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1. Introduction 
 

In recent years, smart materials have been widely used 

in industries. Smart materials are materials that their 

material properties are affected by external electrical, 

thermal or magnetic fields. One of the most important types 

of smart materials is piezoelectric material (Song and Sethi 

and Li 2006).  

Piezoelectric materials generate electrical voltage under 

mechanical stress, and deform if an electrical field is 

applied. Because of this unique property, they can be used 

in fabricating different types of sensors such as 

microphones, accelerometers and etc. They can also be used 

as actuators in resonators, micro mirrors, micro pumps and 

etc (Junwu and Zhigang and TaiJiang and Guangming and 

Boda 2005, Koh and Kobayashi and Hsiao and Lee 2010, 

Manzaneque et al. 2014).  

The theoretical studies on the modeling of piezoelectric 

materials has also been growing as fast as their extensive 

applications.  There  are  numerous  studies  on  the 

piezoelectric vibration control (Jalili 2009), actuation (Uchino 

1997 and Zamanian and Khadem 2009), sensing (Gautschi 

2002) and energy harvesting (Erturk and Inman 2011). 

Recently, a new and different branch in the theory of 

piezoelectricity has been introduced after using these 
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materials in miniaturized systems. This branch is based on 

the nonlocal elasticity theory that considers the small size 

effects. 

In nano scale, piezoelectric properties are modified by 

the size effects (Zhang and Wang 2012). Therefore, the 

nonlocal elasticity theory has been used for modeling 

piezoelectric nanobeams, recently. Ke et al. (2012) studied 

the free vibrations of a piezoelectric nanobeam under 

different values of temperature, voltage and axial force. Ke 

et al. (2012), in a similar research, applied nonlocal 

elasticity and Timoshenko beam theory in order to study the 

nonlinear free vibrations of a piezoelectric nanobeam. In 

both studies, the natural frequencies and mode shapes of the 

nanobeam were obtained in different conditions using 

differential quadrature (DQ) method without any 

verification with other theories. Hosseini-Hashemi et al. 

(2014) studied the free vibrations of a functionally graded 

material (FGM) nanobeam. Because of the simplicity of the 

system, an analytical solution for the natural frequencies 

and mode shapes were found. In summary, in previous 

research works on the natural frequencies and mode shapes 

of a piezoelectric nanobeam based on nonlocal elasticity, 

mostly the DQ method was used, and there is no 

verification on the results. Conducting no verification could 

led to errors (for instance in (Ke and Wang 2012) that will 

be discussed, later).Thereby, a comparison study is 

necessary to verify the accuracy of the obtained 

characteristics of piezoelectric nanobeams with the nonlocal 

elasticity theory.  

In this paper, the free vibration of a nanobeamis studied 

using the nonlocal elasticity theory. First, Hamilton’s  
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Fig. 1 A schematic view of the nanobeam 

 

 

principle is used to derive the governing equations and 

boundary conditions of the system. Subsequently, the 

resulting equations are solved using Galerkin method and 

also DQ method. Both vibration and voltage mode shapes 

and also the natural frequencies are obtained, and the effects 

of change in the nonlocal parameter and the applied voltage 

are studied. Finally, a comparison study is conducted 

between the results of DQ and Galerkin methods. 

 

 

2. Theoretical modeling 
 

The studied piezoelectric nanobeam is illustrated in 

Figure1.The length and the thickness of the beam are L and 

h, respectively. The poling direction of the piezoelectric 

beam is the same as the direction of z-axis. An external 

voltage, V0, is applied between the upper and lower surfaces 

of the beam. 

According to Euler-Bernoulli beam theory, the 

displacement components of an arbitrary point located on 

(x,z) of the nanobeam are given by 

   
 

   

,
, , ,

, , ,

n

W x t
u x z t U x t z

x

w x z t W x t

 
   

 



 (1) 

where u(x,z,t) and W(x,z,t) are the axial and transverse 

displacements, respectively.   (   ) is the axial 

displacement of a point on the beam neutral axis, and 

 (   )  is its transverse displacement. The axial strain 

component is 
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U W W
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The second term in Eq. (2) is eliminated since the 

nonlinear mid-plane stretching component is neglected in 

the linear model of this study. The total electric potential 

function has to be in a form that satisfies the Maxwell 

equation. Therefore, it is considered as (Wang 2002a) 
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where   
 

 
 and ϕ(x,z) is the electric potential. The 

components of the electric field are obtained through 

differentiating Eq. (3). 
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(4) 

On the other hand, from nonlocal elasticity theory, the 

fundamental equations of piezoelectric materials are (Ke 

and Wang 2012)  
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Where ζij, εkl, Di, and Ek are stress, strain, electrical 

displacement and electrical field components, respectively. 

Cijkl, ekij and εik 
are elastic, piezoelectric and dielectric 

constants, respectively. e0a is the nonlocal parameter that is 

measured through experiments. Because of small thickness 

and width to length ratios of the nanobeam, Eq. (5) can be 

rewritten as 
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At this point, Hamilton’s principle can be implemented: 

 
0

0

t

FU W T dt     (9) 

Where U, T and WF are strain energy, kinetic energy and 

total work of the external forces.  

The strain energy of the piezoelectric nanobeam is  
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Substituting Eqs. (2) and (4) in Eq. (10) results in 
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Where M is the bending moment and is defined as 
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2
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h
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(12) 

The kinetic energy, T, and the work of the external 

forces, WF, can be obtained from  
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(14) 
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In Eq. (14), Ne is the applied external force.In this study, 

it is caused by applying an external voltage and can be 

found from the following equation. 
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2
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(15) 

After substituting Eqs. (11), (13) and (14) into Eq. (9) 

and equating the coefficients of δW and δϕ to zero, the 

governing equations can be obtained as 
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And the boundary conditions are  
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In order to determine the bending moment, Eqs. (6) to 

(8) are integrated over z 
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Then, by substituting Eq. (16) into Eq. (19), the bending 

moment is obtained as 
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Therefore, Eq. (16) can be rearranged as 
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Because there is not an auxiliary equation that can be 

used in calculating Dx 
and Dz, one has to differentiate Eq. 

(20) with respect to x, first. After that, the terms containing 

the nonlocal parameter in both Eqs. (20) and (21) have to be 

neglected. Substituting the two resulting equations in Eq. 

(17) results in 
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By defining the following non-dimensional parameters 
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Eqs. (25) and (26) can be rearranged in a non-

dimensionalized form 
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The boundary conditions are transformed into 
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For the clamped end, and 
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For the free end of the beam. 

 

 

3. Solving the equations 
 
3.1 Differential quadrature (DQ) method 
 
In this method, the governing differential equations are 

transformed into a set of algebraic equations. A detailed 

introduction on the DQ method can be found in (Shu 2012). 

By following the algorithm of the DQ method, Eqs. (28) 

and (29) can be written as 
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Where N is the total number of sample points along the 

beam axis, and    
  is the mth weighting coefficient of the 

kth-order differentiation in the ith equation. The boundary 

conditions of a cantilever beam can also be written as 
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And for a clamped-clamped beam 
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After applying the DQ method to the governing 

equations and boundary conditions and obtaining the new 

equations, the displacement vector is defined as 
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By defining the displacement vector, the governing 

equations after applying the DQ method can be written as 
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Where ω is the dimensionless natural frequency and is 

defined as 

11

ρA
ω ΩL

A
  (39) 

 
3.2 Galerkin method 
 

In this method, the deflection and electrical potential of 

the beam are written as the following expansions (Thomsen 

2003, Hajnayeb and Khadem 2016) 

     
n

i i

i 1

w ξ, τ q τ P ξ


  

     
n

i i

i 1

υ ξ, τ s τ r ξ


  

(40) 

where Pi(ξ) and ri(ξ) are the admissible functions of the 

deflection and electric potential of the beam, respectively. 

qi(η) and si(η) are the unknown mode participation factors 

that have to be found. After substituting Eq. (40) into Eq. 

(29), then multiplying by Pi(ξ) and integrating with respect 

to ξ over the length of the beam, sj is obtained with respect 

to qi 
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Then, substituting Eqs. (40) and (42) into Eq. (28), and 

then multiplying by Pi(ξ) and integrating with respect to ξ 

over the length of the beam result in 
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In order to obtaining natural frequencies, following 

eigen value problem must be solved 

 1 2

nN Q ω I q 0    (46) 

Where  ̅  is the natural frequency of the beam. The 

mode shapes of both cantilever and clamped-clamped (C-C) 

beams have the following form (Inman and Singh 2001) 
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Table 1 the values of    for a cantilever and a C-C beam 

Clamped-Clamped Cantilever Mode no. 

4.7300 1.8751 1 

7.8532 4.6940 2 

10.9956 7.8548 3 
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where, for a cantilever beam, the values of ζi are defined as 
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and βi are the roots of the following equation 
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For a C-C beam, the values of ζi and βi can be obtained 

from 
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The values of βi for the first three modes of a beam are 

written in Table 1. These mode shapes are used as the 

admissible functions, Pi(ξ), of the piezoelectric beam in this 

study. 

The nth electrical potential admissible function for a 

cantilever beam, ri(ξ), is defined as 
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For a clamped-clamped beam, in order that they satisfy 

the boundary conditions of the system. 

 

 

4. Numerical results 
 

As mentioned before, Ke et al. (2012) used Timoshenko 

beam theory to study the vibrations of a piezoelectric 

Nanobeam. In order to compare the results of the current 

study with their results, the derivation of equations and 

solution algorithms are also implemented based on 

Timoshenko theory. Moreover, the dimensions and material 

properties of the beam are considered the same as this 

reference.   

The natural frequencies of the first three modes are 

compared in Table 2. The first natural frequencies are in 

good agreement, however comparing the natural 

frequencies for the second and third modes shows a 

significant difference.  

Next, the results of solving the equations for a numerical 

example are presented. The piezoelectric beam is assumed 

Table 2 comparing the natural frequencies of the first three 

mode shapes obtained in this paper with the results of (Ke 

2012) (μ=0, V0=0, L=80 nm, h=10 nm) 

Difference 

(%) 

(Ke 2012) 

[GHz] 

This research 

(Timoshenko) 
Mode no 

0.15 5.7266 5.7351 1 

49.66 27.3155 13.7465 2 

49.28 47.0167 23.8466 3 

 

Table 3 material properties of PZT-4 (Wang 2002b)  

132 c11 (GPa) 

-4.1 e31 (Cm
−2) 

5.841×10-9 𝜖11 (Cv
−1m−1) 

7.124 ×10-9 𝜖33 (Cv
−1m−1) 

7500 𝜌 (Kg m−3) 

 

Table 4 convergence study of natural frequencies (GHZ) 

(L/h=30) 

1st natural frequency [GHz] no. of 

accuracy points C-C Cantilever 

0.37541 0.05088 6 

0.32349 0.05065 8 

0.32236 0.05064 10 

0.32235 0.05066 14 

0.32235 0.05066 17 

0.32235 0.05066 22 

0.32235 0.05066 27 

 

Table 5 comparing the natural frequencies of the first three 

mode shapes of the C-C Nanobeam based on Timoshenko 

and Euler-Bernoulli beam theory (μ=0, V0=0, L=450 nm, 

h=15 nm) 

Difference 

(%) 

This study 

(Euler-Bernoulli) [GHz] 

This study 

(Timoshenko) [GHz] 

Mode 

no. 

1.43 0.3220 0.3174 1 

3.06 0.8877 0.8605 2 

5.06 1.7402 1.6521 3 

 

 

to be made of PZT-4 with mechanical and electrical 

properties listed in Table 3. In this example, the beam is 

300nm long with the thickness of 15nm.  

Table 4 shows the results of the convergence study of 

the first natural frequency. The results show that the 

response of the C-C beam converges faster than the 

cantilever beam.  

Then, the first three vibration modes of a beam with a 

high aspect ratio (
 

 
   ), are calculated using both of 

Euler-Bernoulli and Timoshenko theories. The results are 

presented in Table 5. As expected, the results are the same 

for both theories because of the high aspect ratio of the 

beam. 

The first and second dimensionless natural frequencies 

of the studied C-C and cantilever beams are presented in 

Tables 6 and 7, respectively. 
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Table 6 natural frequencies (GHZ) of the first two mode 

shapes of the C-C Nanobeam for different values of the 

nonlocal parameter (V0=0) 

2nd mode 1st mode 

μ Difference 

[%] 
DQ Galerkin 

Difference 

[%] 
DQ Galerkin 

0.01 0.88854 0.88859 0.07 0.32235 0.32212 0 

0.03 0.73449 0.73472 0.07 0.30413 0.30392 0.1 

0.09 0.52471 0.52519 0.06 0.26350 0.26334 0.2 

0.13 0.38896 0.38946 0.05 0.22119 0.22108 0.3 

 

Table 7 natural frequencies (GHZ) of the first two mode 

shapes of the cantilever Nanobeam for different values of 

the nonlocal parameter (V0=0) 

2nd mode 1st mode 

μ Difference 

[%] 
DQ Galerkin 

Difference 

[%] 
DQ Galerkin 

0.74 0.31754 0.31520 1.16 0.05066 0.05007 0 

0.22 0.29521 0.29586 0.16 0.05037 0.05029 0.1 

0.64 0.25316 0.25153 1.12 0.05156 0.05098 0.2 

0.62 0.20429 0.20302 1.1 0.05283 0.05225 0.3 

 

Table 8 natural frequencies (GHZ) of the first two modes of 

a C-C beam for different values of external voltage and 

(μ=0) 

2nd mode 1st mode 

V0 Difference 

[%] 
DQ Galerkin 

Difference 

[%] 
DQ Galerkin 

0.00 0.95664 0.95668 0.06 0.37056 0.37035 0.6 

0.00 0.91185 0.91188 0.07 0.33927 0.33904 0.2 

0.01 0.88854 0.88859 0.07 0.32235 0.32212 0 

0.01 0.86456 0.86462 0.07 0.30440 0.30417 -0.2 

0.02 0.81432 0.81446 0.09 0.26449 0.26425 -0.6 

 

 

The results are obtained from both Galerkin and DQ 

methods, which show a negligible differences. The 

difference between the results of these two methods is not 

significant because the applied admissible functions in 

Galerkin method are quite close to the actual mode shapes 

of the system. This closeness stems mostly from the simple 

geometry of the studied system. The results also present that 

an increase in the nonlocal parameter, μ, decreases the beam 

natural frequencies, except for the first mode shape of a 

cantilever beam. On the contrary, the first natural frequency 

of a cantilever beam increases slightly by increasing the 

nonlocal parameter. Lu et al (2006) reported the same 

finding. 

The effect of applying a voltage to the C-C beam is 

presented in Table 8, where a negative voltage decreases the 

natural frequencies, and a positive voltage increases them. 

This behavior is because of the resulting axial force from 

applying the voltage, which changes the stiffness of the 

system. The natural frequencies obtained from Galerkin and 

DQ methods are in good agreement. 

The electric potential mode shape in the C-C and 

cantilever beams for different values of the nonlocal 

parameter are depicted in Figs. 2 and 3, respectively. It is 

 

Fig. 2 the electric potential mode shapes of the C-C 

nanobeam for different values of the nonlocal parameter 

and V0=0 

 

 

Fig. 3 the electric potential mode shapes of the cantilever 

nanobeam for different values of the nonlocal parameter 

and V0=0 

 

 

observed that the maximums are located at the points where 

the value of stress is maximum because of piezoelectric 

properties of the beam. 

For both kinds of B.C.s, the maximums of electric 

potential mode shapes are located close to the clamped 

ends. In contrast, the amplitudes of the potential mode 

shapes decrease at locations close to the free ends. It can 

also be observed that higher mode shapes are affected more 

significantly by the changes in the nonlocal parameter. 

Similar results are observed in Tables 5 and 6 that confirm 

the higher sensitivities of the higher modes to the 

magnitude of the nonlocal parameter. The vibration mode 

shapes of a C-C and a cantilever beam are shown in Figs. 4 

and 5. 

Fig. 4 shows that the nonlocal parameter has negligible 

effects on the first two modes of a C-C beam, while the 

third mode is significantly affected by this parameter. Fig. 5 

depicts the significant effects of the nonlocal parameter on 

the three modes of a cantilever beam. These effects are 

significant for higher modes.  

The effect of external voltage on the electric potential  
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Fig. 4 The vibration mode shapes of the C-C nanobeam for 

different values of the nonlocal parameter and V0=0 

 

 

Fig. 6 The electric potential mode shapes of the C-C 

nanobeam for different values of the applied voltage 

 

 

and vibration mode shapes of the C-C beam are shown in 

Figs. 6 and 7. It is observed that the effect of the applied 

voltages on the potential mode shapes is more significant. 

In contrast, the vibration mode shapes are independent of 

the applied voltage.  

The effect of external voltage on the electric potential 

and vibration mode shapes of the C-C beam are shown in 

Figs. 6 and 7. It is observed that the effect of the applied 

voltages on the potential mode shapes is more significant. 

In contrast, the vibration mode shapes are independent of 

the applied voltage.  

The applied methods of Galerkin and DQ have pros and 

cons. First, Galerkin method is not able to find the mode 

shapes of the system while DQ gives the mode shapes of 

both vibrations and generated voltage of the piezoelectric 

beam. The algorithm of Galerkin method is significantly 

simpler comparing to DQ but has higher error levels in 

complex nonlinear systems. Therefore, for complex 

piezoelectric systems DQ method can be used for obtaining 

the mode shapes. If a change in the model is encountered, 

these mode shapes are applicable in Galerkin method for a 

fast analysis of the new system. 

 

Fig. 5 The vibration mode shapes of the cantilever 

nanobeam for different values of the nonlocal parameter 

and V0=0 

 

 

Fig. 7 The vibration mode shapes of the C-C nanobeam for 

different values of the applied voltage 

 
 
7. Conclusions 

 

This paper studies the free vibrations of a piezoelectric 

nanobeam for different values of the nonlocal parameter. 

The nonlocal elasticity and Euler-Bernoulli beam theory are 

used to model the nanobeam. The equation of motion and 

boundary conditions are derived by using Hamilton’s 

principle. The obtained equations are then solved by using 

the DQ and Galerkin method. The difference between the 

results of these two methods was negligible that shows the 

applicability and success of Galerkin method. The results 

also show that an increase in the nonlocal parameter 

increases the beam natural frequencies. Moreover, 

increasing the applied positive voltage increases the axial 

force and therefore natural frequencies of the system. The 

same fact is observed by decreasing the applied negative 

voltage. Finally, it was found that the maximums of the 

electric potential mode shapes are located at the points 

where the induced mechanical stresses in the vibration 

mode shape of the beam are maximum.   
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