 37.56 66.37 62.28 

Velocity 

(cm/s, %) 

MTMD off 0.86 1.52 2.99 

MTMD on 0.56 0.64 0.61 0.72 0.65 0.76 

Reduction 34.88 25.58 59.87 52.63 78.26 74.58 

Acceleration 

(cm/s2, %) 

MTMD off 11.57 15.64 32.26 

MTMD on 5.97 6.70 6.38 7.14 6.92 10.16 

Reduction 48.40 42.09 59.21 54.35 78.55 68.51 

Frequency 
1.2 Hz 1.5 Hz 1.7 Hz 

New DH New DH New DH 

Displacement 

(mm, %) 

MTMD off 1.74 1.48 1.46 

MTMD on 1.15 1.32 1.14 1.15 1.32 1.14 

Reduction 33.9 24.14 22.97 33.9 24.14 22.97 

Velocity 

(cm/s, %) 

MTMD off 1.27 1.11 0.99 

MTMD on 0.67 0.79 0.67 0.67 0.79 0.67 

Reduction 47.24 37.80 39.63 47.24 37.80 39.63 

Acceleration 

(cm/s2, %) 

MTMD off 16.03 15.08 13.57 

MTMD on 8.23 9.20 8.86 8.23 9.20 8.86 

Reduction 48.65 42.61 41.24 48.65 42.61 41.24 

Table 7 Responses at mid span under jumping excitations 

Frequency 
1.2 Hz 1.5 Hz 2.0 Hz 3.0 Hz 

New DH New DH New DH New DH 

Displacement 

(mm, %) 

MTMD off 4.04 9.72 4.58 1.92 

MTMD on 3.14 3.16 3.89 5.28 3.14 3.16 3.89 5.28 

Reduction 22.27 21.78 59.97 45.68 22.27 21.78 59.97 45.68 

Velocity 

(cm/s, %) 

MTMD off 4.02 9.64 4.83 1.86 

MTMD on 2.74 2.76 3.30 5.04 2.74 2.76 3.30 5.04 

Reduction 31.84 31.34 65.76 47.72 31.84 31.34 65.76 47.72 

Acceleration 

(cm/s2, %) 

MTMD off 44.78 90.47 67.08 39.59 

MTMD on 23.61 36.07 43.32 56.77 23.61 36.07 43.32 56.77 

Reduction 47.27 19.45 52.11 37.25 47.27 19.45 52.11 37.25 
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and acceleration responses, respectively. At other 

frequencies, the overall performance of the MTMD was 

also effective. Similarly, the designed MTMD by this new 

method can get better vibration control effects than the 

classical Den Hartog’s MTMD. 

 
5.3.2 Vibration control in the lateral direction 
The acceleration responses of the controlled structure 

with two kinds of MTMD and the uncontrolled structures 

under the lateral walking excitations are compared in Table 

8. The highest response reduction effect occurred under 1.5 

Hz excitation, showing a similar tendency of the vibration 

control in the vertical direction. The reduction effects 

achieved by the new MTMD ranged from 22.07% to 41.2%. 

The acceleration responses at mid span when subjected to 

the lateral sudden impact resembling the force on the 

handrail were 2.25 cm/s
2
 and 3.46 cm/s

2
 when the 

suspension TMDs were on and off the bridge, respectively. 

Also, the classical Den Hartog’s MTMD can reduce the 

vibration, but the effects were not as satisfying as new 

MTMD. The reduction effects reached 34.97% and 25.43% 

for new MTMD and classical MTMD, respectively, under 

the lateral force case, indicating the high efficiency of new 

MTMD. 
 

 

6. Conclusions 
 

An effective approach for optimization design of 

MTMD in pedestrian bridges was proposed by utilizing the 

transfer function to obtain each TMD’s optimum stiffness 

and damping. The transfer function from the input 

pedestrian excitations to the output acceleration responses 

was defined. By solving for the minimum norm of the 

transfer function, the optimized parameters of MTMD can 

be obtained. Two applications of lightly damped pedestrian 

bridges attaching with MTMD designed by new proposed 

optimization method and that by the classical Den Hartog 

method were presented and their vibration reduction effects 

were compared. Based on above analysis, the following 

conclusions can be drawn: 

• For lightly damped bridges, both MTMD using the 

optimization method proposed in this paper and MTMD 

using the classical Den Hartog method can significantly 

reduce the structural responses under a series of 

pedestrian excitations, including vertical excitations of 

walking and jumping/running, lateral excitations of 

walking and lateral forces on handrails.  

• The vibration control effects are the best when the 

frequency of excitations is the closest to the frequency 

of the structure.  

• The MTMDs are capable of reducing responses under 

pedestrian excitations among a reasonably wide range of 

frequencies, showing the MTMD’s robustness.  

• The new approach for optimization design of MTMD 

shows high efficiency of vibration control effects 

compared with the classical Den Hortag method. Its 

vibration reduction effects achieve even 78% in the case 

of resonance, and are twice of the classical MTMD in 

some cases, which illustrates the effectiveness of 

MTMDs in the vibration control. 

In conclusion, the procedure presented and validated in 

the paper provides a practical and efficient way for design 

of MTMD, and promises an encouraging development of 

MTMD systems. 
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