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1. Introduction 
 

One of the most important an interesting area in 

nonlinear phenomena is to prepare an easy to apply 

approach for solving them especially in engineering 

science. Many practical engineering problems are modeled 

as oscillatory systems. Generally, it’s very difficult o have 

an exact solution for nonlinear problems, therefore in recent 

years many scientists have been working on semi-analytical 

methods to solve nonlinear problems. The traditional 

methods has some limitations. To overcome the limitations 

of the traditional methods, some new approaches have been 

presented in recent years such as: Hamiltonian approach 

(He 2010, Xu 2010), Adomian decomposition method (Luo 

2005, Ramana 2014), Differential transformation method 

(Arikoglu and Ozkol,2005), Energy balance method ( 

Jamshdi and Ganji 2010), Max-Min approach (Shen and 

Mo 2009); improved Amplitude-frequency Formulation (He 

2008) and other analytical methods (Bayat et al. 2013a, b, 

2014, 2016a,.b, Bayat and Pakar 2011, 2012, 2013, 2015, 

Bayat and Abdollahzade 2011, Kutanaei et al. 2011, 

Cveticanin 2012, 2015, Edalati et al. 2016)were used to 

handle strongly nonlinear systems. Among these methods, 

Hamiltonian approach (HA) is considered to solve the 

nonlinear vibration of a solid circular sector object in this 

paper. 

The paper has been collocated as follows: section 1is the 

introduction on the recent advances in nonlinear vibrations.  

In section 2 we consider the mathematical formulation of 

the problem, we describe basic concept of Hamiltonian 

approach in Section 3. Then for section 4, applications of 

Hamiltonian approach have been studied, to demonstrate 
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the applicability and preciseness of the method. In section 

5, some comparisons between analytical and numerical 

solutions are presented. Eventually we show that 

Hamiltonian approach can converge to a precise cyclic 

solution for nonlinear systems. 

 

 

2. Solid circular sector object formulation 
 

A homogeneous solid circular sector object with angle 

(α) and radius (R) as shown in Fig. 1 that rolls in an 

oscillatory motion back and for thon a flat stationary 

support, with no sliding effect. Obviously when α becomes 

radian, no oscillatory swinging motion will occur. It may be 

easily verified that the governing equation of the oscillation 

is as follow 

  

 

   

2

2

3 4sin( )
cos( )

2 3

2 sin( ) 2sin( )
sin( ) sin 0

3 3

0 , 0 0,

R R

R
R g

A


 



 
  

 

 

 
  

 

   
    

   

 

 
(1) 

Where the geometrical parameters are shown in Fig. 1. 

The height of Mass center obtained as below 
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Eq. (1) becomes 
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Fig. 1 Geometric parameters of the homogeneous solid 

circular sector object 
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And by introducing the dimensionless geometrical 

parameter 
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Eq. (4) becomes 
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3. Basic idea of Hamiltonian approach 
 

Recently, He (2010) has proposed the Hamiltonian 

approach to overcome the shortcomings of the energy 

balance method. This approach is a kind of energy method 

with a vast application in conservative oscillatory systems. 

In order to clarify this approach, consider the following 

general oscillator 

( , , ) 0f      (7) 

With initial conditions 

   0 , 0 0.A    (8) 

Oscillatory systems contain two important physical 

parameters, i.e., the frequency ω and the amplitude of 

oscillation A. It is easy to establish a variational principle 

for Eq. (7), which reads 
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Where T is period of the nonlinear oscillator, ∂F/θ∂=f;. 

In the Eq. (9), 21

2


 
is kinetic energy and F(θ) potential 

energy, so the Eq. (9) is the least Lagrangian action, from 

which we can immediately obtain its Hamiltonian, which 

reads 
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From Eq. (10), we have 
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Introducing a new function, ( )H   , defined as 
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Eq. (11) is, then, equivalent to the following one 

0
H

A T

  
 

  
 (13) 

Or 

 
0

1

H

A 

  
 

   

 (14) 

From Eq. (14) we can obtain approximate frequency-

amplitude relationship of a nonlinear oscillator. 

 

 

4. Application of Hamiltonian approach 
 

In this section, the Hamiltonian approach is applied to 

the governing equation of solid circular sector object. By 

using the Taylor’s series expansion for cos(θ(t)), sin(θ(t)) 

and applying them in Eq. (6) we can re-write Eq. (6) in the 

following form 
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(15) 

The Hamiltonian of Eq. (15) is constructed as 
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Integrating Eq. (16) with respect to t from 0 to T/4, we 

have 
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Assume that the solution can be expressed as 

   cost A t   (18) 
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Table 1 Comparison of frequency corresponding to various 

parameters of system 

A α g R HA RKM Error % 

π/12 π/4 10 4 2.011 2.052 1.993 

π/12 π/3 10 2 1.903 1.891 0.610 

π/6 π/2 10 1 1.567 1.576 0.575 

π/6 π/4 10 1.5 2.469 2.502 1.328 

π/4 π/3 10 0.5 3.163 3.245 2.522 

π/4 π/2 10 3 0.844 0.842 0.252 

π/3 π/12 10 1 2.689 2.742 1.951 

π/3 π/6 10 3.5 1.346 1.360 1.080 

π/2 π/4 10 2.5 1.037 1.059 2.011 

π/2 π/12 10 1.5 1.518 1.545 1.753 

 

 

Substituting Eq. (18) into Eq. (17), we obtain 
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Solving the above equation, an approximate frequency 

as a function of amplitude equal to 
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Hence, the approximate solution can be readily obtained 
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(I) 

 
(II) 

Fig. 2 Comparison of analytical solution of θ(t) based on 

time with the numerical solution for (I): α=π/6, α=π/4, 

g=10, R=1.5 (II): α=π/3, α=π/2, g=10, R=2.5 

 
 
5. Results and discussions 

 

In this section, to show the accuracy of the presented 

approach for different parameters value, it has been 

considered different cases. The results of the Hamiltonian 

approach and numerical solution are compared in Table 1 

for different parameters point values of A, α, R1, R2, g. The 

maximum relative error between the Energy balance 

method results and numerical results is 2.54%. Fig. 2 is 

comparison of analytical solution of θ(t) based on time with 

the numerical solution for two different cases: 

(I): 6, 4, 10, 1.5A g R        

(II): 3, 2, 10, 2.5A g R      . 

 Fig. 3 is shown the effect of amplitude and α on 

nonlinear frequency for (a): g=10, R=1.5 (b): g=10, R=4. 

Fig. 4 is the effect of α and R on nonlinear frequency for 

g=10, A=π/2. 

To show the simultaneous effect of the parameters, a 

sensitive analysis has been carried out for three different 

case in 3D plots. It is obvious from the figures the 

Hamiltonian approach has an excellent agreement with the 

numerical solution and quickly convergent and valid for a 

wide range of vibration amplitudes and initial conditions.  

The accuracy of the results shows that the Hamiltonian 

approach can be potentiality used for the analysis of 

strongly nonlinear oscillation problems accurately. 
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(a) 

 
(b) 

Fig. 3 Effect of amplitude and α on nonlinear frequency for 

(a): g=10, R=1.5 (b): g=10, R=4 

 

 

Fig. 4 Effect of α and R on nonlinear frequency for g=10, 

A=π/2
 

 

 

6. Conclusions 
 

In this study, a new quite uncomplicated approach has 

been presented. Hamiltonian approach is utilized for 

analyzing the nonlinear vibration of a solid circular sector 

object. Only one iteration leads us to high accurate 

analytical solution with the maximum error less than 3%. It 

has been shown that the Hamiltonian approach is very 

efficient, comfortable and sufficiently exact in engineering 

problems. It has been demonstrated that the Hamiltonian 

approach can be simply extended to any nonlinear 

  

 

Fig. 5 Sensitivity analysis of nonlinear frequency for 

different parameters of the system
 

 

 

conservative equation for the analysis of nonlinear systems. 

The obtained results from the approximate analytical 

solutions are in excellent agreement with the corresponding 

numerical solutions. 
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Appendix: Basic idea of Runge-Kutta’s Method 
(RKM) 
 

The Runge-Kutta method is an important iterative 

method for the approximation solutions of ordinary 

differential equations. These methods were developed by 

the German mathematician Runge and Kutta around 1900. 

For simplicity, we explain one of the important methods of 

Runge-Kutta methods, called forth-order Runge-Kutta 

method. 

Consider an initial value problem be specified as 

follows 

 0 0( , ), ( )f t t      (A.1) 

θ is an unknown function of time t which we would like 

to approximate. Then RK4 method is given for this problem 

as below 
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for n=0, 1, 2, 3, . . . , using 
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Where θn+1 
is the RK4 approximation of θ(tn+1). The 

fourth-order Runge-Kutta method requires four evaluations 

of the right hand side per step h. 
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