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1. Introduction 
 

Steel reinforcing bars have been traditionally used with 

concrete to enhance its mechanical properties since it has a 

relatively low tensile strength and a brittle nature. In recent 

decades, the use of steel fibers has been investigated in the 

context of improving the mechanical properties of concrete. 

One of the major concerns of structural engineers is shear 

failure of reinforced concrete (RC) beams. It has been 

shown that the shear strength and ductility of RC beams can 

be increased significantly by adding steel fibers to the 

concrete (Batson et al. 1972, Kadir and Saeed 1986, Mansur 

et al. 1986, Uomoto et al. 1986, Lim et al. 1987, Narayanan 

and Darwish 1987, Li et al. 1992, Swamy et al. 1993, 

Khuntia et al. 1999, Lim and Oh 1999, Noghabai 2000, 

Kwak et al. 2002, Rosenbusch and Teutsch 2002, Dupont 

and Vandewalle 2003, Cucchiara et al. 2004, Parra-

Montesinos 2006, Parra-Montesinos et al. 2006, Choi et al. 

2007, Dinh et al. 2010, Ding et al. 2011, Aoude et al. 2012, 

Minelli and Plizzari 2013). Steel fibers randomly dispersed 

through the concrete matrix provide a resistance against the 

formation and growth of cracks, thus they are able to 

increase the cracking strength, improve the post-cracking 

behavior and change the failure mode from a brittle shear 

failure to a flexural ductile failure. Moreover, it has been 

suggested that steel fibers can be used as a replacement for 

stirrups (Lim et al. 1987, Dinh et al. 2010), offering a 
reduction in reinforcement congestion at critical sections 

such as beam-column joints. A comprehensive review of 

improvements that can be provided by steel fibers is 
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available in the report by ACI Committee 544 (1996). 

Accurate prediction tools for steel fiber reinforced 

concrete (SFRC) structural members will help SFRC to 

become widely used. There exist several equations 

proposed by various researchers for predicting the shear 

strength of SFRC beams (Sharma 1986, Narayanan and 

Darwish 1987, Ashour et al. 1992, Swamy et al. 1993, 

Imam et al. 1994, Khuntia et al. 1999, Kwak et al. 2002, 

RILEM 2003, Dinh et al. 2011, Yakoub 2011). Alternative 

prediction methods based on empirical modelling have been 

developed as computational power has increased. An 

effective numerical method is to develop an artificial neural 

network (ANN) which is a powerful tool to extract the 

relationships between the parameters involved and deliver 

predictions without requiring any functional form assumed 

a priori. ANNs have been widely used for seeking solutions 

to various structural engineering problems (Bagdatli et al. 

2009, Pendharkar et al. 2010, Keskin and Arslan 2013, 

Njomo and Ozay 2014). The shortcoming of an ANN is that 

it cannot deliver a solution in a functional form. 

Adhikary and Mutsuyoshi (2006) developed ANN 

models to predict the shear strength of SFRC beams and 

compared the models with the equations proposed by 

Swamy et al. (1993) and Khuntia et al. (1999). Ahn et al. 

(2007) developed five ANN models predicting the shear 

strength of SFRC beams, conducted experiments to verify 

the selected ANN model and compared the fittest model 

with the equation proposed by Zsutty (1971). Naik and Kute 

(2013) used ANN models to study the shear strength of steel 

fiber reinforced high-strength concrete deep beams. With 

increasing computational power, various approaches have 

been developed. Gandomi et al. (2011) and Kara (2013) 

used an approach known as genetic programming to 

develop models for predicting the shear strength of SFRC 
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beams. 

The paper presents an ANN model developed for 

predicting the shear strength of SFRC beams without 

stirrups. The model is limited to the beams with the ratio of 

shear span to depth greater than 2.5, which are referred to as 

slender beams. It is shown that the performance of the 

developed ANN model is better than those of fourteen 

equations proposed by various researchers and it is verified 

that the model is able to generalize to new data. The 

database used in developing the ANN model is larger than 

the ones used by both Adhikary and Mutsuyoshi (2006) and 

Ahn et al. (2007). Besides, the number of existing models 

considered for comparison is also greater than those 

considered in the previous studies. 

 

 

2. Existing shear strength models 
 

It has been observed through various experimental 

studies (Batson et al. 1972, Kadir and Saeed 1986, Mansur 

et al. 1986, Uomoto et al. 1986, Lim et al. 1987, Narayanan 

and Darwish 1987, Li et al. 1992, Swamy et al. 1993, 

Noghabai 2000, Kwak et al. 2002, Rosenbusch and Teutsch 

2002, Dupont and Vandewalle 2003, Cucchiara et al. 2004, 

Parra-Montesinos 2006, Parra-Montesinos et al. 2006, Dinh 

et al. 2010, Ding et al. 2011, Aoude et al. 2012, Minelli and 

Plizzari 2013, Minelli et al. 2014, Shoaib et al. 2014) that 

the shear strength of an SFRC beam is significantly higher 

than the shear strength of its companion RC beam due to 

the increased post-cracking tensile strength. Fiber length Lf, 

fiber diameter Df, fiber bond factor df and volume fraction 

of fibers Vf have been identified as the parameters affecting 

the shear strength of SFRC beams in addition to the ones 

affecting the shear strength of RC beams, that is, concrete 

compressive strength fc, tensile reinforcement ratio , shear 

span-to-depth ratio a/d and effective depth d. 

There exist several equations developed for predicting 

the shear strength of SFRC beams. Minelli (2005) classified 

the existing models broadly into two groups: (i) the ones 

considering the contributions of concrete and steel fibers to 

the shear strength separately, and (ii) the ones assuming a 

direct improvement of shear strength by steel fibers due to 

the improved post-cracking tensile strength. Some of the 

existing equations are considered here. The empirical 

equation developed by Sharma (1986) is recommended for 

shear design of SFRC beams by ACI Committee 544 (1988) 

and is given as 
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where fct is the concrete tensile strength, k=1 if fct is 
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where e=1.0 for a/d>2.8 and e=2.8(d/a) for a/d≤2.8, fsp is 

the splitting tensile strength of fiber reinforced concrete, fcuf 

is the cube strength of fiber reinforced concrete, vb is the 

pull-out strength of fibers along the inclined crack, τ is the 

average fiber matrix interfacial bond stress equal to 4.15 

MPa, F is a factor considering the effect of geometry and 

volume fraction of fibers on the shear strength, df is 0.5 for 

round, 0.75 for crimped and 1.0 for indented fibers. Ashour 

et al. (1992) proposed empirical equations by revising the 

empirical shear strength equations for RC beams given by 

ACI 318-11 (2011) and Zsutty (1971) as 
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respectively. The version of Eq. (7) for a/d<2.5 is not 

considered here. Swamy et al. (1993) developed a simple 

method based on a truss model resulting in an equation as 
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Imam et al. (1994) modified the equation of Bazant and Sun 

(1987), which is based on non-linear fracture mechanics, to 

propose an equation as 
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where da is the maximum aggregate size and df is 0.5 for 

smooth, 0.9 for deformed and 1.0 for hooked fibers. 

Khuntia et al. (1999) derived a simple equation based on 

the basic shear transfer mechanisms and experimental data 

as 

  cu fFv 25.0167.0   (MPa), (10) 

where df is 2/3 for plain or round and 1.0 for hooked or 

crimped fibers. Kwak et al. (2002) developed an equation 

by introducing additional terms to the equation derived 

through a multiple regression analysis by Zsutty (1971) as 
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where e=1.0 for a/d>3.4 and e=3.4(d/a) for a/d≤3.4. 

Yakoub (2011) developed an expression for predicting the 

contribution of steel fibers to the shear strength of SFRC 

beams and used this to modify the equations of Bazant and 

Kim (1984), which is based on non-linear fracture 

mechanics, and CSA A23.3-04 (2004), which is based on 

the modified compression field theory, as 
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respectively, where df is 0.79 for sheared, 0.83 for crimped, 

0.89 for duoform, 0.91 for rounded, 0.92 for indented cut 

wire and 1.00 for hooked fibers, 
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is the longitudinal strain at the mid-depth of the beam web, 

M and V are the external failure moment and shear acting 

on the section, respectively, dv is the flexural lever arm 

equal to 0.9d or 0.72h (h is the beam height), whichever is 

greater, 
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is the equivalent crack spacing factor that accounts for the 

maximum aggregate size effects on the shear strength and sx 

is the crack spacing parameter that accounts for the crack 

spacing at the mid-depth of the beam. Eqs. (12)-(13) are for 

a/d≥2.5. The versions for a/d<2.5 are not considered here. 

Dinh et al. (2011) proposed a model where the shear 

strength of SFRC beams are calculated as the summation of 

the shear stress carried across the compression zone and the 

vertical component of the diagonal tension resistance 

provided by steel fibers, and the resulting equation is 
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where fy is the yield strength of flexural reinforcement and c 

is the depth of the compression zone, which can simply be 

taken as 0.1h. Arslan (2014) proposed an equation by 

modifying his equation which is based on the principal 

shear strength carried in the compression zone and predicts 

the shear strength of RC beams without stirrups (Arslan 

2008, Arslan 2012) as 

 
3/1

3/2

/

3
412.0 



























da
fF

d

c
fv ccu   (MPa), (19) 

where 

0600600

2










cc fd

c

fd

c  . (20) 

Gandomi et al. (2011) developed an equation as 
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using linear genetic programming. Similarly, Kara (2013) 

used genetic programming to develop an equation as 
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where c0=3.324, c1=0.909, c2=2.289 and c3=9.436. 

 

 

3. ANN model 
 

The basic unit of an ANN is referred to as neuron. It 

receives data from one or more neighbouring neuron(s), 

processes the data and transmits the processed data to 

another neuron. A typical neuron is shown in Fig. 1, where 

S is the number of input elements, pi, i=1,…,S, is the i-th 

input element, wi, i=1,…,S, is the weight of i-th input 

element, b is the bias that can be viewed as a weight of a 

constant input of 1, n is the net input which is the 

summation of weighted inputs with the bias, f(.) is the 

transfer function, which must be differentiable, and q is the 

output. 

A common type of ANNs used for solving engineering 

problems is multi-layer feed-forward network, which 

consists of an input layer, one or more hidden layers and an 

output layer. A layer can be made of either a single neuron 

or a group of neurons. The input layer transmits input 

elements to a hidden layer, which processes the supplied 

data and sends the output to either another hidden layer or 

the output layer, which produces the final output. An ANN 

is developed in two stages: training and testing. In the 

training stage, weights and biases are tuned by using input 

data with known output. A common learning algorithm 

used for training ANNs is error back-propagation algorithm. 

In the testing stage, the performance of the network over the 

data that is never presented to the network is evaluated. 

 
 

 

Fig. 1 A typical neuron 
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Table 1 Properties of database 

Parameter fc (MPa)  (%) a/d d (mm) Lf/Df Vf (%) 

Min. 20.6 0.99 2.5 126 45 0.22 

Max. 68.4 5.72 5.0 910 133 2.00 

 

 

Fig. 2 The architecture of the ANN model 

 
 
3.1 Experimental data 
 

A database that will be used for developing an ANN 

model needs to be sufficiently large, accurate and evenly 

distributed so that the network can establish the 

relationships between the parameters involved and acquire 

the ability to deliver reliable predictions. A database was 

compiled by scanning experimental studies on the shear 

strength of SFRC slender beams without stirrups (Batson et 

al. 1972, Kadir and Saeed 1986, Mansur et al. 1986, 

Uomoto et al. 1986, Lim et al. 1987, Narayanan and 

Darwish 1987, Li et al. 1992, Swamy et al. 1993, Noghabai 

2000, Kwak et al. 2002, Rosenbusch and Teutsch 2002, 

Dupont and Vandewalle 2003, Cucchiara et al. 2004, Parra-

Montesinos 2006, Parra-Montesinos et al. 2006, Dinh et al. 

2010, Ding et al. 2011, Aoude et al. 2012, Minelli and 

Plizzari 2013,). The database includes 129 rectangular 

beams with the ranges of parameters shown in Table 1, 

where fc denotes the mean concrete compressive cylinder 

strength. df is taken as 0.79 for sheared, 0.83 for crimped, 

0.89 for duoform, 0.91 for rounded, 0.92 for indented cut 

wire and 1.00 for hooked fibers (Yakoub 2011). 

 
3.2 The model 
 

A multi-layer feed-forward network consisting of an 

input layer, a hidden layer and an output layer was 

developed for predicting the shear strength of SFRC beams 

without stirrups by using MATLAB Neural Network 

Toolbox. The input layer consists of seven neurons 

receiving input parameters: fc, , a/d, d, Vf, Lf/Df, df. The 

output layer is a single neuron delivering an estimate of 

shear strength vu,ANN. The number of neurons in the hidden 

layer was determined to be six after carrying out 

simulations with models having a hidden layer of four to ten 

neurons. Also, simulations with models consisting of more 

than one hidden layer were conducted, but no improvement 

in the performance was observed. The network topology is 

shown in Fig. 2 schematically. 
The net input function is the summation of weighted 

inputs with the bias, so that the output of a neuron is 

calculated as 
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The transfer functions of hidden and output layers are 

log-sigmoid and linear transfer functions given as q=1/(1+e
-n
) 

and q=n, respectively. 

It is possible for an ANN to memorize the data used for 

training the network but fail to generalize to new data, 

known as overfitting. In such a case, the error on the 

training set is very small, but it is likely to observe a large 

error on a set of data never presented to the network. 

MATLAB Neural Network Toolbox offers two methods -

Bayesian regularization and early stopping technique- for 

improving generalization. The details of Bayesian 

regularization can be found elsewhere (Foresee and Hagan 

1997). Early stopping technique was used for training the 

ANN model. For this purpose, the database was divided 

into two subsets as training and validation sets having 110 

and 19 beams, respectively. Weights and biases were tuned 

using the training set according to the Levenberg-Marquardt 

back-propagation algorithm (Hagan et al. 1996). Early 

stopping technique consists of monitoring the errors on the 

training and validation sets simultaneously and stopping the 

training process when the validation set error starts to 

increase for a prescribed number of successive epochs. The 

performance function was determined to be the mean 

squared error (MSE) between the network outputs {vu,ANN}i 

and the corresponding experimental values {vu,exp}i, 

i=1,…,N, that is 
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where N is the number of beams in the set. The errors on the 

training and validation sets monitored during the training 

process are plotted in Fig. 3. They are equal to 0.130 and 

0.239, respectively, for the optimized network. ANN 

models resulting in much smaller errors were developed, 

but they were rejected due to overfitting issues. Once the 

network was trained, its performance on a test set consisting 

of 17 beams tested by Minelli et al. (2014) and Shoaib et al. 

(2014) was examined. It is to be noted that two of these 

beams have an effective depth of 1440 mm, which is far 

above the range used in training the network, and three of 

them have a concrete compressive strength of 80 MPa, 

which is outside the range used in training the network. Yet, 

the performance is satisfactory, where the error on the 

testing set is 0.533. The ANN model outputs against the 

corresponding experimental values for the training, 

validation and test sets are plotted in Fig. 4. The correlation 

coefficients (R) for the training, validation and test sets are 

0.882, 0.848 and 0.812, respectively. The statistics of the 

vu,ANN/vu,exp are given in Table 2. The mean, standard 

deviation (SD) and coefficient of variation (COV) of 

vu,ANN/vu,exp for the whole database are 1.039, 0.177 and 

0.171,  respectively.  A  good  agreement  between  the 
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Fig. 3 Performance of the developed ANN model 

 

Table 2 Statistics of vu,ANN/vu,exp 

Set Min. Max. Mean SD COV 

Training 0.761 1.448 1.025 0.150 0.146 

Validation 0.702 1.281 1.001 0.172 0.172 

Test 0.762 1.701 1.171 0.276 0.236 

All 0.702 1.701 1.039 0.177 0.171 

 

 
(a) Training set 

 
(b) Validation set 

Fig. 4 The ANN outputs vs. the experimental values 
 

 
(c) Test set 

Fig. 4 Continued 

 

 

numerical and experimental results is observed through Fig. 

4 and Table 2. The parameters of the ANN model are given 

in Appendix A. 

 
 
4. Results and discussion 

 
4.1 Comparison with the existing models 
 
The ANN model was compared with fourteen equations 

developed for predicting the shear strength of SFRC beams 

by various researchers (Sharma 1986, Narayanan and 

Darwish 1987, Ashour et al. 1992, Swamy et al. 1993, 

Imam et al. 1994, Khuntia et al. 1999, Kwak et al. 2002, 

Dinh et al. 2011, Yakoub 2011, Gandomi et al. 2011, Kara 

2013, Arslan 2014). The shear strength of each beam in the 

considered database, consisting of training, validation and 

test sets, was estimated through the equations given in 

Section 2. The predictions by the equations against the 

corresponding experimental values are plotted in Figs. 5-6. 

The statistics of the ratio of predictions to experimental 

values, correlation coefficients and errors for each model 

are given in Table 3, where MSE is calculated from Eq. (24) 

and relative absolute error (RAE) is calculated as 
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 



N

i
iuu v

N
v

1

exp,

1 . (26) 

vu,eqn instead of vu,ANN, and vice versa, are used in Eqs. (24) 

and 25, respectively, when necessary. 

The equation of Sharma (1986), which is recommended 

by ACI Committee 544 (1988), delivers highly conservative 

predictions that are poorly correlated with the experimental 

values. The predictions obtained from the equations of 
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Narayanan and Darwish (1987), Ashour et al. (1992) (the 

revised version of Zsutty's equation (Zsutty 1971), Swamy 

et al. (1993) and Khuntia et al. (1999) are also conservative 

but the correlation between the predictions and the 

 

 

experimental values are better. Similarly, the equations of 

Yakoub (2011) deliver conservative predictions, where the 

ones obtained from the modified version of Bazant and 

Kim's equation (Bazant and Kim 1984) have a better  

   
(a) Sharma (1986) (b) Narayanan and Darwish (1987) (c) Ashour et al. (1992) (Eq. (6)) 

   
(d) Ashour et al. (1992) (Eq. (7)) (e) Swamy et al. (1993) (f) Imam et al. (1994) 

   
(g) Khuntia et al. (1999) (h) Kwak et al. (2002) (i) Yakoub (2011) (Eq. (12)) 

   
(j) Yakoub (2011) (Eq. (13)) (k) Dinh et al. (2011) (l) Arslan (2014) 

Fig. 5 The predictions by various equations vs. the experimental values 
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(a) Gandomi et al. (2011) 

 
(b) Kara (2013) 

Fig. 6 The predictions by various equations vs. the 

experimental values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 Statistics of vu,ANN/vu,exp and vu,eqn/vu,exp, correlation 

coefficients and errors 

Model Mean SD COV R MSE RAE 

The ANN model 1.039 0.177 0.171 0.857 0.191 0.515 

Sharma (1986) 

(Eq. (1)) 
0.700 0.191 0.273 0.523 1.374 1.439 

Narayanan and 

Darwish (1987) 

(Eq. (2)) 

0.860 0.183 0.212 0.810 0.425 0.821 

Ashour et al. 

(1992) (Eq. (6)) 
1.068 0.295 0.276 0.684 0.420 0.823 

Ashour et al. 

(1992) (Eq. (7)) 
0.813 0.156 0.192 0.834 0.528 0.924 

Swamy et al. 

(1993) (Eq. (8)) 
0.742 0.168 0.226 0.763 0.833 1.177 

Imam et al.  

(1994) (Eq. (9)) 
0.783 0.292 0.373 0.722 1.063 1.256 

Khuntia et al. 

(1999) (Eq. (10)) 
0.747 0.171 0.229 0.779 0.759 1.147 

Kwak et al. 

(2002) (Eq. (11)) 
0.940 0.197 0.210 0.807 0.314 0.682 

Yakoub (2011) 

(Eq. (12)) 
0.611 0.125 0.205 0.804 1.276 1.573 

Yakoub (2011) 

(Eq. (13)) 
0.469 0.144 0.307 0.544 2.524 2.206 

Dinh et al. (2011) 

(Eq. (18)) 
1.008 0.264 0.261 0.638 0.469 0.815 

Arslan (2014) 

(Eq. (19)) 
1.030 0.198 0.192 0.838 0.224 0.576 

Gandomi et al. 

(2011) (Eq. (21)) 
1.307 0.290 0.222 0.785 0.644 1.036 

Kara (2013) 

(Eq. (22)) 
1.198 0.760 0.635 0.286 2.263 1.172 
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Fig. 7 Mean and COV of vu,ANN/vu,exp and vu,eqn/vu,exp, MSE and RAE for each model 
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correlation with the experimental values. On the other hand, 

the predictions delivered by the equation of Ashour et al. 

(1992) (the revised version of ACI 318-11's equation (ACI 

Committee 318 (2011)) are scattered above and below the 

experimental values. The equation of Imam et al. (1994) 

delivers predictions far above the experimental values for 

some beams. The predictions from the equation proposed 

by Dinh et al. (2011) are largely scattered. Two equations 

derived by using genetic programming are also considered. 

The equation of Gandomi et al. (2011) delivers predictions 

greater than the experimental values. The equation of Kara 

(2013) delivers better predictions compared to the equation 

of Gandomi et al. (2011) except for few beams. 

The mean value of the ratio of the predictions obtained 

from the equation of Dinh et al. (2011) to the experimental 

values is almost equal to 1.0, however the predictions are so 

scattered that the COV of the ratio is 53% greater than that 

for the ANN model. Among the considered equations, it can 

be observed from Table 3 and Fig. 7 that the ones proposed 

by Kwak et al. (2002) and Arslan (2014) have better 

performances than the others do, where the equation of 

Kwak et al. (2002) delivers more conservative predictions. 

The mean value of the ratio of the predictions by the 

equation of Arslan (2014) to the experimental values is 

almost the same as that for the ANN model, but the COV of 

the ratio is 13% greater than that for the ANN model. The 

MSE and RAE for the predictions obtained from the 

equation of Arslan (2014) are 17% and 12% greater than those 

for the predictions delivered by the ANN model, respectively. 

It can be seen from Table 3 and Fig. 7 that the ANN 

model has the smallest COV of the prediction to 

experimental value ratio, the largest R, and the smallest 

MSE and RAE, so it is deduced that it is superior to the 

considered equations over the considered database. 

 

4.2 Parametric study 
 
It is mentioned in Section 3.2 that early stopping 

technique was used to develop an ANN model with a good 

generalization capability. A parametric study was conducted 

to verify the generalization capability of the developed 

ANN model. It also enables to observe the effect of 

 

 

 

Fig. 8 Shear strength vs. volume fraction of fibers 

considered parameters on the shear strength of SFRC 

beams. The ranges of parameters used in the parametric 

study are consistent with those of the experimental database 

(Table 1). 

The change in the shear strength against the volume 

fraction of fibers for various values of aspect ratio of fibers 

is plotted in Fig. 8, where concrete compressive strength is 

40 MPa, shear span-to-depth ratio is 3, tensile 

reinforcement ratio is 1.5%, effective depth is 400 mm and 

hooked fibers are used. It is observed that the shear strength 

increases with the volume fraction of fibers. For all values 

of aspect ratio of fibers considered, increasing the volume 

fraction of fibers from 0.25% to 2.00% almost doubles the 

shear strength. The shear strength for the volume fraction of 

fibers equal to 2.00% is 2.1, 2.1, 1.98 and 1.86 times the 

shear strength for the volume fraction of fibers equal to  

0.25% for the aspect ratio of fibers equal to 50, 75, 100 and 

133, respectively. 

The change in the shear strength against the aspect ratio 

of fibers for various values of volume fraction of fibers is 

plotted in Fig. 9, where concrete compressive strength is 40 

MPa, shear span-to-depth ratio is 3, tensile reinforcement 

ratio is 1.5%, effective depth is 400 mm and hooked fibers 

are used. An increasing relationship between the shear 

strength and the aspect ratio of fibers is observed. 

Increasing the aspect ratio of fibers from 45 to 133 

increases the shear strength 1.40, 1.35, 1.31, 1.29 and 1.23 

times for the volume fraction of fibers equal to 0.25%, 

0.50%, 1.00%, 1.50 % and 2.00%, respectively. 

The effect of concrete compressive strength on the shear 

strength for various values of volume fraction of fibers is 

depicted in Fig. 10, where shear span-to-depth ratio is 3, 

tensile reinforcement ratio is 1.5%, effective depth is 400 

mm, aspect ratio of fibers is 100 and hooked fibers are used. 

The shear strength is observed to increase with the concrete 

compressive strength. The increase in the shear strength 

resulting from the change in the concrete compressive 

strength from 25 MPa to 65 MPa is 74%, 72%, 63%, 51% 

and 37% for the volume fraction of fibers equal to 0.25%, 

0.50%, 1.00%, 1.50 % and 2.00%, respectively. 

Fig. 11 shows the size effect on the shear strength by 

plotting the change in the shear strength against the 

 

 

 

Fig. 9 Shear strength vs. aspect ratio of fibers 
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Fig. 10 Shear strength vs. concrete compressive strength 

 

 

Fig. 12 Shear strength vs. tensile reinforcement ratio 

 

 

effective depth for various values of volume fraction of 

fibers, where concrete compressive strength is 40 MPa, 

shear span-to-depth is 3, tensile reinforcement ratio is 1.5%, 

aspect ratio of fibers is 100 and hooked fibers are used. It is 

observed that the reduction in the shear strength due to the 

increase in the effective depth decreases with the increasing 

volume fraction of fibers. In other words, the size effect 

gets less prominent as the volume fraction of fibers 

increases. The decrease in the shear strength due to the 

increase in the effective depth from 126 mm to 910 mm is 

23%, 20%, 13%, 7% and 4% for the volume fraction of 

fibers equal to 0.25%, 0.50%, 1.00%, 1.50 % and 2.00%, 

respectively. 

The change in the shear strength against the tensile 

reinforcement ratio is plotted in Fig. 12 for various values 

of volume fraction of fibers, where concrete compressive 

strength is 40 MPa, shear span-to-depth is 3, effective depth 

is 400 mm, aspect ratio of fibers is 100 and hooked fibers 

are used. The shear strength is observed to increase with the 

tensile reinforcement ratio. The increase in the shear 

strength with an increase in the tensile reinforcement ratio 

from 1.0% to 5.0% is 39%, 37%, 37%, 33% and 25% for 

the volume fraction of fibers equal to 0.25%, 0.50%, 1.00%, 

1.50 % and 2.00%, respectively. 

The effect of shear span-to-depth ratio on the shear 

 

Fig. 11 Shear strength vs. effective depth 

 

 

Fig. 13 Shear strength vs. shear span-to-depth ratio 

 

 

strength is shown in Fig. 13, where concrete compressive 

strength is 40 MPa, tensile reinforcement ratio is 1.5%, 

effective depth is 400 mm, aspect ratio of fibers is 100 and 

hooked fibers are used. There is no significant effect of 

shear span-to-depth ratio observed within the considered 

range. The decrease in the shear strength with the increase 

in the shear span-to-depth ratio from 2.5 to 5.0 is less than 

11% for the considered volume fractions of fibers. 

The effects of volume fraction of fibers, aspect ratio of 

fibers, concrete compressive strength, effective depth, 

tensile reinforcement ratio and shear span-to-depth ratio are 

depicted in Figs. 8-13, respectively. The trends observed 

through the parametric study are consistent with the 

behavior of SFRC beams, so that it can be inferred that the 

developed ANN model is capable of generalizing to data 

never presented to the network. On the other hand, it should 

be noted that the data used for developing the ANN model 

is limited even though all data available to the author is 

used. 

 

 

5. Conclusions 
 

An ANN model was developed for predicting the shear 

strength of SFRC slender beams without stirrups. A 
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database of 146 rectangular beams, which is larger than the 

ones used in similar studies conducted previously, was used 

for this purpose. The network consists of an input layer of 

seven neurons receiving concrete compressive strength, 

tensile reinforcement ratio, shear span-to-depth ratio, 

effective depth, volume fraction of fibers, aspect ratio of 

fibers and fiber bond factor as input parameters, a hidden 

layer of six neurons and an output layer of a single neuron 

delivering an estimate of shear strength. It is shown that the 

developed ANN model is superior to fourteen equations 

proposed by various researchers in predicting the shear 

strength of SFRC slender beams without stirrups included 

in the database. Among the considered equations, the one 

proposed by Arslan (2014) exhibit the best performance in 

predicting the shear strength of SFRC beams in the 

database. The mean value of the ratios of the predictions by 

the equation of Arslan (2014) and those delivered by the 

ANN model to the experimental values is almost the same. 

However, the COV of the ratio for the equation of Arslan 

(2014) is 13% greater than that for the ANN model, and the 

MSE and RAE for the predictions by the equation of Arslan 

(2014) are 17% and 12% greater than those for the 

predictions of the ANN model, respectively. 

It is verified through a parametric study that the ANN 

model has a good generalization capability, that is, it can 

generalize to data never presented to the network 

previously. It is to be noted that the size of the database 

used to develop the ANN model is limited even though all 

data available to the author is used. Besides, it is observed 

through the parametric study that the shear strength of 

SFRC beams without stirrups increases with concrete 

compressive strength, tensile reinforcement ratio, volume 

fraction of fibers and aspect ratio of fibers, and decreases 

with effective depth within the considered ranges. 

Moreover, it is also observed that the effects of aspect ratio 

of fibers, concrete compressive strength, effective depth and 

tensile reinforcement ratio on the shear strength get less 

pronounced as the volume fraction of fibers increases. 
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Appendix: Parameters of the ANN model 
 

The weights and biases of the developed ANN model 

are given in Tables A1, A2 and A3 in order to make it 

possible for anyone to use the developed ANN model. It is 

to be noted that the input parameters should be mapped to 

the interval [-1,1] with respect to the ranges of input 

parameters given in Table 1 and the result delivered by the 

ANN model should be back-mapped with respect to the 

output interval [1.38,5.00] (MPa). 

 

 

Table A1 Weights between neurons of input and hidden 

layers 

Hidden 

Layer 
Input Layer 

Neuron 

# 
fc  a/d d Vf Lf/Df df 

1 -1.0578 -0.8675 -1.6440 -0.5999 0.3517 2.4332 1.4182 

2 1.3684 1.1581 -0.0847 0.1158 0.6547 1.4481 0.8978 

3 0.1271 2.0005 -1.1431 -0.3284 -1.6736 1.8750 -1.8363 

4 -0.9364 1.4208 2.2779 -0.1749 0.9154 -1.8558 0.7072 

5 1.4214 1.5609 1.1416 -1.1337 0.3897 1.0727 1.3446 

6 -0.3214 0.1469 -2.4667 0.0289 0.2326 -1.5449 1.9248 

 

Table A2 Weights between neurons of hidden and output 

layers 

Hidden Layer Neuron # Output Neuron 

1 0.4662 

2 1.2384 

3 0.1950 

4 -0.4004 

5 0.6467 

6 -0.5714 

 

Table A3 Biases of neurons of hidden and output layers 

Layer Neuron # Bias 

Hidden 1 3.6023 

Hidden 2 -0.9493 

Hidden 3 0.8790 

Hidden 4 -0.0739 

Hidden 5 2.6455 

Hidden 6 3.7652 

Output 1 -0.7239 
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