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1. Introduction 
 

During past decades, the ineffectiveness of the 

traditional designs has been proven, and led to the 

application of smart structures in civil engineering. 

Although the optimal design of structures against damages, 

caused by earthquakes, strong winds, or other disasters may 

be the major challenge in structural engineering, the 

concept of controlling such structures may be considered as 

another alternative. In the field of structural engineering, the 

concept of controlling the seismic structural response 

originally developed by Kobori and Minai (1960). Beside 

the other control methods, particularly semi-active control 

in engineering structures (Kerbouaa et al. 2014), the idea of 

active control has been utilized in various areas of 

engineering such as aerospace, mechanical, and electrical 

engineering (Block et al. 1997, Wu et al. 2004, Oliveira et 

al. 2009).  

An active-controlled structure may be considered as a 

smart structure that can sense the external dynamic loads 

via sensors and adjust its controlling efforts immediately, in 

such a way that it would be able to resist against external 

dynamic loads such as earthquake, strong winds, and impact 
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loads (Fisco and Adeli 2011). More precisely, the control 

unit of an active control system senses and generates 

necessary controlling signals, upon a predetermined control 

algorithm to drive the actuator, and limit structural 

responses to desired values. Therefore, it is clear that some 

control algorithms are necessary to be used in designing of 

the controller in order to compute the best control signal or 

force, based on a control objective or criteria. Typical 

control algorithms are H2 (Dyke et al. 1996), H∞ (Jabbari et 

al. 1995), intelligent control based on fuzzy logic (Akinori 

et al. 1998), neural networks (Cho et al. 2005) and genetic 

algorithms (Kim and Ghaboussi 2007, Li et al. 2002). In 

order to design an active control system, the control 

algorithm must satisfy the control objective. The control 

objective may be chosen to minimize the structural response 

with minimum required energy or force. Besides, a 

performance index is used in such situations to achieve a 

balance between the need of reducing structural response 

and minimizing control forces simultaneously. In this paper, 

the Instantaneous time-dependent performance index       

is considered as a performance index of optimization 

criteria.  

As it was mentioned before, an optimization algorithm 

is required to find the optimum signal or force, which will 

be applied to structure. Stochastic global search methods 

like Genetic Algorithm (GA) have been employed in 

structural active control (Ghanbarpor and Mohebbi 2006). 

However, when the system has a highly epistemic objective 

function (i.e., where parameters being optimized are highly 

correlated), and there are many parameters to be optimized, 
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the efficiency of these methods in obtaining global optimum 

solution decreases. Beside this drawback, in the above-

mentioned situations, the simulation process uses a lot of 

computing time and other resources (Shayeghi et al. 2009). 

Thus, it will be necessary to perform a full state 

measurement. Kalman filter could be considered as an 

effective solution; however, an inappropriate selection of 

the noise parameters of this filter may leave a negative 

impact on its performance. Yuen et al. (2013) have 

proposed an online estimation method for aforementioned 

parameters to resolve the issue. Furthermore, the extended 

Kalman filter have been adopted to identify the nonlinearity 

of structures (Lei et al. 2015). The method is capable of 

being used in structural health monitoring. Full state 

measurement has not been performed in the current study. 

Indeed, the authors are focusing on the efficiency of 

Chaotic Particle Swarm Optimization method (CPSO) 

optimal control in finding the best control force. 

Nevertheless, the time history of Central Processing Unit 

(CPU) time has been presented for each example. 

The Particle Swarm Optimization (PSO) algorithm 

demonstrates an excellent performance under complicated 

conditions (Altinoz et al. 2010). It has been found to be 

appropriate and reliable in solving discrete, nonlinear, non-

differentiable and multi-modal problems (Cheng et al. 

2007, Shi and Eberhart 1998). Various chaotic versions of 

PSO have been proposed (Liu et al. 2005, Chuanwen and 

Bompard 2005, Chuang et al. 2011, Yang et al. 2012). 

Logistic version of CPSO is a fast method for solving 

optimization problems. It inherits its characteristics from 

original PSO, but adds new properties of a chaotic 

exploration. In the present paper, CPSO (Logistic map) is 

used as a tool for structural vibration control for minimizing 

the structural responses. The chaotic behavior of the 

exploration could increase the search domain by the passage 

of time, whereas using random variables especially pseudo-

random variables generated by common computer programs 

cannot ensure optimal ergodicity in the search space 

(Chuanwen and Bompard 2005). The problem of structural 

control of a building with active tendon is formulated as an 

optimization problem, and the control force is obtained by 

minimizing the IOAC-based fitness function using CPSO 

technique to get the maximum reduction in the 

displacement and velocity responses of the floors, where the 

cut -o f f  l imi t  o f  t endo n forces  a re  co ns idered 

simultaneously. The efficiency of the simulation is 

evaluated for a three-story shear building under California 

(1952), El Centro (1940) and Northridge (1994) 

earthquakes. This three-story shear building has been used 

as a benchmark in the literature of active control (Kim et al. 

2008); therefore, it is possible to compare the results of 

reduced structural response. Another example, a ten-story 

shear building, is provided from the literature. The building 

has been previously controlled using ten active tendons. In 

this example, the control algorithm is based on Block Pulse 

Functions (BPFs) (Ghaffarzadeh and Younespour 2014).  
Although the above-mentioned researches do not provide 
the time history of control force, in the present paper, the 
amount of the force is assumed to be limited, and its time 
history is presented. It is obvious that the response of a 
structure will dramatically decrease if the amount of the  

cut-off limit of control force is increased. Thus, the control 

process of a structure is more challenging when the amount 

of the allowable control force is limited to a specific value. 

Despite of the absence of the time history of CPU time in 

the aforementioned examples, CPU time have been depicted 

in all presented examples. In the last section of the 

numerical examples, a twenty-story shear building is 

controlled using three active tendons. All results 

demonstrate the efficiency of CPSO-based control 

algorithm. 

 
 

2. Active control of MDOF shear building 
 

In this paper, the proposed algorithm has been applied to 

shear buildings. A typical shear building could be seen in 

Fig. 3. The governing equations of an MDOF shear building 

with N degrees of freedom (or N story), can be expressed as 

[ ]{ ̈   }  [ ]{ ̇   }  [ ]{    } 
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In Eqs. (2)-(4), [ , [ ] and [ ] are     matrices 

of mass, damping and stiffness of the structure, 

respectively. Besides, { } of     is the impact vector 

for earthquake ground acceleration   ̈    , and {    }  of 

    and {    }  of     are the vectors of floor 

displacements and control forces of active tendons, 

respectively. The matrix [ ]  of     is the location 

matrix of control forces of active tendons. Eq.  (1) includes 

N differential equations, which governs the relative 

displacements of a linear elastic MDOF system, subjected 

to an earthquake ground motion  ̈    . In the case of a 

structure with active tendons, installed at each floor, the 

controller location matrix [ ]  of     takes the 

following form 
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Moreover, the control force {    } of      is as 

{    }  [                               ]
 
 (5) 

As it can be seen from Eq. (1), in each time step, the 

Instantaneous Optimal Active Control (IOAC) algorithm is 

used to compute the amount of control force. In fact, an 

optimization problem should be solved in each step to find 

the best control force. The optimization phase, needs time 

to be done; therefore, when the optimization is 

accomplished, the structure will be in a new state, in which 

not only the computed control force may lose its efficiency, 

but it may harm the structure. This is an example of 

uncertainty. In real world, a structure may have thousands 

of DOFs. As a result, there would be a considerable time 

lag, which is inevitable because of solving the governing 

equations, optimizing the control force, etc. This time delay 

increases the aforementioned uncertainty. In the theory of 

control, it is a challenging filed of research, to reduce such 

uncertainties. Although using modern computers and 

applying high performance techniques may reduce the 

amount of time delay, which is elapsed in computing the 

best control force, the problem remains unsolved. In the 

present study, the amount of time, used by CPU of 

computer will be presented, and compared with the 

sampling time step of excitation. 

In a realistic control process, it is necessary to perform 

full state measurement. Kalman filter is a well-known 

algorithm, which is recursively executed to estimate the 

state of a dynamical system (Kalman, 1960). It has two 

essential steps: prediction, and filtering/updating. It assumes 

that the external force has two components. The first one is 

deterministic, and the second is a stochastic component, 

which is modeled as a Gaussian process with zero mean and 

covariance matrix of the external force {    }. The external 

force could be considered as the right hand side of Eq. (1). 

Now, the governing equation could be rewritten as 

{ ̇   }  [ ]{    }  [ ]{    } (6) 

in which, {    } is the      state vector 

{    }  {
{    }

{ ̇   }
} (7) 

[ ], and [ ] are computed as the following 
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Eq. (7) could be discretized as 

               (10) 

Eq. (11) is the first equation of the state of a linear, 

time-invariant dynamical discrete-time system. In Eq. (11), 

k denotes the iteration number.  The output of this state 

vector would be 

                          (11) 

In which,    is the observation matrix, and     is the 

input distributing matrix of the deterministic component of 

external force   .    and    matrices could be easily 

obtained by sensor configuration. Besides,      represents 

the measurement noise, which is a Gaussian process with 

zero mean and covariance matrix                at the k
th

 

step.        is the characteristic parameter vector of the 

covariance matrix       . The measurement noise and the 

noise in the stochastic component of the external force are 

assumed to be statistically independent (Kalman 1960). Eq. 

(12) is the second equation of the state of a linear, time-

invariant dynamical discrete-time system. Assuming that 

the measurements of the output    are given up to k
th

 time 

step, it would be possible to predict the state vector at 

(k+1)
th

 step. 

Although the Kalman filter provides a well-posed 

formulation, the accuracy of computed state vector depends 

on the prior selection of covariance matrices. In fact, this 

highlights the importance of the reliable time-varying noise 

covariance, which in general is not available. Thus, the 

original formulation could result in inappropriate 

estimation. Yuen et al. (2013) have presented a new 

approach to implement online estimation of process and 

measurement noises. They have utilized Bayesian method 

to estimate optimal noise parameters. Besides, their method 

is capable of being used for nonstationary conditions. The 

state estimation is more challenging in nonlinear systems. 

In most practical situations, it is necessary to identify 

nonlinear structure, especially when the location of 

nonlinearities are not clear. For instance, the identification 

of structural nonlinearity could be useful in structural health 

monitoring. Lei et al. (2015) have used partial 

measurements of structural response and extended Kalman 

filter to identify the structural nonlinearities.  

In the current study, the main attempt is to implement 

CPSO-based control algorithm, as well as optimizing the 

program to reduce the CPU time.    

 

 

3. Optimization method for active control 
 

3.1 Chaotic particle swarm optimization algorithm 
 

Iterative optimization is as old as human life, even very 

primitive beings activities has been formed according to the 

motivation of “To improve the situation”. Many strategies 

that researchers encounter every day in nature and prove 

their effectiveness in human’s various actions, already may 

offer a broad range of new solution methods. Therefore, it is 

not unexpected that the origin of several mathematical 

models of optimization has been taken from biological 

behaviors. Among these models, those corresponding to 

social behavior can be distinguished from the methods 

using individual behavior. For instance, Particle Swarm 

Optimization (PSO) is a population-based evolutionary 

algorithm developed by Kennedy and Eberhart (1995), and 

has been motivated by the social behavior of organisms. In 

1927, Karl Von Frisch had discovered that bees brought 

back to the hive not only nectar and pollen, but also 

information. Unfortunately, a well-posed model explaining 

the search strategy was not proposed at that time (Maurice 

2006). 
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Fig. 1 The neighborhood principle 

 

  
(a) Ring neighborhood 

structure (     ) 

(b) Star neighborhood 

structure (     ) 

Fig. 2 Social network structure 

 

 

PSO is a heuristic global technique that is broadly used 

for discrete and continuous optimization problems. It 

exhibits evolutionary computation features as the 

followings (Hu and Eberhart 2002): 

i. It is started with a population of random solutions.  

ii. Optimum solution is searched by updating 

generations. 

iii. Previous generations are updated in subsequent 

steps. 

In this method, potential solutions which are called 

“particles”, in a continuous D-dimensional space travel and 

search the global optima. Each particle in PSO keeps track 

of its coordinates in the solution space, associated with the 

best previous solution. This value is called       . 

Additionally, the overall best value that is called       

and its location is obtained by all particles in the population. 

Each particle has all the other particles as neighbors, as is 

illustrated in Fig. 1. This implies that the global best particle 

position for all particles is unique, as is shown in Fig. 2. 

Each particle adjusts its movement, based on its own 

experience and its companions’ experiences.  

Thus the previous particle’s best position (     ) and 

population’s overall best position (      ) are used to 

update the particle velocities. As was mentioned before, the 

original PSO algorithm uses some random variables in 

order to contribute the acceleration of all particles from one 

iteration to the next iteration.  

Even the best Random Number Generators (RNGs), use 

some arithmetic operations. For example, a Linear 

Congruential Generator (LCG) uses a recursive equation 

containing some integers 

                   (12) 

In which,    is the previously generated random 

number. As it can be seen, Eq. (13) only generates integers 

numbers. The initial value of    is called “seed” and 

should be known to initiate the process. The parameters  , 

 , and   are the constants of the method. Eq. (13) shows 

that the longest period of all computed integers will be 

equal to  , and they will fall in [0,    ]. Furthermore, it 

is obvious that using a predefined   , all values of    will 

be deterministic and there will be no random behavior. In 

other word, the first condition of an ideal RNG will be 

ignored if the LCG formula is utilized as an RNG with a 

constant   . The first characteristic of a True RNG states 

that an ideal RNG is a discrete memoryless information 

source (Stojanovski and Kocarev 2001). One solution to 

this obstacle is using another different    at the first of 

each attempt of random number generation process. Most of 

RNGs use CPU time in order to initial different seeds. 

Moreover, according to the capacity of a computer in 

storing an integer, which is limited to a specific number of 

bits, a computer is only able to generate random integer 

numbers in a predefined limited period. For instance, in a 

64-bit computer, the maximum value of   would be equal 

to 2
64

. Although the period of such RNGs is long, they 

could not be assumed as a True RNG. In fact, the generated 

integer numbers will be repeated by the passage of time. 

From a technical point of view, they are called Pseudo-

Random Number Generators (PRNGs) (“Anyone who 

considers arithmetical methods of producing random digits 

is, of course, in a state of sin”, John von Neumann) 

(Stojanovski and Kocarev 2001). The random variables, in 

original version of PSO, cannot ensure optimal ergodicity in 

the search space (Chuanwen and Bompard 2005).   

Instead of using LCGs, some Chaos-based RNGs have 

been proposed, which utilize chaotic maps. Some methods 

use bit operations (François et al. 2014), whereas other 

methods directly use the chaotic maps in PSO (Chuang et 

al. 2011, Yang et al. 2012). Although such Chaos-based 

RNGs use arithmetic operations, and they are not true 

RNGs, there are no fixed points, periodic orbits, or quasi-

periodic orbits in the behavior of a chaotic system (Kuo 

2005). More precisely, when a chaotic map is used in PSO, 

the numbers generated using the map are in floating-point 

format. Owing to the fact that a computer is capable of 

storing floating-point numbers in a wider range, the period 

of the generated numbers increases drastically. The chaotic 

version of PSO, in which the random variables are replaced 

with chaotic counterparts, can resist being trapped in local 

minima in comparison to original PSO (Liu et al. 2005).  

A detailed statistical comparison among several versions of 

PSO has been done by Yang et al. (2012). They have 

indicated the rank sums of CPSO (Logistic map), CPSO 

(Sinusoidal map), CPSO (Tent map), CPSO (Gauss map), 

CPSO (Circle map), CPSO (Arnold map), CPSO (Sinai 

map), CPSO (Zaslavskii map), and PSO as 239, 215, 153, 

244, 266, 100, 150, 184, and 203 respectively. According to 

their research, any two methods which are more than 30.29 

units apart (=0.05), may be considered as having unequal 

350



 

Chaotic particle swarm optimization in optimal active control of shear buildings 

performances. It is notable that CPSO (Logistic map) has a 

rank of 239, while the original PSO has a rank of 203. This 

indicates that not only they have unequal performances, but 

CPSO is slightly better than PSO. Chuang et al. (2011) 

have presented Chaotic CatfishPSO, a modified chaotic 

version of PSO, and have compared its performance to 

original PSO, CPSO, and CatfishPSO. They have 

concluded that CPSO solves multimodal optimization 

problems very fast. In their work, C-CatfishPSO 

outperformed CPSO. However, even in the worst cases of 

their tests, CPSO performed the optimization slightly better 

than PSO (Chuang et al. 2011). Although in Rastrigin, 

Griewank, and Sphere benchmarks both CPSO and PSO 

were trapped in local minima, in Rosenbrock, Ackley, and 

Schwefel benchmarks CPSO outperformed PSO, and had a 

considerable performance.  

Because of the simplicity and less computational effort 

of using Logistic map, and the above-mentioned advantages 

of CPSO (Logistic map) in comparison to PSO, in the 

present study, chaotic numbers have been utilized instead of 

random numbers. More precisely, in each time step, Chaotic 

PSO algorithm (CPSO) accelerates the velocity of each 

particle toward its       and       positions according to 

Eq. (14). The acceleration is weighted by chaotic terms, 

with separate chaotic numbers    and    for accelerating 

toward       and       locations, respectively. 

  
         

           
    

   

          
    

   
(13) 

  
      

    
    (14) 

Where             indicates the number of particles 

in the population,                indicates the number 

of iterations,   is the inertia,    [             ]
  

stands for the velocity of the i
th

 particle, 

   [             ]
 represents the position of the i

th
 

particle of the population, and    [             ]
  

indicates the best previous position of the i
th

 particle. The 

positive constants    and    are the cognitive and social 

components, respectively. As it was mentioned before,    

and    have acceleration effects on the particle velocity 

toward       and      , respectively. The index   

represents the index of the best particle among all the 

particles in the swarm. The variables    and    are chaotic 

numbers, which are separately generated using the logistic 

map 

  
        

       
   (15) 

For       the logistic map generates independent 

chaotic values in [0, 1] for i
th

 particle. The idea of using 

chaotic parameters comes from their characteristics: they 

are not periodic, and they cover the phase space by the 

passage of time.  

CPSO is similar to continuous Genetic Algorithm in 

initialization phase because both of them use random 

population. Unlike GA, CPSO does not have evolution 

operators such as crossover and mutation. In fact, the CPSO 

algorithm is composed of certain number of particles, which 

are randomly initialized. Each particle is represented by two 

vectors in order to characterize its position and velocity in a 

multi-dimensional space. These particles simultaneously 

move in the D-dimensional space of the optimization 

problem iteratively, and search for new possible locations, 

then compute their fitness value as measurement criteria. 

The dimension of the optimization problem space is equal 

to the number of parameters of the function to be optimized, 

which is called the objective function. Two important 

memories are used in order to save the best results. The first 

one is used for saving particle’s best previous position, and 

the second for the best position among all particles. Using 

each experience, obtained from each iteration and the best 

results, each particle decides about its movement trajectory. 

According to the above-mentioned approach, the CPSO 

implementation is presented as follows: 

i. Create a random population of particles, also called 

agents, which are uniformly distributed in the D-

dimensional space. In this paper, D is the number of 

active tendons. In fact, each particle represents a unique 

combination of control force(s). If there are D number 

of tendons, the best combination of control force(s) is 

desired, and a D-dimensional optimization problem 

should be solved.  

ii. Evaluate the fitness value of each particle according 

to the objective function. From a mathematical point of 

view, it means to analyze the structure under earthquake 

and tendon force(s), and to compute the corresponding 

index, which results in a fitness value for each particle. 

iii. Compare each particle’s fitness value with that 

particle’s      , which has been evaluated so far. If the 

current position of a particle is better than its previous 

best position, then replace the       of that particle 

with its current location, and save the corresponding 

information. 

iv. Determine the current global best particle according 

to the particles’ best locations. If the current value is 

better than      , then reset       to the current 

global best value, and save the corresponding 

information. 

v. Update the velocity and position of each particle 

according to Eqs. (14)-(15) using chaotic parameters to 

insure that no repeated velocity and location is 

generated.  

vi. Go to the step (ii) until a termination criterion is 

satisfied. 

vii. The particle, which has been made the       value, 

will be assumed as the best particle. Therefore, the 

components of that particle will be the amount of the 

control force(s), acting on the corresponding degree of 

freedom. 

The termination criterion is satisfied, if: 

a. A suitable tolerance is achieved, or 

b. The smallest value of objective function remains 

unchanged over a certain number of generations, or 

c. The number of iterations exceeds a certain maximum 

value. 
 

3.1 Cost or objective function 
 

Objective function is used to present a measurement of 

the performance of particles: how particles have acted in the 
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optimization problem space. The best particle, for example 

in minimization problems, will have the lowest numerical 

value of the objective function. Moreover, in the 

optimization process, various functions could be used to 

achieve a certain performance level. However, it is obvious 

that selecting different objective functions leads to different 

results. It should be noted that the choice of suitable 

objective function is very important in defining the 

procedure because a proper selection may increase the 

performance of achieving a desired level of optimization 

(Shayeghi et al. 2008). There are various optimization 

criteria in the field of active control of structures. In this 

paper, the performance index of Instantaneous Optimal 

Active Control is used as the objective function to 

determine the best control force. Yang et al. adopted this 

idea in order to control structures under earthquake 

excitation (Yang et al. 1987). IOAC algorithm computes 

optimal control force {    }  by minimizing an 

instantaneous time-dependent performance index expressed 

as 

      {    }
 [ ]{    }   {    } 

  [ ]{    } (17) 

Where {    }  of     is the vector of the control 

forces of active tendons. {    }  is the state vector as 

defined in Eq. (8). The matrix [ ]  of        is a 

positive semi-definite symmetrical matrix, in which   is 

the number of degrees of freedom. The matrix [ ] of     

is a positive definite symmetrical matrix so that all control 

forces affect the value of the performance index.   

represents the number of tendon force(s). The performance 

index establishes a weighted balance between structural 

response and control energy. In one hand, when the value of 

{    }
 [ ]{    } is big, in comparison to the elements of 

{    } 
  [ ]{    } , the responses of the structure are 

significantly reduced at the expense of increased control 

energy. On the other hand, when the elements of 

{    } 
  [ ]{    } are big, in comparison to the elements of 

{    }
 [ ]{    }, the control energy is reduced, but there 

will be no guarantee that the algorithm can significantly 

reduce structural responses. Although the values of the 

elements of [ ]  and [ ]  are important, the overall 

product of the first and second terms of the right hand side 

of Eq. (17) do determine the value of reduction in responses 

or control force(s). For instance, when a problem is solved 

in SI units, the desired values of displacements and 

velocities of structure are small numbers (in   and   
 ),whereas the value of control force(s) are big numbers in 

 . This results in big elements in [ ] and small values in 

[ ] to make a balanced index. Nevertheless, it does not 

affect the numerical optimization except for very big or 

small floating-point numbers, which may cause overflow, 

underflow, or cut-off errors. As a result, the active control 

problem is formulated considering the following 

constrained optimization problem, where the constraint is 

the cut-off limit of control force. 

                   

                     
(18) 

Eventually, CPSO is used to solve the above-mentioned  

 
Fig. 3 Three-story shear building with active 

tendon (Kim et al. 2008) 

 

Table 1 Modeling Parameters for Three-Story Building 

(Kim et al. 2008) 

Parameter Value 

Mass matrix M (kg) [
      
      
      

] 

Stiffness matrix K (N/m)     [
           
            

          
] 

Damping matrix C (N.s/m) [
       
          
        

] 

 

 

optimization problem. The best control force, which 

minimizes Eq. (17), is repeatedly computed and applied to 

the structure in order to reduce structural responses. 

 
 
4. Numerical simulations 

 

4.1 Three-story shear building 
 

A three-story shear building is considered to compare 

CPSO controlling algorithm with previous works in the 

literature. The model, shown in Fig. 3, has been studied and 

controlled, using Lattice type Probabilistic Neural Network 

(LPNN) method (Kim et al. 2008). It is notable that there is 

no evidence of the time history and magnitude of the 

control force in their work; however, in the present study, 

the control force is limited to a specific range, which is 

closer to the reality of structural control. In other word, it is 

possible to reduce the responses of this three-story building 

by increasing the amount of control force unlimitedly, as it 

was mentioned in the interpretation of [ ] and [ ] in Eq. 

(17). Nevertheless, the amount of external control force 

should be actual and applicable according to the capacity of 

actuators or tendons. In the present study, the maximum 

allowable value of the control force is limited. For instance, 

in the first example, the control force should not exceed 

200N. 

The structural properties are given in Table 1. The 

control force applied to the structure is determined by 

minimizing the objective function, expressed in Eq. (17). In 

this simulation, the number of particles, the number of  
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Fig. 4 North-South component of horizontal ground 

acceleration, El Centro, California during the Imperial 

Valley earthquake of May 18, 1940 

 

 
Fig. 5 CPSO-controlled vs. uncontrolled displacement for 

3
rd

 floor under El Centro (1940) earthquake  [ ]  
     [ ]            

 

 

iterations, the parameters     and   , and the weight 

coefficient   are assumed to be equal to 8, 20, 2, 2, 1, 

respectively. As aforementioned, the minimum and 

maximum allowable force of tendon system, which is 

applied to the structure is limited 200 N. All dynamical 

characteristics and controller properties are assumed to be 

identical to the literature (Kim et al. 2008). 

The controlled and uncontrolled responses of the 3
rd

 

floor, under El Centro (1940) earthquake (Fig. 4) are shown 

in Fig. 5. It can be seen that the response of the third floor is 

significantly reduced. The reduction factor of the 

displacement of the 3
rd

 floor is approximately equal to 77%, 

using CPSO method. 

Moreover, the reduction factor of the structural 

responses for California (1952) and Northridge (1994) 

earthquakes are shown in Table 2. The table illustrates that 

CPSO algorithm is able to control the structural responses 

more effectively: not only reduces the responses up to a 

specific amount, but limits the amount of the control force 

in a range of [-200, 200]. It is easy to increase the amount 

of the reduction in all responses by ignoring the limitations 

in control force, which may lead to an unreal maximum 

control force. However, all results are produced using the 

previously mentioned limitation of the control force. Fig. 6  

 
Fig. 6 CPSO Control force applied to the structure under El 

Centro (1940) earthquake  [ ]       [ ]           . 

 
Table 2 Reduction factor of responses of a three-story 

building by CPSO under earthquake excitation 

Earthquake 

excitation 

Reduction factor of response (percent) 

Displacement Velocity 

California (1952) 81.95 85.00 

Northridge (1994) 71.33 77.27 

El Centro (1940) 77.46 82.20 

 
Table 3 Reduction factor of the responses of a three-story 

building by LPNN under earthquake excitation (Kim et al. 

2008) 

Earthquake 

excitation 

Reduction factor of response (percent) 

Displacement Velocity 

California (1952) 68.03 66.74 

Northridge (1994) 65.44 59.47 

El Centro (1940) 60.36 59.18 

 

 

shows the time history of the control force under El Centro 

(1940) earthquake. 

PSO-controlled displacement force of the roof under 

Northridge (1994) earthquake is presented in Fig. 7. The 

reduction factors of the responses, using LPNN (Kim et al. 

2008) are also shown in Table 3. Besides, the time history 

of control force, which is computed by CPSO, is presented 

in Fig. 8. As it was mentioned before, there is no data 

regarding the control force history of LPNN method. As a 

result, it seems to be a good idea to compare the history of 

control forces of the two methods. 

Central Processing Unit (CPU) of computer needs time 

to execute CPSO algorithm and compute the  best 

controlling signal. Therefore, there will be a time delay in 

each step. In the current study, the simulation has been done 

in an eight-physical-core computer using automatic parallel 

configuration. The normalized CPU times (with respect to 

sampling time step t) for both El Centro (1940) and 

Northridge (1994) earthquakes are depicted in Figs. 9 and 

10. The figures show a considerable delay in the first step of 

the execution. Besides, there are some regions, where the 

time delay increases temporarily. The first time delay is 

clear because of the time, which is required to load the 

computer program and its modules in Random Access 

Memory (RAM). However, the other delays may be caused  
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Fig. 7 CPSO-Controlled vs. uncontrolled displacement of a 

three-story building under Northridge (1994) 

earthquake  [ ]       [ ]            

 

 
Fig. 8 CPSO Control force applied to the structure under 

Northridge (1994) earthquake  [ ]       [ ]      
      

 

 
Fig. 9 CPU time (normalized to sampling time step 

t=0.02) under El Centro (1940) earthquake. Average 

CPU time: 0.007s 

 

 

by interrupt signals sent by other services, running at the 

background. As a result, it is recommended to disable any 

redundant service before executing the simulation. 

Nevertheless, the results have been presented untouched to 

demonstrate the effect of background services and 

interrupts. 

 

4.2 Ten-story shear building 
 

The second example is also selected from the literature 

of active control to compare the CPSO algorithm with 

Block Pulse Functions method (Ghaffarzadeh and 

Younespour 2014). A ten-story shear building has been  

 
Fig. 10 CPU time (normalized to sampling time step 

t=0.02) under Northridge (1994) earthquake. Average 

CPU time: 0.006s 

 

Table 4 Structural characteristics of 10-storyshear building 

(Ghaffarzadeh and Younespour 2014) 

Story Mass           Stiffness            

1-3 105 1700 

4-6 95 1600 

7-9 90 1400 

10 85 1100 

 

 

controlled using active tendon controllers under Loma 

Prieta (1989) earthquake, which has a time sampling of 

0.005s. The structural characteristics of the example are 

presented in Table 4. The [ ] matrix is computed utilizing 

Rayleigh damping assumption.  

It is valuable to note that Ghaffarzadeh and Younespour 

(2014) have equipped all ten stories with active tendons. 

Therefore, CPSO must solve a 10-dimensional optimization 

problem as fast as possible. Again, in this study, the control 

forces have been assumed to fall in [           ]. 
The displacement response of the roof and the 

corresponding control force are depicted in Figs. 11 and 12. 

The figure shows that CPSO algorithm has an efficiency of 

65% that is 

                                         

                     

     
        

    
     

(16) 

It seems that CPSO algorithm is comparable to Block 

Pulse Functions (BPFs) method, regarding the amount of 

reduction to its counterpart, which is approximately equal to 

55% for Loma Prieta (1989) earthquake. In a mathematical 

point of view, the ten-story example, which is equipped 

with ten active tendons, is a ten-dimensional optimization 

problem, where the best forces of each tendon should be 

computed so that the function, defined in Eq. (17), is 

minimized. As a result, it seems that CPSO control 

algorithm has performed better in this example. 

The time history of CPU time, which is required for 

finding the optimal control forces, is depicted in Fig. 12. 

Owing to the fact that the sampling time step of Loma 

Prieta (1989) earthquake is equal to 0.005s, it can be seen 

that the CPSO algorithm requires approximately 0.077s to 

compute the best control force, by utilizing an eight- 
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Fig. 11 CPSO-Controlled vs. uncontrolled displacement of 

a 10-story building under Loma Prieta (1989) earthquake 

 [ ]              [ ]              

    

 
Fig. 12 CPSO Control force applied to the structure under 

Loma Prieta (1989) earthquake  [ ]                
[ ]              

 

 
Fig. 13 CPU time (normalized to sampling time step 

t=0.005) under Loma Prieta (1989) earthquake. Average 

CPU time: 0.077s 

 

 

physical-core CPU and parallel configuration. In a technical 

point of view, because of a considerable lag, the control 

algorithm could not be considered as a real-time method. 

The main reasons of high normalized delay, shown in Fig. 

12, are:  

1) the dimension of the search space, which is equal to 

ten, and  

2) the time sampling of the earthquake, which is very 

small (0.005s).  

It is important to emphasize that Ghaffarzadeh and 

Younespour (2014) have not provided the CPU time of their 

BPFs method; therefore, the time delays of both method 

could not be compared. Although in this example, each of  

Table 5 Structural characteristics of 20-story shear building  

Story 
Mass 

          
Stiffness 

           
Damping 

             

1-5 120 1.35 12.42 

6-11 100 1.25 11.50 

12-20 90 1.15 10.58 

 

 
Fig. 14 Twenty-story shear building equipped with 

three active tendon in 6
th

, 12
nd

 and 18
th

 stories 

 

 

10 stories has one active tendon, in practical situations, only 

some stories of a building are equipped with such devices. 

Consequently, the required CPU time may decrease because 

of the reduction in the number of control forces, which are 

being optimized.  

The aforementioned issue may be resolved by utilizing 

Kalman filter as presented in Eqs. (7)-(12). In such 

situations, a full state measurement is needed. More 

technical details have been provided in (Yuen et al. 2013, 

Lei et al. 2015).     

 

4.3. Twenty-story shear building 
 

In the previous sections, the results of CPSO control 

algorithm were compared with two examples from prior 

researches. In the current section, a twenty-story shear 

building is considered as the third example, which is shown 

in Fig. 14. Although the best location of active tendons is 

important, it may be defined as another optimization 

problem. Therefore, for simplicity, it has been assumed that 

the building is equipped with three active tendons in 6
th

, 

12
nd

 and 18
th

 stories. The maximum value of each tendon 

force is limited to 200KN. The structural characteristics of 

the example are given in Table 5. To excite the structure, El 

Centro (1940) earthquake is applied to the building. The 

time history of displacement of the 20
th

 story and 

corresponding control force are depicted in Figs. 15 and 16. 

The amount of the reduction factor of the displacement 

response of 20
th

 floor is presented in Eq. (20). 

                 
        

    
     (17) 

Fig. 17 shows the time history of the CPU time during  
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Fig. 15 CPSO-Controlled vs. uncontrolled displacement of 

a 20-story building under El Centro (1940) earthquake 

 [ ]            [ ]              
 

 
Fig. 16 CPSO Control force applied to the structure under 

El Centro (1940) earthquake  [ ]            [ ]  
            

 

 

 

the control process. The figure shows that the control 

algorithm approximately has a 1.1t delay. The comparison 

between the second and third examples shows that the 

optimization phase has a profound impact on the time delay. 

As a result, it seems to be a good idea to reduce the number 

of controller devices in the second example from ten to two, 

and optimize the location of each device to achieve the best 

results. 

 
 
5. Conclusions 

 
In this paper, some comparisons are represented from 

the literature of numerical optimization to show the 

efficiency of Chaotic-PSO (Logistic map) in comparison to 

PSO. Owing to the fact that CPSO slightly beats original 

PSO, it is used to compute optimal control force, and reduce 

the response of shear buildings under earthquake excitation. 

Each combination of control forces, which is called 

“particle”, is randomly generated in a predetermined 

interval [             ], where        and        are the 

minimum and maximum of control force. Consequently, by 

using an iterative procedure and a chaotic map (Logistic), 

the best values among all particles, which minimizes the 

fitness function, is found and applied to the corresponding 

degree of freedom of shear building as a control force at 

each time step.  

 
Fig. 17 CPU time (normalized to sampling time step 

t=0.02) under El Centro (1940) earthquake. Average CPU 

time: 0.022s 

 

 

Unlike the Genetic Algorithm (GA), CPSO does not 

have many parameters or operators. Thus, it is simple and 

convenient especially when the reduction of computation 

time is important. Three examples are presented and 

controlled using CPSO algorithm. Two examples out of 

three are taken from previous works to compare the 

efficiency of the method. The last example demonstrates the 

performance of the control algorithm in a more realistic 

situation. It is shown that CPSO algorithm can effectively 

find the best control force and be used in controlling the 

structural response under earthquake excitation. It is also 

shown that CPSO-based optimal active control probably 

have better overall performance in comparison to Lattice 

type Probabilistic Neural Network (LPNN) and Block Pulse 

Functions (BPFs) methods, especially when the amount of 

control force is important and must be limited to a certain 

value. It may be a good challenge to compare the reduction 

factor, the time history of control force, and the CPU time 

of CPSO, LPNN and BPFs methods under the same 

conditions. Although all above-mentioned algorithms could 

be consider as an alternative of optimal active control, the 

CPU time and the delay caused by computational effort 

should be carefully considered to find out whether or not 

the method is capable of being used in a real-time control 

scenario. A full state measurement would be necessary in 

case of considerable time delay. 
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