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1. Introduction 

 

It’s known that while the physical properties are 

changed and the dynamic characteristics including modal 

frequencies and shapes will be changed (Wang and Qiao 

2007). The dynamic characteristics of bridge structures have 

been widely applied to structural damage identification and 

condition assessment so far (Obrien et al. 2015). In general, 

the exiting methods for estimating dynamic characteristics 

fall into two general categories: 1) measured-input tests; 

and 2) ambient tests. The ambient excitation such as wind, 

traffic, microseism and so on is convenient and inexpensive. 

Wind-induced excitation is suitable for a broad band 

frequency and it could lead to a small amplitude of 

vibration. The level of vibration is too small to get 

satisfactory results especially for short span bridges. 

However, traffic-induced excitation has good effects for the 

measured dynamic characteristics and has been noted in 

numerous studied. The present author (Tan et al. 2011) 

thought that there is a large difference between the bridge 

loaded frequencies and natural frequencies under the 

vehicle. Biggs and Suer (1956) point out that the natural 

frequencies could vary as much as 20% while the test 

vehicle is on the bridge. Kim et al. (2003) investigated the 

Nongro simply supported bridge and found that the natural 

frequencies under light vehicles are up to 5.4% higher than 

those by heavy vehicles. Thus, it’s of great importance to 

study the dynamic characteristics analysis of bridges under 

                                           

Corresponding author, Ph.D. 

E-mail: jiaoyb@jlu.edu.cn 
a
Ph.D. 

 

 

the vehicles and the influence of vehicles on the dynamic 

characteristics of bridges. 

The research on bridge-vehicle interaction has been 

conducted for decades, which can be back to the research of 

a pulsating load passing over a beam and the train crossing 

a bridge by Willis (1849), Stokes (1849) in the mid-19th 

century. In present researches, bridges are generally 

modelled as elastic beams, while the models for vehicles 

can be divided into three categories (Kim et al. 2005): the 

so-called moving load (Kumar et al. 2015, Gao et al. 2015), 

moving mass (Karimi and Ziaei-Rad 2015, Rieker and 

Trethewey 1999) and moving sprung-mass models (Liu and 

Du 2005, Yang and Yau 1997). The moving load model is 

the simplest one, which can obtain the dynamic properties 

of bridge with favorable accuracy. However, moving load 

model cannot consider the interaction between bridge and 

moving vehicles. For moving mass model, it takes into 

account of the inertia of vehicle, which is superior to 

moving load one. Nevertheless, it cannot assess the 

bouncing action of moving vehicle relative to bridge. 

Therefore, the sprung-mass model is proposed in order to 

overcome the drawbacks of moving load and moving mass 

models. It can realize the dynamic interaction between 

vehicles and bridge, which is close to the real conditions 

(Yang and Lin 2005). Azimi et al. (2013) investigated the 

effect of vehicle experiencing longitudinal acceleration on 

vehicle-bridge interaction, and a numerical vehicle-bridge 

interaction element to solve this problem was proposed. 

Shirai (2008) presented a comprehensive numerical model 

for demonstrating the bridge-vehicle interaction and 

resultant perceptible vibration. Ahmari et al. (2015) derived 

the governing equations for vibration of line supported 

orthotropic thin plates under the effect of moving vehicles 

based on Hamilton principle, and the effect of foundation  
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settlement is considered. Yin et al. (2010) presented a novel 

approach for analyzing the non-stationary random response 

of bridge by using covariance equivalence technique, which 

could obtain more accurate bridge-vehicle interaction 

solutions. Zhu and Law (2002) investigated dynamic 

characteristics of multi-lane continuous bridge deck under 

the effect of moving vehicles with constant velocity. The 

dynamic properties of bridge deck were calculated using 

orthotropic plate theory and modal superposition technique. 

From above literature review, a great majority of efforts 

are paid to the dynamic response of bridge-vehicle 

interaction in time domain, while the attention for dynamic 

properties of frequency contents is relatively limited. Yang 

and Lin (2005) studied the dynamic interaction between a 

moving vehicle and bridge, and the frequency aspects were 

especially demonstrated. Cha (2001) obtained the natural 

frequencies of linear structure under the effect of sprung-

mass systems based on the assumed-modes method. 

Naguleswaran (2003) used a fourth-order determinant 

equated to zero, the frequencies of a Euler-Bernoulli beam 

with up to five elastic supports were calculated. Wu and 

Chou (1999) derived the exact solution of a uniform beam 

under any number of sprung-mass systems by use of 

numerical assembly method. Shi et al. (2014) made a semi-

analytical method for solving the vibration equation of the 

non-uniform beam with added masses and elastic supports 

by extending the application of the modal perturbation 

method based on the Bernoulli-Euler beam theory. These 

researches have obtained the exact solutions for the natural 

frequencies and mode shapes of single-span bridges 

carrying sprung-mass systems. However, the exact solutions 

for the natural frequencies and mode shapes of multi-span 

bridges need to be investigated. Although Lin and Tsai 

(2007) proposed the exact solutions for the natural 

frequencies and mode shapes of a uniform multi-span beam 

carrying multiple sprung-mass systems, the sprung-mass 

model is relatively simple. A more complex and 

representative bridge-vehicle model for the dynamic 

interaction analysis need to be conducted. 

In this paper, a calculation method for natural 

frequencies and mode shapes of multi-span bridge under 

any number of vehicles was proposed. The dynamic 

formulas for bridge-vehicle interaction were determined 

through displacement coordination equation and boundary 

conditions. Therefore, the natural frequencies and mode 

 

 

shapes of bridge can be obtained by solving matrix 

eigenvalues. 

 

 

2. Equation of motion and displacement function 
 

The sketch for a uniform bridge with (j-1) spans is 

shown in Fig. 1, which is under s vehicles. As can be seen 

from this figure, a half-car planar model is adopted to 

simulate the vehicles on the bridge. 1, …, p-1, p, p+1, 

…，q, q+1, …，s are vehicle numbers; 1, 2, …, r, r+1, …, 

k, …, jare pinned supports. This continuous bridge is 

divided into multiple sections by vehicles and supports. b1, 

…, bp, Rp, bp+1, …, bq+1, bk+1, …, bs+1 are section numbers;  

while  
1bl ,···,

pbl ,
pRl ,

1pbl ,···,
1qbl ,

1kbl ,···,
1sbl   are  

corresponding section lengths. i
bm , i

bI , i
tm 1

, i
tm 2

 (i=1,2,···,s)  

are sprung mass, rotatory mass and wheel masses for ith  

vehicle;  while  i
tk 1

  and  i
tk 2

  are  suspension  spring 

constants, i
ak 1

 and 
i
ak 2  are tyre stiffness coefficients, a

i
 is  

the distance between two wheels. For coordinates, the 

positions for pinned supports are defined by xr (r=2,···,j), 

those for left wheels of half-car planar model are defined by  
px1 (p=1,2,···,s), and those for right wheels of half-car 

planar model are defined by 
px2 (p=1,2,···,s). 

 

2.1 Equation of motion and displacement function for 
bridge 

 

Assuming 
pxx 1 , for section Rp, 

pp xxx 21  . 

Therefore, 
pRl 0 . Equation of motion for section Rp 

can be established based on Euler-Bernoulli beam theory, 

which is given by Eq. (1) 

0
),(),(

2

2

4

4











t

ty
m

x

ty
EI


 

(1) 

where EI and m are flexural rigidity and mass per unit 

length of section, respectively. E is elastic modulus, and I is 

moment of inertia. y(ξ,t) is transverse deflection of Rp 

section at position ξ and time t. 

Assuming the whole vibrating system shown in Fig. 1 

performs harmonic free vibration at equilibrium position, it 

 

Fig. 1 Continuous bridge under multiple vehicles 
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has Eq. (2)
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where ω is natural frequency of the whole vibrating system, 

)(
pR  is vibration mode function for Rp and amplitude of 

),( ty  , 1j . 

The substitution of Eq. (2) into Eq. (1) obtains Eq. (3) 
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where 
pRA ,

pRB ,
pRC ,

pRD  are undetermined coefficients 

for section Rp, and β
4
=ω

2
m/EI. 

 

2.2 Equation of motion and displacement function for 
vehicle 

 

Taking the pth vehicle for example, the equations of 

motion for wheel masses 
p
tm 1  and 

p
tm 2  are given by Eq. 

(4)
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The force balance equations for vehicle body (sprung 

mass 
p
bm , rotatory mass 

p
bI ) are Eq. (5) 
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 (5) 

where Eqs. (4)-(5) are the equilibrium equations of motion 

for vehicles. 
p
by  is transverse displacement of vehicle 

body; θ 
p
 is rotation angle for vehicle body; 

p
ty 1  and 

p
ty 2  

are transverse displacements of left and right wheels of 

vehicle, respectively; 
ppas1  and 

ppas2  are distances 

from body’s center of gravity to left wheel and right wheel 

of vehicle, respectively; 
py1 , 

py2  are deflections of beam 

at positions 
px1  and 

px2 , respectively. 

Because the whole vibrating system performs harmonic 

free vibration, it can obtain Eq. (6) 
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where 
p

tY 1 ,
p

tY 2 ,
p

bY  and 
p̂  are the amplitudes of 

p
ty 1 ,

p
ty 2 ,

p
by  and 

p , respectively. They are undetermined 

coefficients for amplitudes. 

 

 

3. Equations of undetermined coefficients 
 

3.1 Equations at wheels 

Shear force increment at left wheel of pth vehicle (
px1 ) 

between sections bp and Rp can be calculated by 

)( 11111
ppp

btttt asyykym  . It requires continuous 

rotation and displacement, equivalent bending moment and 

shear force at position 
px1 . Eq. (7) can be obtained based 

on Eqs. (2) and (6). 
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(7) 

where 
pb  is modal function for section bp. 

The substitution of Eq. (3) into Eq. (7), one obtains 

Eqs.(8)-(11)
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pbA ,
pbB ,

pbC  and 
pbD  are undetermined coefficients for 

modal shape of section bp. 

Transforming Eqs. (8)-(11) into matrix form, one has Eq. 

(12)
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here p is vehicle number; r is pinned support number which 

is closest to px1  among 0 and px1 . 

At the right wheel of the pth vehicle (wheel at px2 ), it 

can also obtain Eqs. (17)-(21)
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1pbA ,
1pbB ,

1pbC  and 
1pbD  are undetermined coefficients 

for section 1pb . 

 
3.2 Equations from motion of vehicles 
 

The substitutions of Eqs. (2)-(3) and (6) into Eqs. (4)-(5), 

one obtains Eqs. (25)-(28) 
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3.3 Equations at intermediate pinned supports 
 

From Fig. 1, middle pinned support r is between section 

bq+1 of (k-1)th span and section bk+1 of kth span. Then, the 

displacement of right end at bq+1 section for the (k-1)th span 

is zero, and the left end at the first section for kth span is 

zero. One has Eqs. (33)-(34)
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According to continuous deformation and moment 

equilibrium at kth intermediate support, it can obtain that 

Eqs. (35)-(36) 
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The substitution of Eq. (3) into Eqs. (33)-(36), one 

obtains Eqs. (37)-(40) 
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where 
1qbA ,

1qbB ,
1qbC ,

1qbD  are undetermined coefficients 

for modal shape function of section 
1qb ; while 

1kbA ,
1kbB ,

1kbC ,
1kbD  are undetermined coefficients for section 

1kb . 

Transforming Eqs. (37)-(40) into matrix form, one 

obtains Eq. (41)
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here k is number of intermediate support, q is vehicle 

number which is closest to xk among 0 and xk. 

 

3.4 Equations from boundary conditions 
 

When the boundary condition of left end at the first span 

of continuous bridge is satisfied, it has Eq. (45) 
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The substitution of Eq. (3) into Eq. (45), one obtains Eq. 

(46) 
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1bA ,
1bB ,

1bC  and 
1bD  are undetermined coefficients for 

modal shape function of section b1. 

According to the right boundary condition, one obtains 
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The substitution of Eq. (3) into Eq. (50), one obtains Eq. 

(51)
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(53) 

1sbA ,
1sbB ,

1sbC  and 
1sbD  are undetermined 

coefficients for modal shape function of section 1sb . 
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4. Determination of natural frequencies and modal 
shapes 

 

Continuous bridge shown in Fig. 1 is divided into 

{(2s+1)+(j-2)} sections. At each section, there are four 

undetermined coefficients for modal shape function, and 

four undetermined coefficients for vehicle. Therefore, the 

whole number of undetermined coefficients for this system 

is 4{(2s+1)+(j-2)}+4s=12s+4j-4. For each intermediate 

support, there are four undetermined coefficient equations 

(listed in Eq. (41)), four equations at two wheels of each 

vehicle (listed in Eqs. (12) and (21)), four equations for 

each vehicle (listed in Eq. (29)), two equations for boundary 

conditions at left and right supports. Therefore, the whole 

undetermined coefficients equations are 4(j-

2)+4s×2+4s+4=12s+4j-4. According to Eqs. (13)-(14), (22)-

(23), (30)-(32), (42), (48) and (53), all elements in 

undetermined coefficient equations are given the 

identification number which are marked on the upper part 

and the right part of the matrices. Therefore, numerical 

assembly method is adopted to obtain the matrix equation 

of all undetermined coefficients, one has Eq. (56) 

 

Fig. 2 Cross section for continuous bridge 

 

 

   0UH  (56) 

When the rth intermediate support is between the left 

and right wheels of pth vehicle (
p

r
p xxx 21  ), Elements 

identification numbers will change in undetermined 

coefficients equation matrices for wheels of pth vehicle, pth 

vehicle body and rth intermediate support (Appendix A). 

However, other identification numbers will not change. 

Non-trivial solution of Eq. (56) requires that Eq. (57) 

0H  (57) 

The half-interval method (Lin and Tsai 2007) is used to 

determine the natural frequencies ωi (i=1,2,···) of 

continuous bridge under multiple vehicles. For each order 

natural frequency, it satisfies Eq. (57). Mode shapes can be 

obtained by substituting natural frequencies ωi (i=1,2,···) 

into Eq. (3). The accurate values of ω is obtained 

respectively using the half-interval method. The substitution 

of the obtained frequency ω into Eq. (3) will determine the 

corresponding mode shape of the beam. 

 

 

5. Numerical simulation 
 

5.1 Parameters for bridge 
 

In this paper, uniform section is adopted (shown in Fig. 

2) for continuous bridge. Elastic modulus for concrete is 

2.85×10
10 

Pa, density is 2500 kg/m
3
. 

 

5.2 Numerical results 
 

5.2.1 Reliability of the proposed method 
For vehicle model, wheel mass mt1=mt2=1500 kg, sprung 

mass mb=1.77×10
4 

kg, rotatory mass Ib=1.47×10
5 

kg·m
2
, 

suspension spring constant kt1=kt2=2.4×10
7 

N/m, tyre 

stiffness parameters ka1=ka2=2.4×10
7 
N/m, distance between 

wheels a=4 m, and s1=s2=0.5. 

The first three natural frequencies were calculated for 

two cases (shown in Fig. 3) by the proposed method in this 

paper. In order to verify the reliability of the method, finite 

element analysis (FEA) was also used to calculate the 

natural frequencies. The results were listed in Table 1. 

For finite element model, the beam is divided into 80 

beam elements with length 0.5 m and each element has two 

nodes, in which each node has rotational and vertical 

displacements. The mass matrix M and stiffness matrix K 

of beam elements are formed using Lagrange interpolation 

function, and equation of vibration is derived as follows 
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(a) case 1 

 
(b) case 2 

Fig. 3 Cases for reliability analysis of proposed method 

 

 
(a) case 3 

 
(b) case 4 

 
(c) case 5 

Fig. 4 Three cases for continuous bridge with three spans 

 

 

bbb FΦqKqM
T  (58) 

where MΦΦM
Tb , KΦΦK

Tb , q  is the 2nd order 

derivation of modal coordinates for beam, Φ is the first nth 

order mode shape matrix of free vibration for beam, Fb is 

the beam-vehicle interaction force. 
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here, H is the location matrix of external force point; P1 and 

P2 are the forces of front and back wheel on the beam, 

respectively. 

Eq. (59) is substituted into Eq. (58). Equation of beam-

vehicle system can be obtained combining with Eqs. (4)-(5), 

which is shown as follows (Law and Zhu 2004) 
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where Mv and Kv are the mass and stiffness matrices of 

vehicle, respectively. Kbv is coupling stiffness matrix of the 

beam-vehicle interaction system. Based on the finite 

element program constructed using MATLAB, modal 

properties of beam-vehicle system can be obtained by 

solving Eq. (58). 

As can be seen from the results, natural frequencies 

calculated by the proposed method are consistent with the 

results of FEA. It reveals that the last solutions of proposed 

method are the exact ones. The reasons lie in that only the 

Table 1 First three natural frequencies for two span uniform 

continuous bridge 

Case No. Methods 
Natural frequencies 

ω1 ω2 ω3 

Case 1 

FEA (rad/s) 50.8395 77.5375 197.2940 

Present (rad/s) 50.8508 77.5350 197.4609 

Relative error (%) 0.022 0.003 0.085 

Case 2 

FEA (rad/s) 52.4060 78.1533 197.8355 

Present (rad/s) 52.3906 78.1592 198.0078 

Relative error (%) 0.029 0.008 0.087 

 

Table 2 First three natural frequencies for three span 

uniform continuous bridge 

Cases 
Natural frequencies (rad/s) 

ω1 ω2 ω3 

No vehicles 26.77 39.24 49.36 

Case 3 26.24 42.06 50.43 

Case 4 25.66 42.38 51.42 

Case 5 25.33 44.26 52.10 

 

 

Fig. 5 Modal shapes for case 3 

 

 
Fig. 6 Modal shapes for case 4 

 

 

differential equations of motion for continuous bridge and 

vehicles were used to make the undetermined coefficients 

equations, and no other assumptions were introduced. 

 

5.2.2 Natural frequencies and modal shapes for 
continuous bridge under multiple vehicles 

The same vehicle parameters were adopted as listed in 

section 5.2.1. Three different cases were established and 

shown in Fig. 4. The first three natural frequencies and 

corresponding modal shapes were calculated for these three  
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Fig. 7 Modal shapes for case 5 

 

Table 3 Four different vehicle parameters 

Vehicle 

parameters 

mt1, mt2 

(mt1=mt2) 

(kg) 

mb 

(kg) 

Ib 

(kg·m2) 

kt1, kt2 

(kt1=kt2) 

(N/m) 

ka1, ka2 

(ka1=ka2) 

(N/m) 

a 

(m) 

s1, 

s2 

(s1= 

s2) 

Vehicle 1 1500 1.77×104 1.47×105 2.4×107 2.4×107 4 0.5 

Vehicle 2 1500 1.77×104 1.47×105 3.55×107 3.55×107 4 0.5 

Vehicle 3 1500 1.77×104 1.47×105 1×109 1×109 4 0.5 

Vehicle 4 1500 1.77×104 1.47×105 1×108 1×108 4 0.5 

 

Table 4 First four natural frequencies of vehicle model 

Vehicle 

parameters 

1
vv  

(rad/s) 

2
vv  

(rad/s) 

3
vv  

(rad/s) 

4
vv  

(rad/s) 

Vehicle 1 23.75 29.03 180.52 181.33 

Vehicle 2 28.90 35.31 219.53 220.54 

Vehicle 3 304.23 413.12 1200.3 1250.1 

Vehicle 4 96.20 130.63 379.57 395.34 

 

 

cases and continuous bridge without vehicles. Natural 

frequencies were listed in Table 2, while modal shapes were 

shown in Figs. 5-7. 

As can be seen from the results, the first natural 

frequencies of continuous bridge under different number of 

vehicles (cases 3-5) are lower than those without vehicles. 

However, the second and third natural frequencies for cases 

3, 4 and 5 are higher than those without vehicles. 

Differences of natural frequencies caused by vehicles are 

related to the vehicle quantity. The more the number of 

vehicles are, the greater the influence on natural frequencies. 

As for modal shapes, there are some differences when 

vehicle effects are considered or not. Moreover, the 

differences are dependent on vehicle positions and numbers. 

 

5.2.3 Influence of vehicle parameters on natural 
frequencies 

Different vehicle parameters were determined and listed 

in Table 3. For these vehicles, each has four freedoms.  

Therefore, four natural frequencies ( 1
vv , 2

vv , 3
vv  and 

4
vv ) can be calculated for each vehicle model. Calculation  

results of natural frequencies for vehicles were listed in 

Table 4. 

One vehicle was carried by a two span continuous 

bridge (shown in Fig. 8). Left wheel of vehicle is located at 

different positions statically and its change direction is from 

A to B, corresponding first order of natural frequencies  

 

Fig. 8 Schematic diagram for the change direction of 

vehicle position (left wheel) statically 

 

 

Fig. 9 Relation curve between VIINF and action position of 

left wheel 

 

 

were calculated by the proposed method. In order to 

evaluate the influence of vehicle parameters on natural 

frequencies, following index was defined and calculated by 

%100
1
0

1
0

1







VVIINF  (61) 

where VIINF is vehicle influence index on natural 

frequency; 1
0  is the first natural frequency of bridge 

without vehicle; while 1
V  is the first natural frequency of 

bridge under the effect of vehicle. 

Relationships between VIINF and left wheel positions of 

vehicles are shown in Fig. 9. 

As can be seen from Fig. 9, the amplitude effect is more 

obvious when the left wheel is acting on the mid-span of 

bridge. The first order natural frequencies of continuous 

bridge under the vehicle are higher than that without vehicle 

when parameters of vehicles 1 and 2 are adopted. However, 

they are lower when parameters of vehicles 3 and 4 are used. 

The first natural frequency 1
0  for continuous bridge 

without vehicle is 48.83rad/s, which is between the second 

order frequency ( 2
vv ) and the third order frequency ( 3

vv ) 

for vehicle 1 and vehicle 2 (as listed in Table 4). However, 
1
0  is lower than 1

vv  ( 1
vv > 1

0 ) for vehicle 3 and vehicle 

4. Therefore, one conclusion can be obtained for assessing 

relative size of 1
0  and 1

v  based on above research 

results. That is the closest vehicle frequency ( i
vv ) to 

natural frequency of bridge without vehicle ( 1
0 ) should be 

determined firstly. Then, i
vv  and 1

0  are compared. If 

i
vv > 1

0 , 1
v < 1

0 ; if i
vv < 1

0 , 1
v > 1

0 . Other cases are 

also simulated and used to verify above result and that is 

applicable. This conclusion is also consistent with the 

research result by Law and Zhu (2004) and this method has 

more extensive applicability. 
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6. Conclusions 
 

In this paper, free vibration analysis of continuous 

bridge under multiple vehicles is presented. The exact 

solutions for natural frequencies and mode shapes of bridge 

considering bridge-vehicle interactions are obtained based 

on numerical assembly method. Numerical simulation on 

continuous bridge with uniform box section is used to 

verify its feasibility. Comparative analysis with FEA results 

indicates that the proposed method possesses favorable 

accuracy, which can be regarded as exact solution. Natural 

frequencies and modal shapes of continuous bridge with 

different conditions (number and position) of vehicles are 

also investigated and compared with bridge without 

vehicles. It reveals that differences of natural frequencies 

and modal shapes caused by vehicles are highly related to 

vehicle position and numbers. Finally, the influence of 

vehicle parameters on the first order natural frequency is 

discussed, and totally four different groups of vehicle 

parameters were used. It can be concluded that the first 

order natural frequencies of bridge under effect of vehicles 

are closely associated with vehicles parameters. 

Corresponding judgment method is also proposed. 
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Appendix A 
 

If the rth intermediate support is between left wheel and 

right wheel of pth vehicle ( p
r

p xxx 21  ), corresponding 

vehicle distribution is shown in Fig. A-1. 

Section 
pRb  in Fig. 1 is replaced by 

1PRb  in Fig. A-1, 

Eq. (12) can be expressed by Eq. (a1) 
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(a3) 

pRl  in Eq. (12) is replaced by 
1pRl , one obtainsEqs. 

(a2)-(a4) 
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Section Rp in Fig. 1 is replaced by Rp2 in Fig. (A-1), Eq. 

(21) can be expressed by Eq. (a5) 
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pRl  in Eq. (21) is replaced by 
2pRl , one obtainsEqs. 

(a6)-(a7) 
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(a7) 

Eq. (29) can be changed intoEqs. (a8)-(a9) 
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(a9) 

Sections bq+1 and bk+1 in Fig. 1 are replaced by Rp1 and  

Rp2, respectively; 
1qbl , 

1kbl 
 in Eq. (39) is replaced by 

 

Fig. A-1 Vehicle distribution when p
r

p xxx 21 
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1pRl  and 
2pRl , respectively. Then, Eqs. (40)-(41) can be  

transformed intoEqs. (a10)-(a11) 
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