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Large amplitude free vibration analysis of functionally graded nano/micro
beams on nonlinear elastic foundation
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Abstract. The purpose of this paper is to study the geometrically nonlinear free vibration of functionally graded nano/micro
beams (FGNBs) based on the modified couple stress theory. For practical applications, some analytical expressions of nonlinear
frequencies for FGNBs on a nonlinear Pasternak foundation are developed. Hamilton’s principle is employed to obtain nonlinear
governing differential equations in the context of both Euler-Bernoulli and Timoshenko beam theories for a comprehensive
investigation. The modified continuum theory contains one material length scale parameter to capture the size effect. The
variation of two-constituent material along the thickness is modeled using Reddy’s power-law. Also, the Mori-Tanaka method
as an accurate homogenization technique is implemented to estimate the effective material properties of the FGNBs. The results
are presented for both hinged-hinged and clamped-clamped boundary conditions. The nonlinear partial differential equations are
reduced to ordinary differential equations using Galerkin method and then the powerful method of homotopy analysis is utilized
to obtain the semi-analytical solutions. Eventually, the presented analytical expressions are used to examine the influences of the
length scale parameter, material gradient index, and elastic foundation on the nonlinear free vibration of FGNBs.
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1. Introduction

Recently a new class of composite materials known as
functionally graded materials (FGMs) has attracted
considerable attention in many various industrial fields.
These inhomogeneous composites usually are made from a
mixture of metals and ceramics. In these materials, the
mechanical properties change from one surface to another.
The capability of functionally graded (FG) materials can be
used in nano/microstructures by employing modern
spattering machines. Meanwhile, nano/micro-beams have
been widely used in biosensors, atomic force microscope
and many other micro/nano-electro-mechanical systems
(Schmid et al. 2009, Kahrobaiyan et al. 2010, Younis et al.
2003). However, the properties of nano/micro-beams are
closely related to their microstructures. To understand the
mechanical behavior of such beams, it is significant to
consider the size effect that resulting from their
microstructures. Since the classical continuum theory could
not captures the size effects, thus the non-classical theories
such as classical couple stress theory (Mindlin and Tiersten
1962), the nonlocal elasticity theory (Eringen 1972), and the
strain gradient theory (Lam et al. 2003) have been
proposed.

Linear/nonlinear vibration is very common for
nano/micro-beams subjected to external forces in some
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basic components of new nanoscale devices such as
oscillators, and actuators. In this regard, some studies have
been performed by employing various modified continuum
theories together with different numerical or analytical
solutions (Janghorban and Zare 2011, Bayat et al. 2013,
Thai and Choi 2015, Sedighi et al. 2014, Bagdatli 2015,
Setoodeh et al. 2015, Malekzadeh and Shojaee 2015,
Setoodeh et al. 2016, Ehyaei et al. 2016, Ebrahimi and
Shafiei 2016). Specifically, Malekzadeh and shojaee (2013)
studied surface and nonlocal effects on the nonlinear
flexural free vibration of elastically supported non-uniform
nano-beams using differential quadrature method (DQM)
based on Euler-Bernoulli and Timoshenko beam theories.
Shenas and Malekzadeh (2016) presented the influences of
thermal environment together with the geometrical
parameters on the free vibration characteristics of the FG
quadrilateral micro-plates based on the modified strain
gradient theory using the Chebyshev-Ritz method. Ansari et
al. (2016) investigated the coupled longitudinal-transverse-
rotational free vibration of post-buckled FG first-order
shear deformable micro/nano-beams employing generalized
differential quadrature (GDQ) method. They used Mindlin’s
strain gradient theory to capture the size dependent features
of the nanostructures. Jia et al. (2015) examined the size
effect on the free vibration of geometrically nonlinear FG
micro-beams under electrical actuation and temperature
change in the context of Euler-Bernoulli beam theory using
DQM. Taeprasartsit (2013) developed the large amplitude
free vibration of thin Euler-Bernoulli FG beams based on
finite element method.

However, only few researchers have paid attention to
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Fig. 1 Schematic configuration of FG nano/micro-beam

the nonlinear vibration of FG nano/micro-beams as a new
potential application of nanostructures. Asghari et al.
(2011) presented a size-dependent formulation for
Timoshenko micro-beams made of FG material using
modified couple stress theory (MCST). They obtained
closed-form analytic expressions for the bending and axial
deformations of beams and also investigated the free
vibration of simply supported FG beams utilizing the
Fourier series expansions as a case study. Ke et al. (2012)
determined the nonlinear vibration frequencies of FG
Timoshenko micro-beams with different boundary
conditions employing DQM together with an iterative
algorithm. They investigated size effect based on MCST
and showed that the size effect on the nonlinear vibration is
significant only when the thickness of beam has a similar
value compared to the length scale parameter. Nateghi and
Salamat-talab (2013) presented thermal effect on the size-
dependent behavior of FG micro-beams using classical and
first order shear deformation theories in context of MCST
using GDQ method. Setoodeh and Afrahim (2014) studied
nonlinear vibrational behavior of FG Euler-Bernoulli micro-
pipes conveying fluid based on strain gradient theory. They
used homotopy analysis method (HAM) to obtain the
results. According to the available literature, no analytical
expressions for the nonlinear frequencies of FG
nano/micro-beams have been derived so far.

The main target of this paper is to develop size-
dependent analytical expressions for the nonlinear vibration
of FG nano/micro-beams using homotopy analysis method.
A microstructure-dependent  nonlinear Euler-Bernoulli
(EBT) and Timoshenko beam (TBT) theories which
account for through-thickness power-law variation of a two-
constituent material are developed in the context of
modified couple stress theory. The effects of nonlinear
elastic foundation and boundary conditions are taken into
account.

2. Nonlinear size-dependent equations of motion

Fig. 1 shows a FG nano/micro-beam with length L,
width b, and thickness h made from a mixture of ceramic
and metal. In this investigation the top surface of micro-
beam (z=h/2) is ceramic-rich and the bottom surface (z=-h/2)

is metal-rich. The beam is resting on a nonlinear Pasternak
foundation with linear coefficient k;, nonlinear coefficient
ka and shear coefficient kg. The effective material
properties of FGNBs are estimated through the Mori-
Tanaka homogenization technique as follow (Ke et al.
2012)

Ke_Km _ Vc

K —K, 1+V, (K, —K,)/(K, + 4z, /3) (1)
He — Hin _ Vc
Ho = Ho 14V (g = )t + 11 (9K, +810, ) /6 (Ko + 241, )|

)
where K, x and V denote the bulk modulus, the shear
modulus and the volume fraction of the materials,
respectively. The subscripts m and c stand for metal and
ceramic phases, respectively and e denotes the corresponding
effective property. The volume fractions of ceramic and
metal phases are related by

V,+V. =1 3

V.(z)=(05+z/h)" (4)

In above formula n is the material gradient index. The
effective values of the Young’s modulus E and Poisson’s
ratio v can be expressed in terms of K. and w. as follows

9K
E@) =g o ®

3K, -2
6K, +24,

The mass density of the beam is also given by the rule
of mixture as

pEZ)=pN.+pNV., (M

The equations of motion of the FGNBs are derived
using Hamilton’s principle. The principle can be stated as

[Fo(r-u)dt=0 ®)

1
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where T is the kinetic energy, and U is the potential energy
including the strain and elastic foundation energies.
According to the modified couple stress theory, the strain
energy can be written as
1 -
u, :EL oye +myz )dvV  (ij=x.y.z) (9)
where ¢;; and &; denote the components of the stress and
strain tensors; my and y; represent respectively the

deviatoric part of the couple stress tensor and symmetric
curvature tensor defined as follows

oy = Ay Oy +2ug;, A=EvI1+v)(1-2v),

(10)
u=E/2(1+v)
1
Ejj :E(ui,j +U ;U U ) (11)
1
Xij =E(6Ij +9j,i) (12)
m; =2l zﬂ?(ij (13)

where in all relations (i, j, k=X, y, z), 2 and x are the Lame’s
constants, | denotes the material length scale parameter.
Also, u; are the components of the displacement vector and
6; are the components of the rotation vector which defined

as
ou
gle ou, ou, y :1 ou, au, ,
2Ly oz Yoo2\ez ox
e
2 ox oy

2.1 Euler-Bernoulli FGNB theory

(14)

The displacement field (u,, u,) along the coordinate
directions (x, z) for an Euler-Bernoulli beam can be given in
terms of (u, w) which are the displacements along the (X, z)
coordinate directions of a point on the mid-plane of the
beam

ux(x,z,t)zu(x,t)—zM ,
OX (15)
u, (x,z,t)=0 ,u,(x,z,t)=w(x,t)

According to Egs. (11) and (15), the only nonzero
nonlinear strain based on the von Karman assumptions is

ou a2w 1[aw jz
+ _

Ey = = (16)
6x 8x 2\ oOx

In view of Egs. (12)-(15), the nonzero components of
rotation vector, curvature tensor and couple stress tensor
can be obtained as

9__% 4 = 10w Mmoo Iza-’w
T Y T e Ty TR e

Thus, the potential energy can be expressed as

(A7)

XX XX

1 cL
U :E.[o.[ O£y +2M, 7, JAAdX +
18)
Teof, ,  awy, 1, . (
EJ-O (k,w ke () koW jdx

After substituting appropriate components in Eq. (18),
the potential energy can be written as

U =1L{A1{<5“) @y (@)2}—

2 X 4 0oxT ox ox
2 {6u07w 16?W(8w)}
ox ox? 20xox
19)
T (
+C +D,I? dx +
VDI )]
1t oW
“1 T kw kg (=) + =k w* |dx
j(| +(;(fa)()Jf l j
where
h
{AB,.C,} =b [ 2(A2)+2u(2)){Lz,2%}dz
o (20)
D, :bjjﬂ(z)dz
2
The kinetic energy can be obtained as
_1 OU,, OW ,,
T2, mo[(E) 2 }x,
(21)

h
m, =b [3 pdx
2
Finally after employing Hamilton’s principle and using
calculus of variations and then collecting the coefficients of

(6u, ow), two nonlinear differential equations are obtained
as follows

o ou A o |(ow ) oW
m,2— =A + = |-B,Y= (22
oot " tox? 2ax“axﬂ tox?® (22)

D200
“at? 2 x|\ ox

OX OX
2 2
g, B0 @j g o fdwaw 23)
Pax® 2 ox |\ ox OX | OX° OX

_Cla‘w 2 & (@j_kl ) ow ;

a5 5 AR

The stress resultants for the nano/micro-beam are
defined as

j m,, dA = (24)

ou 10w ow
Jon (8x+2(8x)j iz @)

ow
tox?
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ou ow
MxIL\O'xe dA =B (—X —(—) j 1% (26)
In view of Egs. (25)-(26), Egs. (22)-(23) can be
rewritten as below

oy ON

gy _ 9« 27

ot ox @)
ow 62MX 0 oW
0wz =z T N
ot OX OX OX

(28)
—kw +kegxﬂ2—kmw3—oyﬂ

As the value of longitudinal inertia is very small then
Eq. (27) can be simplified as N,=N,,=cte. Thus, Eq. (25)
can be written as (Ke et al. 2012)

ou 1 ow 1. 0w,
Z 2N, +B S A
X A1[ R ) l(ax)J (29)

By integrating Eq. (29) over the length of the micro-
beam, one obtains

u(L)—u(0)=AiIO{X Sy i”}dx (30)

If two ends of the beam are immovable, i.e.,

u(L)=u(0)=0, the following relations are respectively
resulted from Egs. (30) and (26)
a7w
= dx
j [ 2 o) B ] (1)
B B/’ ow
X A1 x0 (Al 1) axz (32)

By inserting Eq. (31) into (32) and then substituting the
result into Eq. (28), two nonlinear governing equations are
reduced to only one nonlinear equation as follow

moﬂ{if[ﬁ( = "ﬁ”}ist}ﬂ
ot Lo 2 oX

2
B——C -D,I° ow -kw -k, w?
A x*

nl
1

(33)

2.2 Timoshenko FGNB theory

The displacement field of the Timoshenko beam theory
can be written as

u,(x,z,t)=u(x,t)-zy(x,t)

(34
uy(x,z,t)=0 , U, (x,z,t)=w(x,t)
where u, y and w, are respectively the axial displacement,
rotation and deflection of the FGNB. According to Egs.
(10)-(11) and the above displacement field, the nonzero
components of von Karman nonlinear strain and stress
tensors are given by

6u 8 1

gxx l// (_)
8x ax
=[/1(Z)+2,u(z)]gXX , o, =2k ue,

where k=5/6 denotes the shear correction factor. In a

similar manner, the nonzero components of the rotation
vector, curvature tensor, and couple stress tensor are

1 ow 1.0y ow
O, ==(v—") xw = +
A s e
m :—Elz (61// ow

Y 2 ox  ox?

In view point of Egs. (35)-(36), the potential energy is
expressed as

XX XX XZ Xz

U :%J.OLJ' o. &, +20, ¢ +2mxylxy)dAdX
37)
1 L 2 O\N 2 1 4
+§j0 (k,w ko (5 )+ kW jdx

Using Egs. (35)-(36), the potential energy is extended as

1.t ou,, 10w, ou ow,,
u =5L{ Al{(a—x) + () +&(a—x)}

1B oV v W,
OX OX OX OX

ow ., ow
+C( ) +k,D {(a—x) +y —Zl/la—x} (38)
£{(6—W)2+(@)2+26Wa 2}

4 ox2 T ox ox
kw2 kg (%)Hlkmw“} dx
X 2

The kinetic energy in terms of displacement and rotation
components is given by

1.t ou,, ,OW .,
T=2], H(E) “E)}

(39)
_g MOV, (a"’) }dx
2ot ot
where
h
{11, 15}=b[3 p{Lz,2°} dz (40)
2

Substituting expressions for 6U, and T into Eq. (8) and
integrating-by-parts with respect to t as well as x to relieve
the virtual variations (du, oy, ow) of any differentiations,
three coupled nonlinear governing equations are obtained as

2 2 2 2
Oy OU_g Oy pGU WO, )
ot ot ox 2 ox* ox ox*
2 2 2
| o aw_B(6u+%82wj

Pot? ot lax? ox ox?

I,

(42)
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82
—C 6)( +k Dll// ks 1~

.1@:3 (%)za?w
ot OX
0 ,0u OW oy OW
o uwy g O row

Lox ox ox 8X6X6
62\N81,//

8W DI2 82y/+6‘°w
OX 4 ox? ox?®

DI 0w 631//
) 4 (6x4 7)

—kw +kg Zi—k w?

X2 nl

(43)

Egs. (41)-(43) can be expressed in terms of the stress
resultants as

ou , 9y ON,

[l [ < 44
Yot? tot? ox (44)
ou | dw M 10Y
l,—5 -l =5 =—*-Q +>—= 45
2at2 ot ox 2 X (49)
oW _2Q, 0 g awy
ot OX OX OX (46)
10%, oW
E axzy —kIW +kG W—knlw3
where
NX:Lo—XXdA:A(a;IJr (—)) Z—W
Mx:j%sz:B(a_“ —(—)j c, ¥
A OX 2 0OX ' ox
- (47)
Y, =[m, dA——'—D(a‘/’ 9 0)
2 x OX

Qx :J.A Oy, dA :kle(a_X_l//)

In order to solve the above coupled nonlinear governing
equation, they are rewritten in the following forms after
some mathematical manipulations

ou _ou _ ow ow
o7 Tax? 2k ox?
X X (48)
_ 0w _ _ow _ oWw
+ugm+u41//+u5 &‘i—u(am
821//_1/7 62W+1/7 ou ‘7 %62\N
o Trox? TPaxt Tox ax (g
dw
OX ox®
82\N 82\N ow _ ow du

ik 50
otz ( ) 6x8x+ 0

FYLW AW ——+ Ve

g QO ow Py oy O
Sox ox? tox ox? °ox ox?
+W @WV a—l'//+vv ﬂ
®ox?  Tox Poxt

3
+W9%+Wlow +W,w e

where coefficients U, , i/, W, are defined in Appendix A.

2.3 Boundary conditions

After using Hamilton’s principle, the boundary
conditions in terms of stress resultants for Euler-Bernoulli
FGNB can be obtained as

x =0,L:

u=0 or N, =0

oY
w =0 or NX%+8NIx XyJrkG%:O(Fﬂ)
OX OX OX OX
%=O or M, +Y, =0
OX Y

which are specified respectively for the hinged and clamped
end supports according to Egs. (52) and (53)

x=0,L: u=0,w=0, M +Y =0 (hinged-hinged)
(52)
. _ _ ow
x=0L: u=0,w=0, a_:0 (clamped-clamped)
X
(53)
It can be noted that the third boundary condition in Eqg.

(52) is simply reduced to gi_o by ignoring the
X

nonlinear term.
In a similar way, the boundary conditions for
Timoshenko FGNB can be written as

X =0,L:
u=0 or N, =0
0
w=0or NP, 18w W _g
OX 2 0 OX
(54)
w=0 or =0
%zo or Y, =0
OX

In view of Eq. (54), the associated boundary conditions
of hinged and clamped nano/micro-beams are identified as

Y

x=0L: u=0,w = 0M+2_0Y =0
(hinged-hinged) (55)
x=0,L: u=0,w=0,py=0, _:o
OX

(clamped-clamped) (56)
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Similarly, it should be noted that the third and fourth

boundary conditions in Eq. (55) are suppressed to gﬂz:o,
X

W _ 0 when the nonlinear terms are neglected.
X

It is found from Egs. (51) and (54) that the number of
boundary conditions is increased to eight for the case of the
non-classical Timoshenko beam model based on the
modified couple stress theory in comparison to the six
boundary conditions of classical beam theory (Ma et al.
2008).

3. Galerkin method

Separation of variable analysis and Galerkin procedure
are used to obtain uncoupled nonlinear ordinary differential
equations. The transverse displacement of FGNBs can be
written as

w(x, 1) =Q(x)W (t) (57)

where W(t) is a time dependent unknown function. For
hinged-hinged beams, Q(x) is defined as (Rao 2007)

Q(x)=sin(”TX) (58)

And for the case of clamped-clamped beams, it can be
written as follows

gx gx
= h - —
Q((x) c[cos (L) cos(L)

D ) )
sinh(q) —sin(q) L L

here, ¢=0.6297 and q=4.730041.

After substituting Eq. (57) into (33), multiplying the
result by Q(x) and then integrating over the length of the
nano/micro-beam, one obtains the following nonlinear time-
dependent ordinary differential equation for the Euler-
Bernoulli beam theory

W +aW +pW 2 +yW =0 (60)

where  dot-superscript ~ convention  indicates  the
differentiation with respect to the time variable t. Also, a, £,
y are defined in Appendix A.

Similar to the Euler-Bernoulli theory, separation of
variables can be used for Timoshenko nano/micro-beam by
considering

u(x,t)=P0)U ), wx.t)=Sx)¥(),
w (x,t) =Q(x)W (t)
The functions P(x), S(x), Q(x) can be respectively

selected for hinged-hinged and clamped-clamped boundary
conditions according to Egs. (62) and (63)

(59)

(61)

Q(x)=sin®) , s(x)=cos(™X)
L L (62)

P(x) =sin(%)

ax qx
= h(22) — cos(-) —
Qx) c{cos(L) cos(L)

cosh(g) —cos(q)( . ., ,gx . OX
et At h(-2) —sin(——-
sinh(q) —sin(q) (sm (L ) =sind L )H (63)

S (x):sin(z%x) ,

. TTX
P (x)=sin( 1 )

By substituting Egs. (61) into Egs. (48)-(50) and
multiplying the resulted equations respectively by P(x),
S(x), Q(x) and integrating over the length of the beam, three
nonlinear time-dependent ordinary differential equations are
obtained as

aU +aW *+a,p+aW =0
Y+ B+ BU +BW +BW =0 (64)
W +yW +7,W *+ 7. +y7,UW +yPW =0

where a;, f;, y; are defined in Appendix A.

However, it is more convenient to convert the set of
aforementioned equations into two coupled ordinary
differential equations as follows

Y+, P +I W +Z\W =0

. 65
W +ZW +ZW 3 +Z,PW +Z, % +ZW =0 (©%)

The coefficients 7, are introduced in Appendix A.

4. Analytical solution

The developed nonlinear governing differential
equations are analytically solved for two different boundary
conditions using homotopy analysis method. The HAM
initially introduced by Liao (2004). The HAM is a powerful
and computationally cost-effective method which is capable
of solving strongly nonlinear differential equations. At first,
the solution procedure is briefly explained. For further
details one can refer to Setoodeh et al. (2016). Consider a
series of time dependent nonlinear differential equations as
follows

N, [z,®)]=0 i=12..,n (66)

In Eg. (66), N; are nonlinear operators, t denotes an
independent variable and z(t) are unknown functions. Liao
(2004) constructed the so-called zero-order deformation
equations as

A-q)L[4Ga)-z,) |=anh ON, [4EGa)]  (67)

where g is an embedding parameter which changes in the
range of [0,1], 7, are nonzero auxiliary parameters and
hi(t) denote nonzero auxiliary functions. The function z; o(t)
are the initial guesses of z(t), ¢i(t;q) are unknown functions
and the selected auxiliary linear operator is designated by L.
There are some freedoms to select auxiliary linear operator
and hi(t). The parameters 7, and h;(t) are important and
adjust the convergence region of the solution. Here, when g
increases from 0 to 1, the solutions ¢;(t;q) alters from the
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Zio(t) to the z(t) solutions. In other words, ¢; take the
following forms for =0 and g=1, respectively

¢ (t:0)=2,0t), 4t)=z() (68)

By differentiating Eq. (68) with respect to ¢, the first-
order deformation equation can be obtained as

L[z, ]=mh ON, [4 ¢:0)] (69)

By expanding ¢;(t;q) in the form of Taylor series, one
has

AGD=2,,0+ 27, (x.0a",

_ 13" ka)

m! oq"

(70)

i,m

q=0
4.1 Nonlinear frequencies of EBT

It is convenient to transform from the frequency
domain to the time domain by setting a new variable =wt
in Eq. (33), wherein @ denotes the nonlinear frequency.
Accordingly, it yields

a)z%+av D)+ BV ()+yVi(r)=0 (71)
T

subject to the following initial condition at the center of the
FG beam
dv,(0)

dr

V,(0) =W =0 (72)

max !

Whhax denotes the maximum amplitude of the vibration. The
initial guess Vq(z) should be selected such that the initial
condition is satisfied (Jafari-Talookolaei et al. 2011)

V, () =W, cos(r) (73)

The linear and nonlinear operators can be written as

D q)j 74)

Z'

Ll¢(z;0)] = (

o' (@) AED

2

N [4(7;9), ®()] = (75)

ad(z;9)+ B¢ (r:0) + 7 ¢’ (7;9)

Subsequently, the first-order deformation equation is
found out as below

o(‘w(” V()j

(76)
(woz %+ aV o (0)+ 2 (0) + st(r)j
T
with initial conditions of
Vl(O):m:O 77)

dr

After inserting the initial guess from Eq. (73) into Eq.
(76), solving the resulted equation and then equating the
coefficient of the secular term, 7 sin(z) to zero, leads to the
first approximation of the vibration response and the
nonlinear frequency as

V,(r) = B (2-cos(r) —cos*(z) )+ y (cos(z) —cos’(r))
ﬂN 2 ! })‘Nmax3

3w, r= 8w,

a)oz,/a+%ywmax2 (79)

The second stage of formulations can be written by
setting m=2 as

LV,(@) -V, (@)]=nrh{t)————=
dv,(0)
dr

(78)
B =

oN [415(t Q)] |

qo, (80)

V,(0) = =0

Similarly the second analytical approximation for
FGNBs is obtained

V,(7)= [SA +§A +AJ

7 1 1

—A-ZA,+=A

(48 57 8"

[64A,+80A, ) o )~ 25A, +30A,
240 240

—%A4 —Asjcos(r)
(81)

cos®(r) - [%J cos*(r) - (%j cos®(z)

o, =—(384) " (womm; ~967 AN 0 +%ywm“j

s (82)
[a + %awaxj

where A; are presented in Appendix A.

Finally, the analytical expressions for linear (w;) and
nonlinear (wy;) natural frequencies as well as vibration
response of FGNBs are developed by collecting the related
terms as

o =Na, @y =o+a ©3)
V (2) =V, () +V, () +V ,(7)

4.2 Nonlinear frequencies of TBT

Initial conditions of deflection and rotation of the beam
can be expressed as

W (0)=a, W (0)=0 , ¥(0)=d, ¥(0)=0 (84)

In Eq. (84) parameter a’ is the maximum initial rotation
that must be determined. After applying initial conditions,
the first approximations for the deflection and rotation
functions can be expressed as

W, (t)=acos(2,t) , ¥,(t)=a cos(£,t) (85)
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Table 1 Comparison of frequency ratio (A) for FGNBs (n=2, L/h=12, {,,=0.8)

A

BCs 1 EBT TBT Ke, Wang et al. (2012)
Classic 1.6453 1.7369 1.7136
10 1.6201 1.7144 1.6934
6 1.5798 1.6778 1.6598
H-H 3 1.4456 1.5480 1.5370
2 1.3226 14177 14119
15 1.2331 1.3150 1.3103
1 1.1302 1.1871 1.1827
Classic 1.1790 1.2127 1.2202
10 11711 1.2058 1.2128
6 1.1588 1.1947 1.2009
Cc-C 3 1.1187 1.1556 1.1589
2 1.0836 1.1172 1.1183
15 1.0591 1.0876 1.0877
1 1.0332 1.0515 1.0514

where Qy; is the nonlinear frequency of the Timoshenko —a'Q, > +a’s, +az, =0 91)

beam. Also, The linear frequency is designated by Q;.The
linear and nonlinear operators can be respectively expressed
as

L [Vl(t:Q)]=%+QNfVl<z;q>,

(86)
LV,(t;q)] 2%4—.9,\“_2[/2([@)
N, [V; (t;0).V (t 9)] =
Vi +Z N, +Z NV +Z VNV, +ZV,+Z,V
N[V (t;a).V, (t; )] =
V,+ZV,+Z,V, +Z,V,

(87)

where
Vi) =W (), V,@t)=¥() (88)

The first-order deformation equation is constructed as
below

Lo Vs (6 0] = 715y (N, [V, (6 ).V, (8 )] o
A BN OLA AT ATA )
In Eq. (89) after considering hy(t)=h,(t)=1 and
hl = hz =1, one can get
W, +Qy W, =Wy + 2V o+ 27

+Z W, +2,¥, +Z_BW02) w.(0) :Wl(o) =0

i , Lo (90)

o+ 0, W, = (o + 20+ 20 +2 )

¥,(0)=¥,(0) =0

By substituting Wy(t) and Wo(t), and their derivatives
from Eq. (85) into (90) and solving the resulted equations
and then equating the coefficients of the secular terms
t sin(Qn.t) to zero, two equations are obtained as

_ 4 4 _ 4_
Q.. |:25a3+[—§QNL2+524ja+§z7a:|=O (91)

After combining the related equations and eliminating
parameter a’ from two relations in Eqg. (91), the nonlinear
natural frequencies are developed

o 1, 97.%a* +247,7,a° -247,7,8* +167,° -327,Z,
Ny +1677 +647,7,

+625a2+824+821]

o 1, 97,%a* +247,7.a° - 247,7,8" +167,” -327,7,
Mg +167)7 +647,7,

+6z,a° +82, +8211

(92)

It is worth noting that among the obtained solutions for
the frequency, only two positive values are acceptable.

5. Numerical results

The FGNB considered here composed of ceramic (SiC)
and aluminum (Al). The mechanical properties of the beam
are listed as; Metal (Al): E,=70 GPa, pn=2702 kg/m’
vn=0.3; Ceramic (SiC): E=427 GPa, p.=3100 kg/m®
1.=0.17. The following dimensionless parameters are
considered through the results for the convenience.

Wmax y
gmM h
2 2] 2
Ksz'L , KG:k_G , KNszn'hL
Alm Alm Alm
A= @ (for EBT), 4= 2w (for TBT)
21 Q

where A, is the corresponding value of the A; for a
homogenous metal nano-beam.
At first, the present analytical model is validated by
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Fig. 4 Effects of linear coefficient on the frequency ratio of Fig. 5 Effects of shear coefficient on the frequency ratio of

clamped FGNBs (n=2, h/I=2 and L/h=12)

comparing the results with those of Ke et al. (2012) in
Table 1. Ke et al. ( 2012) studied the nonlinear vibration of
FG micro-beams using numerical method of differential
quadrature. The frequency ratios (A) are provided for both
of hinged-hinged (H-H) and clamped-clamped (C-C)
boundary conditions as well as two different theories of
beams. The present results exhibit good agreement in
comparison with the numerical results in the aforementioned
reference. It is observed that the frequency ratio increases
by increasing the dimensionless length scale parameter. It
can be noted that although TBT exhibits more accurate
results, however the solutions correspond to EBT are also
within an acceptable accuracy.

Fig. 2 demonstrates the importance of capturing the size
effect and also the influence of geometric nonlinearity on
the nonlinear frequency ratios of hinged-hinged FGNBs.

The small scale parameter is set to zero in formulations
to obtain the corresponding classic frequencies. It is seen
that the impact of size effect is maximum for h/I=1 while its
influence is negligible for h/l ratios higher than 8.

In Fig. 3, the effects of dimensionless length scale
parameter on the frequency ratio are demonstrated for beam
with hinged ends. It should be noted that the frequency
ratios are different and the resulted curves are
unsymmetrical for identical values of (.« but with opposite
signs. The reason is due to bending-stretching coupling

clamped FGNBs (n=2, h/I=2 and L/h=12)

effect.

The effects of linear, shear and nonlinear coefficients of
the Pasternak foundation on the frequency ratio versus
dimensionless maximum amplitude for clamped FGNBs are
studied in Figs. 4-6. It is seen that the frequency ratio
increases monotonically with increasing the nonlinear
coefficient of the foundation and this effect is amplified for
higher values of maximum amplitude. It is interesting that
this effect is vice-versa for the linear and shear coefficients
of the foundation.

The effects of material gradient index n on the
frequency ratio of hinged-hinged as well as clamped micro-
beams are shown in Figs. 7-8. Similar to the trend observed
in Fig. 3, the value of frequency ratio is changed in the case
of hinged beams for ¢.x With opposite signs, however the
related curve is symmetric for the clamped beams. In other
words, the frequency ratio of clamped beams is independent
of the sign of the vibration amplitude.

6. Conclusions

In this study, the nonlinear free vibration of FG
nano/micro-beams is investigated based on modified couple
stress theory in presence of nonlinear Pasternak foundation.
The Mori-Tanaka homogenization technique is employed
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Fig. 8 Effects of material gradient index n on the frequency
ratio of clamped FGNBs (h/I=2 and L/h=12)

for material properties of the beams. The nonlinear
governing differential equations are derived by Hamilton’s
principle and the HAM is successfully utilized to obtain the
nonlinear frequencies. The comparisons between the
present analytical solutions and the available numerical
results exhibit the accuracy and efficacy of the method. The
influences of the length scale parameter, material gradient
index and elastic foundation on the nonlinear free vibration
of FGNBs are discussed. The main obtained results are:

* The frequency ratio increases by increasing the

dimensionless length scale parameter.

* The results demonstrate the necessity of performing a

nonlinear analysis even for small values of the vibration

amplitude.

* The maximum difference between the couple stress

and classical theories is observed when h=l.

* The frequency ratio of hinged-hinged beams is

dependent on both the magnitude and sign of the

vibration amplitude.
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Appendix A

The coefficients of Eq. (48)

The coefficients of Eq. (49)
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The coefficients of Eq. (60)

J‘LK_kG]QQ”+(C1+Dll B, ]QQ"'}
ol m, m, m, Am

a= Y
IOLQZdX my
_ m%LLL(foL B,Qdx )QQ "dx
T ew
_ﬁj ( 1Q’de }QQ”dx +— I k,,Q ‘dx
" foex

The coefficients of Eq. (64)
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