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1. Introduction 

 

Nowadays, advanced or smart materials based on 

elastomer matrix are getting their popularity. 

Magnetorheological elastomers (MRE) and dielectric 

elastomers (DE) are two common examples of them. Both 

materials sense magnetic and electric field by undergoing 

large deformation or stretch which makes their commercial 

application in the future are very promising as, e.g., sensors 

(Bahraini et al. 2014, Liu et al. 2016), actuators (Ying et al. 

2015, Brochu and Pei 2010, Nguyen et al. 2014) and energy 

harvester (Sun et al. 2015, Kornbluh et al. 2012). Beside 

their large stretch capability, another important property of 

elastomers that must be considered for such application is 

relaxation time induced by viscous effects (e.g., see 

Kramarenko et al. 2015). From material design aspects, a 

mathematical modeling for such effect is extremely 

important to predict time dependent behavior either in short 

or long period of loading. However, since the coupled 

analysis for inter-relation between elastic-electric and 

elastic-magnetic energy are also considerably complex 

(Dorfmann and Ogden 2006, Itskov and Khiêm 2014, 

Miehe et al. 2015), a simple but reliable viscoelastic model 

to account for the viscous effect is necessary. 

The large deformation viscoelasticity can be considered 

as the extended versions of the linear or the small strain 

viscoelasticity (e.g., Reese and Govindjee 1998, Simo 1987 

and Holzapfel 1996), although it is not a general case. The 

extended versions usually use so called the General 

Maxwell Model (GMM) with constant relaxation time 

which omits the influence of stress levels to the 

characteristic of relaxation processes. The influence of 
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external factors has been formulated for examples in 

Bergstörm and Boyce (2001) by using strain rate as an 

exponential function of deviatoric stress norm and 

Tscharnuter and Muliana (2013) by introducing time-shift 

factor. Both models have been used to model rubber, soft 

tissue and general elastomeric materials only. Recently, 

Bortot et al. (2016) use the deformation gradient 

multiplicative split similar to Bergstörm and Boyce (2001) 

to model viscoelasticity in dielectric elastomers.  

If we consider relaxation time as a material constant in 

the GMM, it means that for different level of stress and 

strain the corresponding relaxation curve yields similar 

relaxation behaviors. In fact, the actual tests on MRE and 

DE have confirmed different relaxation behavior for 

different level of stress and deformation (see Sahu and Patra 

2016, Kramarenko et al. 2015). Meanwhile, to the best of 

our knowledge, none of the existing viscoelastic models 

involving large deformation above have been formulated to 

consider directly relaxation time as a non-constant 

parameter.  

Therefore, we propose here a new strategy to modify 

relaxation time as stress dependent variable in the large 

deformation viscoelastic model. Another variables such as 

temperature is also possible to be considered but we omit it 

at the moment for simplicity. However, our strategy in 

principle can be implemented for temperature dependent 

relaxation time as well. Our idea is much inspired by the 

fact that the stress history previously experienced by 

material is widely known to contribute to current 

viscoelastic responses. To account for the fact, a 

convolution integral dedicated to solve differential equation 

for time dependent stretch evolution is normally used. In 

order to solve numerically the integral, we can use the time 

integration scheme with second order accuracy proposed by 

Herrmann and Peterson (1968), Taylor et al. (1970) and 

modified by Simo (1987). Meanwhile, the combination of 

such numerical integration with the proposed model need  
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Fig. 1 The rheological model with the single 

Maxwell element 

 

 
appropriate assumptions as follows. As our work relied on 

the GMM, we can simply modify the relaxation time by 

considering elastics stress from the corresponding branch 

only. The advantage of the simplification is that one can use 

as many as branches in the GMM to phenomenologically 

represent real behavior of viscoelastic materials. However, 

that may not be practically easy for implementation due to 

problem with fitting processes to determine material 

constants.  

Furthermore, we apply here for numerical simulation a 

special condition regarding incompressibility constraint for 

isotropic viscoelastic materials under uniaxial tension and 

compression. In order to focus more to show the 

performance of our proposed model, we use simply the 

Neo-Hookean hyperelastic model. Although the uniaxial 

tension and compression are only special case of 

deformation, many experiments in fact are commonly done 

under such loadings. By taking advantage from the original 

properties of the GMM, our proposed strategy also can be 

implemented for any strain energy density function. 

This paper consists of five sections including this 

section. In Section 2 the theoretical basis of relaxation time 

from the Maxwell rheological element is studied briefly. 

The next section shows the strategy to incorporate the stress 

dependent relaxation time in the stresses equilibrium state. 

Furthermore, we show the performance of the proposed 

strategy using the numerical simulation in Section 4. 

Finally, Section 5 outlines reviews on the performance of 

the proposed model. 

 

 

2. Relaxation time in viscoelastic materials 
 

In linear viscoelastic, we can derive the mathematical 

model of relaxation time from simple rheological model 

namely the Maxwell element as shown in Fig. 1. The 

element has parameters E and η denoting the stiffness of 

spring and viscosity of dashpot, respectively. The total 

strain rate acts on the element is the sum of strain rate from  

the spring E  and the dashpot   as 

   E  (1) 

with the corresponding total stress determined by σ=σe+ση. 

In term of stress at the spring E, Eq. (1) can be expressed as 

 
Fig. 2 The single chain (full line) inside a virtual tube 

(dash line), surrounded by its perpendicular chain 

neighbors (dot). The length of the chain at reference 

configuration L9 is measured B-to-A 

 

 
Fig. 3 The time dependent mechanisms of the chain 

deformation which contributes to material relaxation 

behaviors. The effective length of chain is measured as 

Leff=L−L0 with  L  as the length of chain just 

immediately after loading 

 

 




  E  (2) 

Using Eq. (2), the relaxation time is defined as the ratio 

between viscosity and elastic moduli, i.e., τ=η/E, with its 

unit in time, e.g., second. The relaxation time is usually 

prescribed as a material constant in linear viscoelastic 

model, i.e., by assuming constant E and η in this case. 

However, in large deformation, such assumption is no 

longer appropriate since elastic moduli in hyperelastic 

material is widely known to be non-constant. Relied on that 

fact, it is more convenient if we can find alternative model 

to account the influence of stretch and stress state into 

relaxation time. Although viscosity depends strongly with 

temperature, we assume here that all deformation processes 

in this work are cold enough, i.e. no significant internal heat 

generated by friction. 

Meanwhile, we consider the large deformation 

viscoelastic model proposed by Bergstörm and Boyce 

(2001) as the starting point for this work. Their model is 

inspired by time dependent mechanism of light cross linked 

elastomers, i.e., freely-jointed chain (FJC), consisting long 

strand polymeric molecules. The chain is assumed located 
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inside a virtual tube (see Fig. 2), which is designed to model 

surrounding constraint chains. With this constraint, the 

chain is allowed to move only inside the tube. Under 

external deformation field in Fig. 3, the chain or the tube is 

moving away from its equilibrium state X0 to the new state 

X. If the applied deformation is then held constant at the 

state X, the chain will relax to a new state namely XR. 

Measuring time required for the chain to find its new 

equilibrium in XR is the key to find approximation for the 

relaxation time of corresponding bulk material.  

Following Bergstörm and Boyce (2001), the rate of 

stretch for the deformation in Fig. 3 can be represented by a 

power law equation 

k

O

dev
c

S

S








 )1(0  

 (3) 

where 3/trC  and S
dev

=||S
dev

|| are the effective 

deviatoric stretch as a function of the right Cauchy 

deformation tensor C and the Frobenius norm of deviatoric 

second Piola-Kirchhoff stresses S
dev

, respectively. While S0, 

C and k are material constants related to deformation and 

stresses, the constant 
0
  is introduced mainly for 

dimensional consistency (see Bergstörm and Boyce (2001) 

for detail). 

Not surprisingly, Eq. (3) contains two important 

information regarding viscosity of material η as well. First, 

it shows that the stress and the stretch may be independent 

each other with respect to rate of stretch but this can happen 

only in their scalar values, i.e., their average or norm. 

Second, Eq. (3) predicts actual viscosity inside material 

without necessary tests to obtain viscosity constant 

normally measured in fluid. The latter is important in the 

context of our proposed model here since we will work 

mainly with an alternative definition of viscosity to replace 

the definition of η in (2). How to incorporate our strategy to 

the linear viscoelasticity modeled by the GMM will be 

explained in the next section. 

 

 

3. Stress dependent relaxation time 
 

To derive stress dependent relaxation time τ
*
 (S

dev
) we 

consider one dimensional GMM in Fig. 4. The i
th

 branch 

with dashpot in that figure is exactly the Maxwell element 

mentioned before where its stress contribution can be 

summed as 



 iie 

1
. 

By using contribution of strain energy density function 

in the i
th

 element Wi(ε), Eq. (2) can be rewritten as 

iii
i E

d

dW

dt

d
,

)(





 








 (4) 

with Wi(ε)=Eiε
2
/2. 

To extend for large deformation in the 3-D space we  

propose an assumption that the scalar Ei i,  in (4) can be 

replaced by Ei i


 
and works in the direction of internal  

driving stress. Next, we use another assumption that the 

E

1E
iE

iη1η

1 i
e

, 

, 
 

Fig. 4 The one dimensional GMM for viscoelasticity 

modeling with σe 
is denoted as purely elastic stress. The 

σi and ηi are the stress and the viscosity of the i
th

 Maxwell 

element. Long term response of this type of network 

depends only on the spring E∞ 

 

 

driving stress itself is generated by evolution of internal 

stress in the i
th

 Maxwell element defined by Hi/||Hi||. 

According to Simo (1987), the internal stress Hi can be 

defined as a non-equilibrium stress inside viscoelastic 

material related to a representation of different 

thermodynamics substate (see Truesdell and Toupin 1960). 

Thus, Eq. (4) becomes 

i

i
iii

dev
i E

dt

d

H

H
H

S
   (5) 

where CS  /2 dev
i

dev
i W  is defined as the deviatoric 

2
nd

 Piola Kirchoff stress from the corresponding deviatoric 

part of strain energy W
dev

. This stress makes contribution αi 

to the total energy of the GMM. Meanwhile, we introduce a 

new definition namely iiE H  as the effective 

tangent modulus for the dashpot. With that in hand, Eq. (5) 

is further simplified as 

i

i

i
i

dev
i

dt

d
HH

S



   (6) 

Unfortunately, solving Eq. (6) directly is difficult since 

we need to evaluate )( ii H


 in the current state of Hi. 

Hence, motivated by relaxation processes for chain network 

described in Fig. 3, all the stress states can be first assumed 

fully elastic for each new loading or unloading step. By 

neglecting contribution of the viscous part due to such 

assumption, Eq. (6) can be solved only for i
dev
i HS   and 

consequently Eq. (3) becomes 

k
dev
iC

i
S

S
















0

0 )1(   (7) 

In general S0, C and k can be different for each Maxwell 

element in the GMM but in this work we assume that all of 
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them are again the property of single bulk material. 

With (7) in hand and S
dev

=2∂W
dev

/∂C, we are now ready 

to solve (6) using convolution integral over time τ as 

 











 


t

dev

i

ii d
dt

dt

0

*
][

)(
exp2 




 SH  (8) 

where the relaxation time )(* si  in (8) is now determined 

by 

k
dev

iC
i

i
i


















0S

S





)1(0

*



 

(9) 

To evaluate (8), we perform here the numerical 

integration with second order accuracy developed by 

Herrmann and Peterson (1968), Taylor et al. (1970), Simo 

(1987) as follows 

][
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 (10) 

with Hi,0=0 and Si,0=0 for n=0. Hence, total stress evolution 

from m number of the Maxwell element can be described as 





















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ni
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n

m

i

i

1

1,1

1

1 HSS   (11) 

 

 

4. Numerical experiments 
 

In case of uniaxial incompressible loading, the 

deformation gradient F is given by  



















1

1

1

100

010

00







F  (12) 

with λ1 representing the principle stretch for its 

corresponding loading direction. Using (12) we seek the 

solution of Eq. (11) for principle directions of the deviatoric 

stress S
dev

. For this purpose, we use the Neo-Hookean strain 

energy  

)32)(2/( 1
1

2
1  W  (13) 

to obtain the first component of S
dev as 

)1(
1 3

1

11

11





 



W
S dev  (14) 

It is necessary to be noted here that the deviatoric stress S
dev

 

can be directly evaluated from (13) due to the 

incompressible constraint (see e.g., Simo 1987). 

Consequently, the corresponding component of Hi, i.e., 

H11,i, is described for time n+1 by 
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with the relaxation time 
*

1, ni  is defined by 

 kdev
ni

C
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SS 01,110
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(16) 

with )/2)(3/1( 1
2   i . Thus, the total stress at the 

network becomes 


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If we see the GMM in Fig. 4, the long term response of 

the model in (17) is constrained by 

dev
n

m

i

i SE 1,11

1

1 



 












   (18) 

This work is dedicated to show the influence of stress to 

the behavior of stress relaxation curvature by using only 

one Maxwell element or i=1 in Fig. 4. In general, the 

relaxation time in (17) is a nonlinear function of stretch 

average   and 
devS11 . However, since in this work our 

goal is only to compare results from our model to the 

constant relaxation time, we start by assuming only 
devS11  

as the main parameters by setting 1
0 1  s
 , C=0 and 

k=0.7. The remaining parameters are determined by 

α1=0.35, μ=200 MPa and Δt=5 s. Noted here that we will 

use the same parameters mentioned in this simulation for 

the next numerical simulations unless we propose other 

values for them. 

The result in Fig. 5 by using the stress dependent 

relaxation time in (16) shows that the relaxation time is 

faster if the stress level is higher, i.e., steeper curve toward 

equilibrium,. Meanwhile, by using the constant relaxation  

 

 

 

Fig. 5 Comparison of stress relaxation by using the 

constant and the stress dependent (non-constant) relaxation 

time for three different level of maximum stretches 
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t(s) t(s) 

(a) (b) 

Fig. 6 Multilevel stretch history (a) to simulate the stress 

dependent relaxation time for loading-unloading processes 

(b) 

 

 
t(s)  

λ1 

(a) (b) 

 
λ1 

 
devS11

 

(c) (d) 

Fig. 7 The evolution of stress-stretch curve from cyclic 

tension loading history in (a) shows different amount of 

hysteresis for k=0.2 (b) and k=0.7 (c) with α1=0.35. 

Meanwhile, the corresponding evolution of α with respect 

to devS11
 for both k are shown in (d). The elastic curve 

means the response from purely elastic stress in (14) 

 

 

time we can prove also from Fig. (5) that the behavior of 

relaxation curves almost the same for different level of 

stresses. All results are obtained from the corresponding 

constant maximum stretches λ1,max=1.1, λ1,max=1.2 and 

λ1,max=1.5 for duration t=0.8 s. 

Moreover, it is also interesting to use relaxation time in 

(16) for more complex loading-unloading behavior as 

shown in Fig. 6(a). Using the same parameters above but 

with 1
0 01.0  s , the result of simulation in Fig. 6(b) 

shows different behavior of relaxation for higher stress not 

only during loading but also unloading processes. It is also 

shown here that at the end of loading time, i.e., t=600s, the 

material does not return to stress free condition but still has 

small value of residual stress. This phenomenon is well- 

 
λ1 

 
λ1 

(a) (b) 

 
λ1 

 
t(s) 

(c) (d) 

Fig. 8 The evolution of stress-stretch curve using the same 

loading in 7(a) with k=0.7 for α1=0.01 (a), α1=0.1 (b) and 

α1=0.5 (c). Meanwhile, the corresponding evolution of H11,1  

for α1=0.1 and α1=0.5 are shown in (d) 

 

 
t(s) 

 
λ1 

(a) (b) 

 
λ1 

 
devS11

 (MPa) 

(c) (d) 

Fig. 9 The evolution of stress-stretch curve from cyclic 

compressive loading history in (a) shows different amount 

of hysteresis with k=0.2 (b) and k=0.7 (c) with α1=0.35. 

Meanwhile, the corresponding evolution of devS11
 with 

respect to devS11
 for both k are shown in (d). The elastic 

curve means the response from purely elastic stress in (14) 

 

 

known in viscoelastic materials as temporary energy losses 

due to viscosity.  

Furthermore, we simulate cyclic tension loading using 

stretch history shown in Fig. 7(a) to study important aspects  
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regarding the influence of deformation rate during loading 

and unloading with respect to the viscoelastic material 

responses. By using α1=0.35 the values of k are varied for 

k=0.2 and k=0.7. The simulation results are shown in Fig. 

7(b) and 7(c) where under higher influence of the stress, 

i.e., higher k, energy dissipation represented by the area 

between adjacent loading and unloading curve will be 

lower. The area here indicates well-known hysteresis 

processes where it will be disappear for purely elastic 

deformation. The evolution of the relaxation time (16) in 

Fig. 7(d) shows that only the level of stress significantly 

influences the relaxation time but not for the previous 

history of loading. This conclusion comes from the result in 

Fig. 7(d) that the responses from cyclic loading are almost 

coincide at single curve for both k=0.2 and k=0.7.     

Furthermore, we set another cyclic tension loading 

simulation in the opposite way by prescribing k=0.7 for 

α1=0.01, α1=0.1 and α1=0.5. Because α1 is also related to 

stiffness at the infinite time, the simulation is dedicated to 

find contribution of the Maxwell element to hysteresis. 

Using the same loading as Fig. 7(a), results in Fig. 8 show 

behavior of the stress-stretch curves which move from 

completely elastic case with the long term stiffness for 

α1→0 to the completely fluid with α1→1. The relaxation 

time implicitly represented by the area of hysteresis is also 

clearly a function of stress level. Hence, our proposed 

relaxation time is more flexible to represent hysteresis 

processes in viscoelastic materials than the constant 

relaxation time. Additionally, we are also interested to 

capture the evolution of the internal stress-like variable H11,1  

as shown in Fig. 8(d). From the figure it increases rapidly 

until certain loading time and decreases afterwards also 

under loading condition. This is typical situation where the 

accumulation of previous internal variable plays significant 

role. 

The extension from the numerical experiment in Fig. 7 

in order to incorporate more than one Maxwell element, i.e., 

using α2, α3,…α∞, is straightforward. However, following 

the additive scheme shown in (17) and (18) such extension 

will not significantly change the hysteresis area already 

obtained in Figs. 7 and 8 unless the contribution from the 

viscous branch changes. This is because for the same 

 i 1  in (18) the extension will produces the same 

 

 

amount of viscous response although it is now shared 

among each Maxwell element in the GMM. Under the 

extension, the contribution from each viscous branch will 

appear only in relaxation curves, e.g. similar curves shown 

in Figs. 5 and 6. We aim to study this topic using actual data 

from material testing in the future.   

For completeness, we perform cyclic uniaxial 

compression simulation driven by the loading history in 

Fig. 9(a). The results are presented in Figs. 9(b) and 9(c) 

where the viscoelastic responses will approach the elastic 

solution for small k. However, different result from the 

tension simulation at k=0.7 are observed in Fig. 9(c) where 

the hysteresis area is smaller than in Fig. 7(c). This fact 

confirms that the viscoelastic behavior is also built by the 

corresponding hyperelastic model which normally gives 

different responses under tension and compression loading. 

Similar to the tension test, the evolution of *
1  in Fig. 9(d) 

shows similar trend as the tension test which is explicitly as 

the function of the stress level.  

Finally, the evolution of H11,1 for tension and 

compression loading in Fig. 7 and Fig. 9 are shown in  

Fig. 10. Since H11,1 is also a function of 
devS11  through *

1 ,  

we observe again that both evolution are built mainly by 

different behavior of the Neo-Hookean model under tension 

and compression loading. Meanwhile, the same situation 

from Fig. 8(d) is observed in Fig. 10(a) that H11,1 in the 

tension simulation increases rapidly during loading but 

decreases after certain loading time towards a compressive 

state. Surprisingly, the situation occurs in the opposite way 

for the compression simulation as shown in Fig. 10(b). By 

the application of compressive loading, H11,1 increase 

slowly under the compressive loading but suddenly moves 

to a tensile state after certain period of unloading process. 

This is typical situation where the accumulation of H11,1 

from the previous time n has been in a tension state and 

significantly influences the relaxation behavior in the 

current time. As a result, it still has capability to control the 

overall response of the material during unloading processes. 

 

 

5. Conclusions 

 

By re-definition of relaxation time in the linear GMM 

  
(a) (b) 

Fig. 10 The evolution of internal stress H11,1 from cyclic tension (a) and compression (b) simulation in Figs. 7 and 9, 

respectively 
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model to be stress dependent parameters, different types of 

stress relaxation curves for different stress levels are 

obtained in this work. As the stress level is higher, the long 

term equilibrium in materials is achieved faster by using our 

model which does not occur in case of the relaxation time is 

given by constant for any stress levels. Furthermore, our 

model is also successfully implemented in loading-

unloading scenario to produce hysteresis phenomena. The 

influence of stress to relaxation time appears also in the 

cyclic simulation with the same tendency as the stress 

relaxation curves previously mentioned. Finally, according 

to our model, for larger contribution of the single Maxwell 

element compared to the long term response branch, loss of 

energy during hysteresis is higher. 
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