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Free vibration analysis of continuous bridge under the vehicles
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Abstract.  Free vibration analysis for continuous bridge under any number of vehicles is conducted in this paper. Calculation
strategy for natural frequency and mode shape is proposed based on Euler-Bernoulli beam theory and numerical assembly
method. Firstly, a half-car planar model is adopted; equations of motion and displacement functions for bridge and vehicle are
established, respectively. Secondly, the undermined coefficient matrices for wheels, vehicles, intermediate support, left-end
support and right-end support are derived. Then, the numerical assembly technique for conventional finite element method is
adopted to construct the overall matrix of coefficients for whole system. Finally, natural frequencies and corresponding mode
shapes are determined based on iterative method and overall matrix solution. Numerical simulation is presented to verify the
effectiveness of the proposed method. The results reveal that the solutions of present method are exact ones. Natural frequencies
and associate modal shapes of continuous bridge under different conditions of vehicles are investigated. The influences of
vehicle parameters on natural frequencies are also demonstrated.
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1. Introduction

It’s known that while the physical properties are
changed and the dynamic characteristics including modal
frequencies and shapes will be changed (Wang and Qiao
2007). The dynamic characteristics of bridge structures have
been widely applied to structural damage identification and
condition assessment so far (Obrien et al. 2015). In general,
the exiting methods for estimating dynamic characteristics
fall into two general categories: 1) measured-input tests;
and 2) ambient tests. The ambient excitation such as wind,
traffic, microseism and so on is convenient and inexpensive.
Wind-induced excitation is suitable for a broad band
frequency and it could lead to a small amplitude of
vibration. The level of vibration is too small to get
satisfactory results especially for short span bridges.
However, traffic-induced excitation has good effects for the
measured dynamic characteristics and has been noted in
numerous studied. The present author (Tan et al. 2011)
thought that there is a large difference between the bridge
loaded frequencies and natural frequencies under the
vehicle. Biggs and Suer (1956) point out that the natural
frequencies could vary as much as 20% while the test
vehicle is on the bridge. Kim et al. (2003) investigated the
Nongro simply supported bridge and found that the natural
frequencies under light vehicles are up to 5.4% higher than
those by heavy vehicles. Thus, it’s of great importance to
study the dynamic characteristics analysis of bridges under
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the vehicles and the influence of vehicles on the dynamic
characteristics of bridges.

The research on bridge-vehicle interaction has been
conducted for decades, which can be back to the research of
a pulsating load passing over a beam and the train crossing
a bridge by Willis (1849), Stokes (1849) in the mid-19th
century. In present researches, bridges are generally
modelled as elastic beams, while the models for vehicles
can be divided into three categories (Kim et al. 2005): the
so-called moving load (Kumar et al. 2015, Gao et al. 2015),
moving mass (Karimi and Ziaei-Rad 2015, Rieker and
Trethewey 1999) and moving sprung-mass models (Liu and
Du 2005, Yang and Yau 1997). The moving load model is
the simplest one, which can obtain the dynamic properties
of bridge with favorable accuracy. However, moving load
model cannot consider the interaction between bridge and
moving vehicles. For moving mass model, it takes into
account of the inertia of vehicle, which is superior to
moving load one. Nevertheless, it cannot assess the
bouncing action of moving vehicle relative to bridge.
Therefore, the sprung-mass model is proposed in order to
overcome the drawbacks of moving load and moving mass
models. It can realize the dynamic interaction between
vehicles and bridge, which is close to the real conditions
(Yang and Lin 2005). Azimi et al. (2013) investigated the
effect of vehicle experiencing longitudinal acceleration on
vehicle-bridge interaction, and a numerical vehicle-bridge
interaction element to solve this problem was proposed.
Shirai (2008) presented a comprehensive numerical model
for demonstrating the bridge-vehicle interaction and
resultant perceptible vibration. Ahmari et al. (2015) derived
the governing equations for vibration of line supported
orthotropic thin plates under the effect of moving vehicles
based on Hamilton principle, and the effect of foundation
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Fig. 1 Continuous bridge under multiple vehicles

settlement is considered. Yin et al. (2010) presented a novel
approach for analyzing the non-stationary random response
of bridge by using covariance equivalence technique, which
could obtain more accurate bridge-vehicle interaction
solutions. Zhu and Law (2002) investigated dynamic
characteristics of multi-lane continuous bridge deck under
the effect of moving vehicles with constant velocity. The
dynamic properties of bridge deck were calculated using
orthotropic plate theory and modal superposition technique.

From above literature review, a great majority of efforts
are paid to the dynamic response of bridge-vehicle
interaction in time domain, while the attention for dynamic
properties of frequency contents is relatively limited. Yang
and Lin (2005) studied the dynamic interaction between a
moving vehicle and bridge, and the frequency aspects were
especially demonstrated. Cha (2001) obtained the natural
frequencies of linear structure under the effect of sprung-
mass systems based on the assumed-modes method.
Naguleswaran (2003) used a fourth-order determinant
equated to zero, the frequencies of a Euler-Bernoulli beam
with up to five elastic supports were calculated. Wu and
Chou (1999) derived the exact solution of a uniform beam
under any number of sprung-mass systems by use of
numerical assembly method. Shi et al. (2014) made a semi-
analytical method for solving the vibration equation of the
non-uniform beam with added masses and elastic supports
by extending the application of the modal perturbation
method based on the Bernoulli-Euler beam theory. These
researches have obtained the exact solutions for the natural
frequencies and mode shapes of single-span bridges
carrying sprung-mass systems. However, the exact solutions
for the natural frequencies and mode shapes of multi-span
bridges need to be investigated. Although Lin and Tsai
(2007) proposed the exact solutions for the natural
frequencies and mode shapes of a uniform multi-span beam
carrying multiple sprung-mass systems, the sprung-mass
model is relatively simple. A more complex and
representative bridge-vehicle model for the dynamic
interaction analysis need to be conducted.

In this paper, a calculation method for natural
frequencies and mode shapes of multi-span bridge under
any number of vehicles was proposed. The dynamic
formulas for bridge-vehicle interaction were determined
through displacement coordination equation and boundary
conditions. Therefore, the natural frequencies and mode

shapes of bridge can be obtained by solving matrix
eigenvalues.

2. Equation of motion and displacement function
The sketch for a uniform bridge with (j-1) spans is

shown in Fig. 1, which is under s vehicles. As can be seen
from this figure, a half-car planar model is adopted to

simulate the vehicles on the bridge. 1, ..., p-1, p, p+1,
., 0,01, ..., sare vehicle numbers; 1, 2, ..., r, r+1, ...,
k, ..., jare pinned supports. This continuous bridge is

divided into multiple sections by vehicles and supports. by,
<oy Bp, Ry, Dpats -+, Dgea, Bras, ..., bssq are section numbers;
while Ibl’"-’lbn ’IRP ’Ibpﬂ’---_’ Ibqfl’lbk+1'.-- are
corresponding section lengths. m;, I, . mi,m;, (i=1,2,---9)
are sprung mass, rotatory mass and wheel masses for ith
vehicle; while kfl and k!, are suspension spring
constants, k!, and k., are tyre stiffness coefficients, a'is
the distance between two wheels. For coordinates, the

positions for pinned supports are defined by x, (r=2,---j),
those for left wheels of half-car planar model are defined by

xP (p=1,2,---8), and those for right wheels of half-car
planar model are defined by xJ (p=1,2,---s).

" Ibs+1

2.1 Equation of motion and displacement function for
bridge

Assuming &=x—x, for section R, X <xX<xJ.
Therefore, 0<¢& < IRp . Equation of motion for section R,

can be established based on Euler-Bernoulli beam theory,
which is given by Eq. (1)

g OVED , OYED

ox* ot? M)

where ElI and m are flexural rigidity and mass per unit
length of section, respectively. E is elastic modulus, and | is
moment of inertia. y(&t) is transverse deflection of R,
section at position & and time t.

Assuming the whole vibrating system shown in Fig. 1
performs harmonic free vibration at equilibrium position, it
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has Eq. (2)
V(&) =g, (£)-e™ 2

where w is natural frequency of the whole vibrating system,
¢Rp (&) is vibration mode function for R, and amplitude of

Y&, j=v-1.

The substitution of Eq. (2) into Eq. (1) obtains Eq. (3)

#e (&)= Aq_sin BE+ By cos BE
p + C;p sinh B&+ IPDRP cosh B& (3)

where A; ,Bgp ,Cgr ,Dy are undetermined coefficients
p P P P

for section Ry, and f*=w’m/El.

2.2 Equation of motion and displacement function for
vehicle

Taking the pth vehicle for example, the equations of
motion for wheel masses m/ and m} are given by Eq.

(4)
ma Vi +Ka(vh + Y7 ) +ki (vh - Yy +s/a’8”)=0 } @
MGV + Ko (Vs + Y3 ) +kG (Y5 -y —s7a"6") =0

The force balance equations for vehicle body (sprung
mass mp, rotatory mass |, ) are Eq. (5)

my ¥y + kS (Y — vy —s/ako’) +

. ktz(ybp_ytpz+szpap0p):o 5
1267 — 5Pkl (y? — y§ — sa’0") + 2

Szpapktg()/bp - Ytg + szpapep) =0

where Egs. (4)-(5) are the equilibrium equations of motion
for vehicles. Y is transverse displacement of vehicle
body; 6° is rotation angle for vehicle body; vy and y5
are transverse displacements of left and right wheels of
vehicle, respectively; sfa’ and sfa’ are distances
from body’s center of gravity to left wheel and right wheel
of vehicle, respectively; vy, yJ are deflections of beam
at positions X and XJ, respectively.

Because the whole vibrating system performs harmonic
free vibration, it can obtain Eq. (6)

Y :Ytlpejwt
Y2 ZYtgejwt 6)
Y =Y, el
P = HPeliot

where Y,P,Y.2 Y,P and P are the amplitudes of Y.,
y5, Yy and 6P, respectively. They are undetermined
coefficients for amplitudes.

3. Equations of undetermined coefficients

3.1 Equations at wheels

Shear force increment at left wheel of pth vehicle (xlp)
between sections b, and R, can be calculated by
My Vi + K (Y — Yp +57@P0%) . It requires continuous
rotation and displacement, equivalent bending moment and
shear force at position x”. Eq. (7) can be obtained based
on Egs. (2) and (6).

¢bp (Ibp ) = ¢Rp (O)
# (1,) =4, 0
! (1, ) =4 (0) @)
E|¢t;: (Ibp ) - methf
+k§ (Y =Y, +sPa’8") =Elgy (0)

where ¢bp is modal function for section by,
The substitution of Eq. (3) into Eg. (7), one obtains
Egs.(8)-(11)

A sin gl, +B, cosAl, +C, sinh fl,
+D, cosh pl, —B; —D; =0 (®)

A cospl, —B, sin Al, +C, coshfl,
+D, sih A, —A, —C, =0 ©)

- A, sin Bl, —B, cospl, +C, sinh A,
+D, cosh A, +B, ~D, =0 (10)

EIﬂS(_Abp cos Al, +B, sin Al, +C, cosh fl,
+D, sith A, )= miY, +k2 (Y] =Y +s/a’6") (11)
+EIB* (A, —Cr ) =0

Abp , Bbp ,Cbp and Dbp are undetermined coefficients for

modal shape of section by,
Transforming Egs. (8)-(11) into matrix form, one has Eq.
(12)

pr
[le]{UpI}Z[lel Hp|2 Hp|3 URp =0 (12)
Uy
where
n+1 n+2
sin /g, cos i,
cos fly, —sin Al
[Hou)= —sin A, —cos A,
—Elg%cosAl, EIB*sin g,
p ” (13)
n+3 n+4
sinh /1, cosh Al,, m+1
cosh ﬂlbp sinh ,Blbp m+2
sinh ﬂlbp cosh [;’Ibp m+3

Elp*cosh A, EIS°sinh fl, |m+4
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n+5 n+6 n+7 n+8
0 -1 0 -1

-1 0 -1 0
(o Myl o 1 0 -1
Elp® 0 -EIB® 0
n+9 n+10 n+11 n+12
0 0 O 0 m+1
0 0 0 0 m+2
0 0 O 0 m+3
—o'md +kp 0 —k! sPafkp |m+4
n+l n+2 n+3 n+4
T
ﬁJm}z{A% Bm Cm Dm}
nN+5 n+6 n+7 n+8
.
{URD}: ARp BRp CRp DRp}
n+9 n+10 n+11 n+12
A T
{U pv}: {Ytl Ytz Yb gp}

and

+ 4(?):_11) i(fzfpln)j 1 r+_41()r}—1)

m :12({p—l)+4(r—1)+2 }

(14)

(15)

(16)

here p is vehicle number; r is pinned support number which

isclosestto x” amongOand x.

At the right wheel of the pth vehicle (wheel at xJ), it

can also obtain Egs. (17)-(21)

Ag sin Blg +B; cospl; +Cg sinh plg
+Dg coshpl, -B, -D, =0

A; cosfl; —Bg sin gl; +C, cosh gl
+Dg sinh pl, —A, —-C, =0

—Ag sin pl; —Bg cos Bl +Cp sinh Bl
+Dg coshfl, +B, -D, =0

EI,33(_ARD cos Bl +Bg sin Al +Cg cosh Al
+Dy sivh A, )~ mEYE +KE(YE -Y, +5£a%6")
+EIB*A, -C, )=0

Ug,
[H pr]{upr}:[Hprl Hpr2 Hpr3 Upv =0
pr+1
where
n+5 n+6

sin ﬁIRp cos,BIRp

[H 1 co_sﬁIRp —sin ﬁIRp

pr —sin ,BIRp —CosﬁlRp
~Elfcosply  Elp°sin Ml

(17)

(18)

(19)

(20)

(21)

(22)

n+7 n+8

sinh ﬂIRp coshﬂlRp m+5
cosh,BIRp sinh ﬂIRp m+6
sinh ﬁIRp coshﬁlRp m+7

Elp’coshply  Elf°sinh Al |m+8

n+9 n+10 n+11
0 0 0
[ ] 0 0 0
Hpr2 Hpr3:o 0 0

2P P p
0 —-o'm5+k5 -k

nN+12 n+13 n+14 n+15 n+16
0 0 -1 0 —-1m+5
0 -1 0 -1 0 m+6
0 0 1 0 -1m+7

—-sPaPkb EIB* 0 —EIf® 0 |m+8

n+13 n+14 n+15 n+16
{U by }: {Ab.m Bs,.. Cob,. Do, }T

(23)

(24)

A, ..By .,Cy . and D,  are undetermined coefficients

for section b, .

3.2 Equations from motion of vehicles

The substitutions of Egs. (2)-(3) and (6) into Egs. (4)-(5),

one obtains Egs. (25)-(28)
ki(Be +Dg )-@'miY,P +kAY,!
+k2YP —Y,” +sPaPd? )=0
k%(B, +D, )-wmBY+kiy!

+k2 (Y2 Y., —sPaPé? |=0

— oY, +kE(Y, Y —5Pard?)
+ klg(g(bp =Y, +s;ako®)=0

—@*1P6° —sfa”ktﬁ(Yb” =Yi - "a"é”)
+s5a’kh," -V, +s;aker)=0

or
UR
P
Hefuel=lHa He HER U, t=0
pr+l
where
n+5 n+6 n+7 n+8
0 k& 0 ki|m+9
[ p] 0 0 0 0 [m+10
Hvl:
0 0 0 0 Im+11
0 0 0 0 Im+12

(25)

(26)

@7)

(28)

(29)

(30)
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n+9 n+10
—o'mf + kb +k? 0
[H , ]_ 0 —o'mp + kb + kb
Rk -k
s’k ~spa’kl
n+11 n+12 (31)
—kd sfa’ky m+9
-kj -sja’ky m+10
_a)zmkf +kf +kb s;a’ky —sfafky m+11

sta’ks —sfa’k]

—o?If + (a”)z((sz")zkt”2 +(slp)2k£) m+12

n+13 n+14 n+15 n+16

0 0 0 0 |m+9
[ o ]_ 0 kr, 0 kr, [m+10 (32)
Hv3 -

0 0 0 0 [m+11

0 0 0 0 Im+12

3.3 Equations at intermediate pinned supports

From Fig. 1, middle pinned support r is between section
bg+1 Of (k-1)th span and section by, of kth span. Then, the
displacement of right end at bg.; section for the (k-1)th span
is zero, and the left end at the first section for kth span is
zero. One has Egs. (33)-(34)

4., (0)=0 (33)
t, (i) =0 (34)

According to continuous deformation and moment
equilibrium at kth intermediate support, it can obtain that
Egs. (35)-(36)

#,. (.. )=, 0) (35)

#, s, )= 0) (36)

The substitution of Eq. (3) into Egs. (33)-(36), one
obtains Egs. (37)-(40)

A, sinpl, +B, cospl, +C, sinh gl
+D, coshpl, =0 (37)

K+1

A cospl, —-B, sinpgl, +C, coshpl, +D, sinhfl,
941 q+1 g+1 _A:q _C':‘] :0 q+1 q+1 q+1 (39)

-A S, B, 0sfl, +C, st i, +D, cofl,
+B,,-D, =0 (40)

where A ,B _,C, ,D, are undetermined coefficients
q+1 bq-l bq+1 bq+1
for modal shape function of section by, ; while A B,

C. ,D. areundetermined coefficients for section b, , .
S Dy k+1

Transforming Egs. (37)-(40) into matrix form, one
obtains Eq. (41)

[H {u,}=0 (41)
where
n+1 n+2 n+3
sin ,Blbq+1 cos ﬁ'b.w sinh 'Blbq+1
- o,
s1= cos By, =sinpl, . coshAl, |
—sin ﬁlban —CO0S ﬁ’lbm1 sinh ﬁlbw1
n+4 nN+5 n'+6 nN+7 n'+8 (42)
cos.h,b’l,%1 0 0 0 0 |m+1
0 0 1 0 1 m+2
sinh ﬁ'lbm1 -1 0 -1 0 |m+3
coshl, . 0 1 0 -1im'+4
nN+1 n'+2 n+3 n'+4
{U S }: {Abq+1 Bbq+1 qu+1 DbQ+1
' ’ , . (43)
n+5 n'+6 n+7 n'+8
T
Abk+1 Bbk+1 Cbk+1 Dbk+1 }
and

m'=12q+4(k —2)+2 a4
n'=4(2q+(k —2)) +4q =12q + 4(k — 2) @0

here k is number of intermediate support, q is vehicle
number which is closest to x, among 0 and Xy.

3.4 Equations from boundary conditions

When the boundary condition of left end at the first span
of continuous bridge is satisfied, it has Eq. (45)

%,(0)=0
%@w} )

The substitution of Eq. (3) into Eq. (45), one obtains Eq.
(46)

B, +D, =0
1 1 (46)
or
lHqJ{Ubl}zo (47)
where
1 2 3 4
0 1 0 111
o ol “
0 -1 0 1|2
1 2 3 4
(49)

Usj=lA, B, C, D
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Abl'Bbl’Cbl and D, are undetermined coefficients for

modal shape function of section b;.
According to the right boundary condition, one obtains

B, . ('bm): 0}
#.(,,)=0

The substitution of Eq. (3) into Eq. (50), one obtains Eq.
(51)

(50)

A, sinpl, +B, cospl,
+C, sinh g, +D, coshpl, =0

l, B*(-A, sinpl, —B, cospl, (51)
+C, sinh g, +D, coshpl, )=0
or
H bys J{U by } =0 (52)
where

n"+1 n"+2 n"+3 n"+4

[H ]_ sin Ay, | cosfl, sinhpl, ~ coshpl, m"+1 (53)
bl —sin g, —cospl,  sinh A,  coshpl, |m"+2

A ,B, ,C, ad D, are undetermined
s+1 's+1 s+1 s+1

coefficients for modal shape function of section bS -

nN"+1 n"+2 n"+3 n"+4

(54)
{U bs+1 }: {Abs+1 Bbs+1 Cbs+1 bs+1 }T
and
m"=12s+4(j-2)+2
" . (55)
n"=4(2s+(j—2))+4s

4. Determination of natural frequencies and modal
shapes

Continuous bridge shown in Fig. 1 is divided into
{(2s+1)+(j-2)} sections. At each section, there are four
undetermined coefficients for modal shape function, and
four undetermined coefficients for vehicle. Therefore, the
whole number of undetermined coefficients for this system
is 4{(2s+1)+(j-2)}+4s=12s+4j-4. For each intermediate
support, there are four undetermined coefficient equations
(listed in Eq. (41)), four equations at two wheels of each
vehicle (listed in Egs. (12) and (21)), four equations for
each vehicle (listed in Eq. (29)), two equations for boundary
conditions at left and right supports. Therefore, the whole
undetermined coefficients equations are  4(j-
2)+4sx2+4s+4=12s+4j-4. According to Egs. (13)-(14), (22)-
(23), (30)-(32), (42), (48) and (53), all elements in
undetermined coefficient equations are given the
identification number which are marked on the upper part
and the right part of the matrices. Therefore, numerical
assembly method is adopted to obtain the matrix equation
of all undetermined coefficients, one has Eq. (56)

6.45m

}
EI ‘ , 2.3m ,
S f i

0.5m 1.575m

1.3m
Q
0.95m

Fig. 2 Cross section for continuous bridge

[H}u}=0 (56)
When the rth intermediate support is between the left

and right wheels of pth vehicle (x” < x, < xJ), Elements

identification numbers will change in undetermined
coefficients equation matrices for wheels of pth vehicle, pth
vehicle body and rth intermediate support (Appendix A).
However, other identification numbers will not change.
Non-trivial solution of Eq. (56) requires that Eq. (57)

IH|=0 (57)

The half-interval method (Lin and Tsai 2007) is used to
determine the natural frequencies ; (i=1,2,---) of
continuous bridge under multiple vehicles. For each order
natural frequency, it satisfies Eq. (57). Mode shapes can be
obtained by substituting natural frequencies w; (i=1,2,---)
into Eq. (3). The accurate values of w is obtained
respectively using the half-interval method. The substitution
of the obtained frequency w into Eq. (3) will determine the
corresponding mode shape of the beam.

5. Numerical simulation
5.1 Parameters for bridge

In this paper, uniform section is adopted (shown in Fig.
2) for continuous bridge. Elastic modulus for concrete is
2.85x10'° Pa, density is 2500 kg/m®.

5.2 Numerical results

5.2.1 Reliability of the proposed method

For vehicle model, wheel mass my;=m;,=1500 kg, sprung
mass m,=1.77x10* kg, rotatory mass 1,=1.47x10° kg-m?,
suspension spring constant ku=k,=2.4x10" N/m, tyre
stiffness parameters ky=ka,=2.4x10" N/m, distance between
wheels a=4 m, and s;=5,=0.5.

The first three natural frequencies were calculated for
two cases (shown in Fig. 3) by the proposed method in this
paper. In order to verify the reliability of the method, finite
element analysis (FEA) was also used to calculate the
natural frequencies. The results were listed in Table 1.

For finite element model, the beam is divided into 80
beam elements with length 0.5 m and each element has two
nodes, in which each node has rotational and vertical
displacements. The mass matrix M and stiffness matrix K
of beam elements are formed using Lagrange interpolation
function, and equation of vibration is derived as follows
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Fig. 3 Cases for reliability analysis of proposed method

X

10.5m, i 05a #7; 0m 2 25m Ve

(a) case 3
£ $3

7 105m m 05m Zor  im m m g 25m -
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Fig. 4 Three cases for continuous bridge with three spans

where M, =®'M® ,K, =®'K®, § is the 2nd order
derivation of modal coordinates for beam, ® is the first nth
order mode shape matrix of free vibration for beam, Fy is
the beam-vehicle interaction force.

F—H
b = P, (59)

here, H is the location matrix of external force point; P, and
P, are the forces of front and back wheel on the beam,
respectively.

Eqg. (59) is substituted into Eq. (58). Equation of beam-
vehicle system can be obtained combining with Egs. (4)-(5),
which is shown as follows (Law and Zhu 2004)

E NEbaY

R o I =0 (60)
0 Mv ub Kbv Kv
where M, and K, are the mass and stiffness matrices of
vehicle, respectively. Ky, is coupling stiffness matrix of the
beam-vehicle interaction system. Based on the finite
element program constructed using MATLAB, modal
properties of beam-vehicle system can be obtained by
solving Eq. (58).

As can be seen from the results, natural frequencies
calculated by the proposed method are consistent with the
results of FEA. It reveals that the last solutions of proposed
method are the exact ones. The reasons lie in that only the

Table 1 First three natural frequencies for two span uniform
continuous bridge

Natural frequencies

Case No. Methods
(1 2 w3
FEA (rad/s) 50.8395  77.5375 197.2940
Case 1 Present (rad/s)  50.8508  77.5350 197.4609
Relative error (%)  0.022 0.003 0.085
FEA (rad/s) 52.4060 78.1533 197.8355
Case 2 Present (rad/s)  52.3906  78.1592  198.0078

Relative error (%)  0.029 0.008 0.087

Table 2 First three natural frequencies for three span
uniform continuous bridge

Natural frequencies (rad/s)

Cases
1 7 3
No vehicles 26.77 39.24 49.36
Case 3 26.24 42.06 50.43
Case 4 25.66 42.38 51.42
Case 5 25.33 44.26 52.10
0 r -
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Fig. 6 Modal shapes for case 4

differential equations of motion for continuous bridge and
vehicles were used to make the undetermined coefficients
equations, and no other assumptions were introduced.

5.2.2 Natural frequencies and modal shapes for
continuous bridge under multiple vehicles

The same vehicle parameters were adopted as listed in
section 5.2.1. Three different cases were established and
shown in Fig. 4. The first three natural frequencies and
corresponding modal shapes were calculated for these three
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Fig. 7 Modal shapes for case 5

Table 3 Four different vehicle parameters

S1

Vehicle (mtle‘Z) mp Iy (IQ“'—:?Z) (Ealltaz) a &
=M 2 1=Ktz a1=Ka2 =

parameters™" = (ko) (kg™ Tnmy” T (Nim) (m)(:;)

Vehiclel 1500 1.77x10%1.47x10° 2.4x107 2.4x10° 4 0.5
Vehicle2 1500 1.77x10%1.47x10°3.55x10’ 3.55x10" 4 0.5
Vehicle3 1500 1.77x10%1.47x10° 1x10° 1x10° 4 05
Vehicle4 1500 1.77x10%1.47x10° 1x10® 1x10® 4 05

Table 4 First four natural frequencies of vehicle model

Vehicle o}, w?, o w,,
parameters  (rad/s) (rad/s) (rad/s) (rad/s)
Vehicle 1 23.75 29.03 180.52 181.33
Vehicle 2 28.90 35.31 219.53 220.54
Vehicle 3 304.23 413.12 1200.3 1250.1

Vehicle 4 96.20 130.63 379.57 395.34

cases and continuous bridge without vehicles. Natural
frequencies were listed in Table 2, while modal shapes were
shown in Figs. 5-7.

As can be seen from the results, the first natural
frequencies of continuous bridge under different number of
vehicles (cases 3-5) are lower than those without vehicles.
However, the second and third natural frequencies for cases
3, 4 and 5 are higher than those without vehicles.
Differences of natural frequencies caused by vehicles are
related to the vehicle quantity. The more the number of

vehicles are, the greater the influence on natural frequencies.

As for modal shapes, there are some differences when
vehicle effects are considered or not. Moreover, the
differences are dependent on vehicle positions and numbers.

5.2.3 Influence of vehicle parameters on natural
frequencies

Different vehicle parameters were determined and listed
in Table 3. For these vehicles, each has four freedoms.
Therefore, four natural frequencies (), . »} and
w,,) can be calculated for each vehicle model. Calculation
results of natural frequencies for vehicles were listed in
Table 4.

One vehicle was carried by a two span continuous
bridge (shown in Fig. 8). Left wheel of vehicle is located at
different positions statically and its change direction is from
A to B, corresponding first order of natural frequencies

I w=- change direction of vehicle position

[ i I I\
m, 20m I, 16m. e AT
A B

Fig. 8 Schematic diagram for the change direction of
vehicle position (left wheel) statically

VIINI(%)
\
/
\

—--—vehiclel ——-vehicle2 ------- vehicle3 vehicle4

Fig. 9 Relation curve between VIINF and action position of
left wheel

were calculated by the proposed method. In order to
evaluate the influence of vehicle parameters on natural
frequencies, following index was defined and calculated by

11
VINF = & —%0 1009 (61)
2
where VIINF is vehicle influence index on natural
frequency; wé is the first natural frequency of bridge
without vehicle; while a@ is the first natural frequency of

bridge under the effect of vehicle.

Relationships between VIINF and left wheel positions of
vehicles are shown in Fig. 9.

As can be seen from Fig. 9, the amplitude effect is more
obvious when the left wheel is acting on the mid-span of
bridge. The first order natural frequencies of continuous
bridge under the vehicle are higher than that without vehicle
when parameters of vehicles 1 and 2 are adopted. However,
they are lower when parameters of vehicles 3 and 4 are used.
The first natural frequency a)é for continuous bridge
without vehicle is 48.83rad/s, which is between the second
order frequency () and the third order frequency (w2)
for vehicle 1 and vehicle 2 (as listed in Table 4). However,
@y is lower than !, (Y >eg) for vehicle 3 and vehicle
4. Therefore, one conclusion can be obtained for assessing

relative size of @; and @; based on above research
results. That is the closest vehicle frequency (a;\i,v) to
natural frequency of bridge without vehicle (a)é) should be
determined firstly. Then, w&v and a)(l) are compared. If
ol >0y, ol<ob; if ol <o, ol>wf. Other cases are
also simulated and used to verify above result and that is
applicable. This conclusion is also consistent with the

research result by Law and Zhu (2004) and this method has
more extensive applicability.
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6. Conclusions

In this paper, free vibration analysis of continuous
bridge under multiple vehicles is presented. The exact
solutions for natural frequencies and mode shapes of bridge
considering bridge-vehicle interactions are obtained based
on numerical assembly method. Numerical simulation on
continuous bridge with uniform box section is used to
verify its feasibility. Comparative analysis with FEA results
indicates that the proposed method possesses favorable
accuracy, which can be regarded as exact solution. Natural
frequencies and modal shapes of continuous bridge with
different conditions (number and position) of vehicles are
also investigated and compared with bridge without
vehicles. It reveals that differences of natural frequencies
and modal shapes caused by vehicles are highly related to
vehicle position and numbers. Finally, the influence of
vehicle parameters on the first order natural frequency is
discussed, and totally four different groups of vehicle
parameters were used. It can be concluded that the first
order natural frequencies of bridge under effect of vehicles
are closely associated with vehicles parameters.
Corresponding judgment method is also proposed.
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Fig. A-1 Vehicle distribution when x° <x, <xJ

Appendix A

If the rth intermediate support is between left wheel and
right wheel of pth vehicle (x < x, <xJ), corresponding
vehicle distribution is shown in Fig. A-1.

Section p, in Fig. 1 is replaced by b, in Fig. A-1,
Eq. (12) can bé expressed by Eq. (al)

Ub

P

. (al)

p2

]
[le]{upl}:[th lez 0 les UR
R
U

pv

n+l-n+4 n+5—-n+8 n+9

0
0
n+10 n+11 n+12 n+13—>n+16 (a2)
0 0 0 m+1
0 0 0 H,, -
0 0 0
0 0 0 m+4
n+l—-n+4 n+5—->n+8
{Upl}:{ U, Ug,,
(a3)
n+9—->n+12 n+13—>n+16
Ug,, U, }T

IRp in Eq. (12) is replaced by IRpl, one obtainsEqs.
(a2)-(a4)

m=12(<p—l)+4(r—2)+2 } a
a

+ 4(% _ 11) Zz(fzf |c1>)—+ 1Sr+_4%2}— 2)

Section R, in Fig. 1 is replaced by Ry, in Fig. (A-1), Eq.
(21) can be expressed by Eq. (a5)

Hodusl=b Hy HL, o HLE (a5)

IRp in Eq. (21) is replaced by Isz’ one obtainsEgs.
(a6)-(a7)

n+5 n+6 n+7 n+8 n+9—>n+12

0 0 0 0
0 0 0 0 H
H — Py
[ Pr] O O O 0
0 0 0 0
(a6)
n+13—->n+16 n+17—->n+20
m+5
HD"z HPra i’
m+8
n+5—->n+8 n+9—->n+12
U, l=1 Ua Up
pr { p1 p2 (a7)
nN+13—-n+16 n+17—>n+20
(T
UPV pr+1 }
Eqg. (29) can be changed intoEgs. (a8)-(a9)
URpl
[p] p [ p p p Usz
Hv {Uv}z Hvl 0 Hv2 Hv3 U (38)
pv
bp+1
n+5—-n+8 n+9 n+10 n+11
0 0 0
[Hp— HA 0 0 0
v 0 0 0
0 0 0
(29)
n+12 n+13—-n+16 n+17—->n+20
0 m+9
0 HP, HP, d
0
0 m+12

Sections bg.1 and by, in Fig. 1 are replaced by Ry, and

Ry, respectively; | o l, in Eq. (39) is replaced by
q+] k+1
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I and I, , respectively. Then, Egs. (40)-(41) can be

transformed ’iﬁtoEqs. (a10)-(a11)
n+5 n+6 n+7
sin ,6’1Rpl cosﬁlRpl sinh ,6’1Rpl
0 0 0

[H,]=

cosﬂlRpl —sin ﬂIRpl coshﬂlRpl
—sin Bl —cosplg  sinh flg

N+8 n+9 n+10 n+1l n+12 (210)
cosh ,b’lRpl 0 0 0 0 [m+13
0 0 1 0 1 m+14
sinh g~ -1 0 -1 0 [m+15
coshflg, O 1 0 -1im+16
N+5->n+8 n+9—->n+12
u (al1)
{US}:{ URp1 URpZ}





