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1. Introduction 
 

Due to the advent of fiber reinforced plastics and other 

modern materials, non-homogeneous orthotropic plate finds 

important application in various branches of engineering 

such as aerospace industry and missile technology. The 

designers prefer such plates due to light weight and high 

strength and high compressive resistance. By adopting the 

plates with variable thickness or stepped plates, there will 

be greater efficiency in bending, buckling and vibration as 

compared to plates of uniform thickness thus leading to 

reduction in weight resulting in economy. 

Leissa (1969, 1977, 1987) has given complete survey 

work up to 1985 on vibration of homogeneous isotropic and 

anisotropic plates of various geometrics. Vibration of 

orthotropic parallelogram plates with variable thickness are 

given by Dokainish and Kumar (1973). Bert and Malik 

(1996) applied Differential Quadrature method (DQM) for 

vibration analysis of tapered plates. A comparative study is 

presented by Kukraeti et al. (1996) for free vibration of 

tapered plate. Akiyama and Kuroda (1997) obtained 

fundamental frequencies of tapered plate. Free vibration and 

buckling analysis of rectangular plates with variable 

thickness are investigated by Ng and Araar (1989) using 

Galerkin method. Cheung and Zhou (1989) applied 

Rayleigh Ritz method for vibration analysis of tapered 

rectangular plates using new set of beam functions.. 

 Effect of boundary constraints and thickness variation 

on the vibrating response of rectangular plates with abrupt 

variation in thickness is given by Lim and Liew (1993) and 

Liew and Wang (1993). After  1985,  studies of 

homogeneous rectangular orthotropic plates have been 

carried out by several researchers (Gormman 1993, Lal et 
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al. 1997, Lal et al. 2001, Civalek 2009) to mention a few 

prominent ones. Various types of DQ methods such as 

Generalized differential quadrature (GDQ), differential 

quadrature element (DQE) and Harmonic differential 

quadrature (HDQ) have been used to solve buckling and 

vibration problems of plates by Civalek (2004). Civalek and 

Ulker (2004) applied harmonic differential quadrature 

(HDQ) for axisymmetric bending analysis of thin isotropic 

circular plates and HDQ and Finite Difference (FD) 

integrated methodology for nonlinear static and dynamic 

response of doubly curved shallow shells (2005). Fares and 

Zenkour (1999)presented the free vibration analysis of non-

homogeneous composite cross-ply laminated plated with 

various plate theories whereas Lal and Dhanpati (2007) 

discussed the vibration of non-homogeneous orthotropic 

rectangular plate of variable thickness using a spline 

technique. Other notable works dealing with the vibration 

of plates employing differential quarature method is 

reported by Malekzadeh and Shahpari (2005), Civalek 

(2006), Liu (2000). Other than Finite element method, there 

is no general method available in the literature for the static, 

stability and free vibration analysis of non-homogeneous 

orthotropic/isotropic plates with varying thickness. Rao et 

al. (1974) investigated the vibration of in-homogeneous 

plates using a high precision triangular element. Tomar et 

al. (1984) obtained the natural frequencies of free vibration 

of an isotropic non-homogeneous infinite plate of 

parabolically varying thickness. 

Buckling problem of a plate subjected to in-plane loads 

was investigated by Timoshenko and Gere (1963) and 

Lekhnitskii (1968) obtained the solution for orthotropic 

plate. Many investigators have formulated the problem for 

orthotropic plates (Zhong and Gu 2010, Tang and Wang 

2011, Call and Saini 2013) and obtained the solution and 

notable among them is by Kang and Leissa (2005). SFSF 

and CFCF and SFSC composite orthotropic plates due to in-

plane moments were investigated by Lopatin and Morozov 

(2009, 2010, 2011, 2014). 
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Table 1 Material properties of some orthotropic materials 

Designation Material 
Ex 

GPa 

Ey 

GPa 

Gxy 

GPa 
vxy ρ kg/m3 

A1 
T-Graphite/ 

Epoxy 
185 10.5 7.3 0.28 1600 

A2 
B-Boron 

Epoxy 
208 18.9 5.7 0.23 2000 

A3 
K=Aryl/ 

Epoxy 
76 5.6 2.3 0.34 1460 

A4 
E-Glass/ 

Epoxy 
60.7 24.8 12.0 0.23 1600 

 

 

Fig. 1 Rectangular plate with coordinates 

 

 

There are other methods such as Discrete Singular 

Convolution (DSC) applied for the buckling analysis of 

rectangular Kirchhoff plates subjected to compression loads 

based on the theory of distributions and wavelet analysis by 

Civalek et al. (2010). This method discretizes the spatial 

derivatives and therefore reduces the given partial 

differential equations into a standard eigen value problem. 

This method also requires 17×17 grid of plates for the 

buckling analysis to achieve reasonable accuracy. Each 

method has its own advantages and limitations and 

application areas. Finite element method (FEM) has its own 

advantage and applicable areas. FEM is still an effective 

way especially in systems with complex geometry and load 

and boundary conditions with nonlinear behaviour.  

Consideration of non homogeneity, orthotropy, 

thickness variation, elastic foundation and aspect ratio for 

stability and vibration of plates subjected to variation in in-

plane loads leads to a very complex problem involving 

several parameters. However with the choice of EDQM one 

can find an approximate solution to the present problem. 

 

 

2. Orthotropic materials 
 

Orthotropic material is one that has different material 

properties in different orthogonal directions (e.g., Glass 

reinforced plastic or wood). In bridge design orthotropic 

deck is made up of solid steel plate. Many composite plates 

may be modeled into orthotropic plates. Table 1 gives the 

material properties of some orthotropic materials. 

Orthotropic materials possess five properties viz:- Ex, Ey, 

Gxy, vxy, and ρ
 
where Ex, Ey are the Young‟s moduli in x and 

y directions , Gxy modulus rigidity, vxy Poisson‟s ratios in x 

direction and ρ mass density of the material. 

3. Governing equation 
 

The five properties viz:- Ex, Ey, Gxy, vxy, and ρ are 

required to define stress strain relationship of orthotropic 

plates as (see Fig. 1) 
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A relationship between Poisson‟s ratios is given by  
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and for isotropic materials 
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Moment curvature relationships for a plate may be 

written as 
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where Dx, Dy are flexural rigidities in x and y directions, Dt, 

torsional rigidity and „w‟ lateral deflection. 
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if Gxy is given and if 

Gxy is not given 

xyt DD )(  12               (4a) 

where 
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In the above equations, h is the thickness of the plate. 

 B is defined as 
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Using the Love-Kirchhoff hypothesis the differential 

equation can be written as 
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where Nx, Ny are the axial forces per unit length in x and y 

directions respectively and Nxy is the shear force per unit 

length and „q‟ is the lateral loading on the plate. Eq. (5) can 

be solved for static equilibrium and stability problems. For 

free vibration problems „q‟ is given by inertia force as 

q=ω
2
ρhw and solving Eq. (5) with this substitution as an 

eigen-value problem we will be able to get the natural 

frequencies and mode shapes. 

Assume  

xyxyyyyxxx tNNpNtNptNN  ;;       (6) 

where tx, ty and txy are the tracers for Nx, Ny and Nxy and they 

will have values of 1 if the corresponding force exists or 

zero otherwise. 

For stability problems if q=0 
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Solving Eq. (7) as an eigen-value problem, one will be 

able to solve for buckling load and can obtain buckled 

shape. In addition to uniform variation of Nx, Ny the 

following variation of axial forces can be considered:- 

px=(1−αxy/b) and py=(1−αyx/a) and the variation of the axial 

loads are shown in Fig. 2 depending the values of α. In x-

direction if αx=0, then it denotes uniform variation, αx=1 

triangular variation 1 at origin (y=0) and zero at the other 

end (y=b) and αx=2 pure bending. 

 

 

4. Boundary conditions 
 

a) Fixed edge 

On x=0 or x=a w=0 and 0
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b) Simply supported edge 
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Fig. 2 The variation of Nx 
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On y=0 or y=b w=0 and 0
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c) Free edge 

On x=0 or x=a the shear force Qx, bending moment Mx 

and twisting moment Mxy have to be zero according to 

Poisson. Later on Kirchhoff combined Qx and Mxy and 

consider as one equation as 

0




















x

w
N

y

M
QV x

xy
xx

. Hence two boundary 

conditions on free edges (x=0, or x=a) will be 

0




















x

w
N

y

M
QV x

xy
xx

 or 

04
2

3

3

3












































x

w
N

yx

w

D

D

x

w
D xyx

x

t
x   (10a) 

0
2

2

2

2


























y

w

x

w
DM yxxx    (10b) 

on y=0 or y=b free edge, the boundary conditions will be 

04
2

3

3

3













































y

w
N

yx

w

D

D

y

w
DV yxy

y

t
yy 

  

(11a) 

0
2

2

2

2


























x

w

y

w
DM xyyy 

        

(11b) 

In addition for free corner 
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5. Nonhomogeneous orthotropic plate with variable 
thickness-governing equation 
 

The governing equation for an orthotropic rectangular 

plate (Fig. 3) with varying thickness in x and y directions is 

given by  
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When the thickness, Ex, Ey vary along x and y directions, 

one has to consider the variations of Dx, Dy and Dt in x and 

y directions as 
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Accordingly one can derive the governing equation for 

stability and free vibration problems as given in section.3 

 

 

6. Boundary conditions for variable thickness plate 
 

The boundary conditions for fixed and simply supported 

edges are exactly same as orthotropic plate of uniform 

thickness. Now let us consider free edge boundary 

condition. 

a) Free edge x=0 or x=a 
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(15b) 

b) Free edge y=0 or y=b 
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(16b) 

If the plate is non-homogeneous such that 
XX

y
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where 

a

x
X   (17) 

Ex, Ey Variation can be considered in the variation of Dx, 

Dy and Dt and the density variation can be considered in the 

inertia force.  

 

 

7. Differential quadrature method 
 

Differential quadrature method (DQM) is a useful 

technique to solve the governing equations directly. Early 

references on the DQM can be found in Bellman and Casti 

(1971), Bert and Malik (1996), Laura and Gutierrez (1993) 

and more recent development and applications can be found 

in (Shu 2000, Zong and Zhang 2009, Wang 2015, 

Rajasekaran 2013) among many others.  

The DQM used the basis of the Gauss method for 

deriving derivatives of a function. It follows that the partial 

derivative of a function with respect to a space variable can 

be approximated by a weighted linear combination of 

function values at some intermediate points in that variety. 

A differential quadrature approximation at the i-th discrete 

point on a grid at the the x-axis is given by 
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for i=1……Nx where Nx is the number of grid points on x-

axis. Eq. (18) can be written as 
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where 
a

x
  a non-dimensional coordinate. 

If the first column of G contains all 1s then the first 

column of f() matrix will be zeros. If the second column 

contains i then the second column of f() will be 1s. If the 

third column of G contains 2
i  then the third column of 

f() will be 2i as shown 
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Transposing Eq. (20) we get 

TTT fAG )]([][][ 1
            (21) 

Solving 

1
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 ]][[][ GfA 
          (22a) 

Since =x/a is a non-dimensional variable, differential 

with respect to space variable x is given as 
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where „a‟ is the side of the plate in x-direction. 

Similarly 
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Fig. 3 Plate of variable thickness 

 

 

Where 
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(24a) 

Or 
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(24b) 

Similarly considering the plate (shown in Fig. 3) the 

differential in y-direction can be written as 
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where i=1,2,3, Ny 

or  
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As discussed in x direction and defining 
b

y
  a non-

dimensional variable 

And „b‟ is the side of the plate in y direction. 
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or 

 ]][[][ 112 BBB                (28a) 

 ]][[][ 213 BBB               (28b) 

 ]][[][ 11  nn BBB              (28c) 

The test functions for f(x,y)=x
α-1

y
β-1

. When α=1,2,3…Nx, 

β=1,2,3…Ny, 
][],[ nm BA
 

give the higher order weighting 

coefficients. The above relations are now restricted to the 

choice of sampling points. Also calculation of weighting 

coefficients by these formulae contain a substantial 

reduction in numerical computations. This formulation of 

Eq. (19) to Eq. (28) can generally be used for n≤18 after 

which round off errors arise. For most of the problems 

considered n=17 is used in the analysis. When actual 

material properties are specified, Eq. (28) can be used for 

n≤28. Besides the formulations of Eqs. (19)-(28) explicit 

formulae are available to compute the weighting 

coefficients (Bert and Malik 1996). 

 

Fig. 4 Node numbering of a plate 

 
 
8. Choice of sampling points and the relevant 
matrices 
 

The section of location of the sampling points plays a 

significant role in the accuracy of the solution of differential 

equations. Using equally spaced points can be considered to 

be convenient and easy selection method. A more accurate 

solution by choosing a set of unequally spaced sampling 

points could be obtained. A simple and good choice can be 

roots of shifted Chebyshev and Legendre points. The points 
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in the y direction. 

(30) 

Assume in a rectangular plate, there are „nx=m‟ discrete 

points in x direction and „ny=n‟ points in y direction leading 

to total degrees of freedom (nt) as displacements at nt=m×n 

nodes which are numbered in order as shown in Fig. 4 for 

m=7 and n=6. 
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where „j‟ denotes the row numbers of the grid of the plate. 
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For the whole plate  
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where  w  are the nodal degrees of freedom in order. 
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where „i‟ denotes the column numbering of the grid of the 

plate. 
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where the above equation shows the relationship between 

first differential of w with respect to y at any point and no- 

shows the degrees of freedom are not in order. Hence a 

relation can be written between not ordered degrees of 

freedom to the ordered degrees freedom given by 
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Other differentials can be derived as 
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9. Formulation (single element) 
 

9.1 Governing equation 
 

Substituting differentials in Eq. (14) by the above 

matrices leads to the governing equation as 
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where nt=m×n. 
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[Dxi], [Bi] etc are diagonal matrices. {EE] is given as 

][]][[]][[][ xyxyyyyiyxxxix CtBptAptEE 2   (40b) 

where [pxi] …are diagonal matrices. 

For vibration problems  

][][ ihFF 
               

(40c) 

and [FF] is a diagonal matrix. 

The matrices associated with „i‟ are diagonal matrices. 

 

9.2 Boundary conditions 
 

9.2.1 At domain ends 
1. Suppose if x=0 is a simply supported edge where w=0 

and Mx=0, any node „i‟ on this edge is designated by 

global node no as node=nx×(i−1)+1. The „n‟ th 

constraint equation for w=0 can be written as B(n, 

node)=1.0 and Mx=0 constraint equation is written as 

 ),(),(),( jnodeBjnodeAjnB yyyxxx    

where 

 j=1,2,3…….nt             (41) 
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where nt=m×n degrees of freedom. 

2. If y=0 is a clamped condition, global node number of 

„i‟ th node on this edge is given as node=i and the 

boundary conditions w=o and 0




y

w
 can be written as 

B(n,node)=1; and B(n,j)={By (node,j)} 

where j=1,2,3…nt             (42) 

where „n‟ is the constraint equation number. 

3. Suppose if x=a is a free edge condition, global node 

number of „i‟th node on the edge is given as node=nx×i 

where „nx‟ is the number of nodes in x direction. The 

moment constraint equation can be written as stated in 

(1) as 

 ),(),(),( jnodeBjnodeAjnB yyyxxx  
   

(43) 

The modified shear Vx=0 can be written as 
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(44) 

Incorporating the boundary conditions at the domain 

ends, the governing equations with boundary conditions for 

one plate element can be written as 
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(45) 

where the size of [B] is nc×nt where nc is the number of 

constraint equations. 

Applying Wilson‟s Lagrangian multiplier method 

(Wilson 2002), Eq. (45) is modified to  
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For equilibrium problems 
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(47) 

[B] has „nr‟ (number of restraints) rows and „nt‟ (no of 

displacement degrees of freedom) columns. 

For Stability problems 
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For free vibration problems (with or without axial 

forces) 
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Fig. 5 Stepped plate 
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where λ denotes Lagrangian Multipliers. 

Eq. (47), (48) and (49) are solved for equilibrium, 

stability and free vibration of a plate if it is idealized into 

one element. 

 

 

10. Formulation (element based DQM) 
 

Consider an orthotropic plate (stiffened plate) with 

stepped thickness as shown in Fig. 5. The three plate 

elements have thickness h1,h2,h3 respectively. Assume the 

plate element „i‟ has nti=nxi×nyi total degrees freedom 

where the „i‟th plate contains nxi points in x direction and 

nyi points in y direction. Let us consider for example free 

vibration problem. The governing equations with boundary 

conditions for the element „i‟ can be written as 
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(50) 

where Ω denotes the critical buckling load for stability 

problems or square of the natural frequency as Ω=ω
2
 in case 

of free vibration problems and [EE]=[FF] and [F]=[0]. 

Where [DD]i is the matrix representing governing 

equilibrium equation and [B]i is the boundary condition 

matrix for the domain ends of an element „i‟ and this 

excludes the compatibility and equilibrium conditions of the 

internal nodes on the common edges EF and GH connecting 

the elements 1-2 and 2-3. Combining the matrices given in 

Eq. (50) for all the three elements we get for stability 

problem 
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 (51) 

where [DD]i has nti rows and nti columns whereas [B]i has 

nri rows and nti columns. In general the edges of the plate 

(other than common edges) has one of the following 

conditions 1) free edge 2) clamped edge 3) simply 

supported edge 4)and the edge which is common to two 

elements. The common edges can be 4) simply attached 

edge between elements, 5) supported edge 6) edge with 

internal hinge and hence the boundary conditions of the 

edges are denoted by the numerals 1,2,3,4,5 and 6 

depending the nature of support. Eq. (46) considered the 

boundary conditions for conditions, 1,2 and 3 and now we 

have to arrive at the boundary condition matrix for the 

internal nodes on the common edge for three conditions 4) 

simply attached 5) supported edge 6) edge with internal 

hinge.  

 

 

11. Internal nodes on the attached EDGE 
 

1) attached edge without support ( nature of support-4) 

Consider two elements (m1,m2) attached in x direction as 

shown in Fig. 6(a) 

The compatibility and equilibrium conditions at any 

node „j‟ of the common edge may be given as 

 

Compatibility 

   

j

mm

j

m

jnx

m

x

w

x

w

ww

,

,,

1

21

1

21 0
























































        (52a) 

Equilibrium 

 

 

 

 
(a) (b) 

Fig. 6 Edge connecting elements in X and Y directions 
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The three equilibrium conditions can be simplified to 

two equilibrium conditions as recommended by Kirchhoff, 

we get 
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Hence Eq. (47a) and Eq. (47c) are used as boundary 

conditions for the common unsupported edge. 

2) Attached edge supported (nature of support-5) 
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3) Attached edge with internal hinge (nature of support-6) 
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In any case there will be four conditions at a node lying 

on the common edge. 

Similarly if the conjunction of two elements m1,m2 is 

made in y direction as shown in Fig. 6(b) the conditions are 

written as 

1) Attached edge without support (nature of support-4) 

 

Compatibility 

   

1

21

1
21 0

,.

,,

i

m

nyi

m

i
m

nyi
m

y

w

y

w

ww


























































       (55a) 

 

Equilibrium 

302



 

Analysis of non-homogeneous orthotropic plates using EDQM 

   

    0

0

1

21

1

21





,,

,.

i

m

ynyi

m

y

i

m

ynyi

m

y

VV

MM
      (55b) 

Similarly, four conditions are obtained for other two 

boundary conditions of the common edge. 

In any case, the compatibility and equilibrium 

conditions for the common edge may be written as 
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or in general, the conditions for the common edges may be 

given by 
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where [CO]1, [CO]2 contains ne1 and ne2 rows 

corresponding to constraint equations for the two common 

edges. Combining these conditions with Eq. (51) we get for 

the three element plate the equilibrium and compatibility 

matrix is given by 
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where nt=nt1+nt2+nt3 denotes the total degrees of freedom, 

ne1, ne2 show the constraint equations on the two common 

edges connecting plate elements and nr1, nr2 and nr3 are 

the constraint equations for the three elements.. 

In case of free vibration problems instead of [EE] matrix 

we use [FF] matrix and [F]s are zero. Thus one will be able 

to solve orthotropic plate with stepped thickness or 

continuous orthotropic plate for stability, equilibrium and 

free vibration problems. 

 

 

12. Designation of boundary conditions 

For a single element plate we denote boundary 

conditions in the order of west-south-east-north edges. For 

example SCFC denotes x=0, simply supported, y=0, 

clamped, x=a, free edge and y=b, clamped edge. For a plate 

with three elements shown in Fig. 5, the boundary 

conditions can be denoted as SCAF-ASIF –ISFC denoting 

for the first element AEFD –(see Fig. 5) SCAF- west (AD)- 

simply supported, south (AE)- clamped, east–(EF) attached, 

north (FD)–free and for the second element west (EF)-

attached, south (EG)–simply supported, east(GH)- 

supported, north–(HF) free and for the third element 

west(GH)–supported, south(GB)–simply supported, east 

(BC)-free, north(CH)-clamped If the attached is supported it 

designated as I as discussed above and if it is a hinge line, 

then it is designated by „M‟.  

 

 

13. For isotropic plate 
 

We make the substitution for isotropic plate as 

 )(

)(

givendensitymass

E
G

EEE

yxxy

yx




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


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(59) 

Then one will be able to solve equilibrium, stability and 

free vibration of isotropic plates with continuously varying 

or stepped thickness resting on elastic foundation supported 

by any type of boundary conditions. 

 

 

14. Equilibrium problems 
 

14.1 Static analysis of isotropic plate 
 
An isotropic square plate with the edges built in is 

subjected to uniformly distributed load of „q‟. By using 

EDQM, we obtain the maximum deflection at the centre of  
 

 

Table 2 Deflections and bending moments for a uniformly 

loaded plate (SFSC) (E=1, v=0.3, b=1) (m=n=17) 

b/a analysis wmax Mx (x=a/2, y=b) My (x=a/2, y=0) 

0.33 
present 1.02632 0.0859 0.428 

Ref 1.02648 0.0702 0.428 

0.5 
present 0.63587 0.1172 0.319 

Ref 0.63554 0.1172 0.319 

1 
present 0.12271 0.0971 0.118 

Ref 0.12339 0.0972 0.119 

1.5 
present 0.15449 0.123 0.123 

Ref 0.15397 0.123 0.124 

2 
present 0.16381 0.13 0.124 

Ref 0.16381 0.131 0.125 

3 
present 0.16604 0.132 0.124 

Ref 0.16598 0.133 0.125 

(Ref-Timoshenko and Kreiger 1959) 
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the plate as 0.0138 as against Timoshenko and Krieger  

(1959), 0.0137572=
D

qa4001260.
 for side a=1, h=1, E=1; 

v=0.3, q=1 (m=n=17). Table 2 shows the static analysis of 

uniformly loaded SFSC isotropic plate (b=1; E=1, v=0.3, 

h=1,for various b/a ratios and Fig. 7(a), 7(b), 7(c) show the 

deflection „w‟, Mx, My and Mxy for b/a ratios of 1, 2 and 3 

and compared with Timoshenko and Kreiger (1959) and the 

comparison is quite good. Timoshenko and Kreiger (1959) 

give the values of wmax=k1qb
4
/D; Mx (x=a/2, y=b)=k2qa

2
, 

My(x=a/2, y=0)= k3qb
2
 and for example b/a=1/3, k1,k2,k3 

values are 0.094, 0.0078 and 0.428 respectively (Table 39 

of Timoshenko and Krieger 1959). It is seen that the 

deflection decreases up to b/a ratio=1 and then increases.  

 

14.2 Static analysis of orthotropic plate clamped at all 
four edges 

 

A simply supported orthotropic square plate of side=1 

with unit thickness and Ex=25; Ey=1;Gxy=0.5;vxy=0.25 is 

subjected to lateral load „q=1‟. The maximum deflection 

occurs at the centre of the plate and its value is 0.0065 

which is subjected to uniformly distributed load agrees with 

Reddy‟s (2004) value of 0.006497. The maximum Mx 

moment of 0.1311 occurs at the centre of the plate and the 

maximum moment My=0.007519 occurs at x=0.5 y=0.8535 

and the maximum twisting moment Mxy is 0.00774 which 

occurs at four corners. 

 

 

14.3 Continuous orthotropic plate 
 
A rectangular plate with a single step change in 

thickness (two spans of length of each=1 m) and width 1 m 

simply supported on all sides and supported at centre with 

Ex=25 GPa; Ey=1 GPa; Gxy=0.5 GPa; vxy=0.25 is subjected 

to uniformly distributed load of unit value (q=1 N/sq.m) in 

both the spans. The right span of the plate has twice the 

thickness of left span of the plate. h1=0.001 m; h2=0.002 m 

is assumed. Maximum deflection 0.00277426 m occurs at 

y=0.5 m and x=0.4025375 m and maximum moment Mx 

=0.13199 N.m occurring at x=1 m y=0.5 m and maximum 

moment of My=0.0049858 N.m occurring at x=0.4025375 m 

and y=0.8535 m and maximum twisting moment of 

0.0049507 N.m occurring at x=2 m and y=1 m. Figs. 8, 9, 

10 and 11 show the deformed shape, Mx, My and Mxy 

diagrams for the continuous orthotropic plate. Two 

elements are used with m=n=17. 

 

 

15. Stability problems 
 

15.1 Orthotropic plates with ‘CFCF’, ‘SFSF’ and 
‘SFSC’ boundary conditions 

 

Consider an orthotropic rectangular plate with thickness 

h=2 mm dimensions b=1 m and a=1,2 and 4 m for first two 

cases and a=1,3 5 m for SFSC condition plate. In the first  

 

 

Fig. 7 Static analysis –deflection, bending and twisting moments of SFSC plate 

304



 

Analysis of non-homogeneous orthotropic plates using EDQM 

 

Fig. 8 Deformed shape of continuous orthotropic plate 

a/b=2 

 

 

Fig. 9 Bending moment Mx of continuous orthotropic 

plate a/b=2 

 

 

Fig. 10 Bending moment My of continuous orthotropic 

plate a/b=2 

 

 

case the plate is clamped at x=0 and x=a and free at y=0 and 

y=b. The three variant orthotropic elastic characteristics that 

differ from each other by the values of Ex, Ey are considered 

as Mat 1, 2 and 3 as shown in Table 3. The plate is 

subjected to axial compressive force at x=0 and x=a. and 

we will consider the three variations in px expression of the 

axial load as (αx=0−uniform; αx=1 triangle (max at y=0 and  

 

Fig. 11 Torsional moment Mxy of continuous orthotropic 

plate a/b=2 

 

 

Fig. 12 Buckled shape of 4×1 m CFCF orthotropic plate 

for material=3 αx=2 

 

 

0 at y=b); αx=2−pure bending). The material properties 

expressed in Table 3 are typical of modern advanced 

composite materials normally used in industry. The critical 

buckling loads are calculated and presented in the Table 3 

for (SFSF) and (CFCF) and compared with Lopatin and 

Morozov (2009, 2010, 2014). Lopatin and Morozov 

employed Kantorovich procedure to obtain the governing 

equation and boundary conditions and the buckling problem 

for SFSF and CFCF is solved using the generalized 

Galerkin method. They also verified the results by finite 

element model by idealizing the plate with 2000, 5000, and 

10000 elements of 1×1 m , 2×1 m and 4×1 m orthotropic 

plates. In Table 3 the results of present analysis are 

compared with Finite element method of Lopatin and 

Morozov. The buckling mode shapes for 4×1 m CFCF 

orthotropic plate with material properties Material=3 for 

αx=2 is shown in Fig. 12. 

An orthotropic plate (SFSC) (Lopoatin and Morozov 

2011) with h=1 mm is analyzed for buckling for various 

distributions of axial force. The material properties are 

shown in the Table 4. Table 4 presents the results of present 

analysis and their comparison with Lopatin and Morozov 

(2014). The buckled shape for 5×1 m (a×b) for orthotropic 

plate with material properties (material 1) for αx=2 and a=5 

is shown in Fig. 13. The buckled mode shape for 5×1 m  
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Table 3 Critical buckling load Nx(cri) (Newtons) for 

orthotropic rectangular plate for various axial force 

distributions for CCFF and SSFF plates (b=1) 

(bracketed values are from Lopatin and Morozov (2010) by 

FEM 

Material αx a 

CFCF SFSF 

This 

Analysis 

This 

analysis 

Mat-1 (orthotropic) 

Ex=144 GPa 

Ey=9.65 GPa 

Gxy=4.16 GPa 

vxy=0.3 

vyx=0.020104 

0 

1 3821.42 950.42 

2 953.30 237.22 

4 238.17 59.245 

1 

1 4533.95 1227.688 

2 1250.75 357.187 

4 360.2272 105.114 

2 

1 
5073.33 

(5117.32) 
1460.946 

2 
1530.915 

(1525.16) 
485.629 

4 
499.327 

(497.75) 
182.945 

Mat-2 (orthotropic) 

Ex=54.55 GPa 

Ey=54.55 GPa 

Gxy=20.67 GPa 

vxy=0.32 

vyx=0.32 

0 

1 1568.653 377.875 

2 385.447 91.835 

4 94.4116 22.5981 

1 

1 2261.389 649.9043 

2 663.7412 175.7009 

4 180.5089 44.6878 

2 

1 
2886.740 

(2872.69) 
1025.925 

2 
1060.69 

(1063.53) 
447.2879 

4 
457.302 

(461.67) 
214.2456 

Mat-3 (orthotropic) 

Ex=9.65 GPa 

Ey=144 GPa 

Gxy=4.16 GPa 

vxy=0.020104 

vyx=0.3 

0 

1 255.3767 63.528 

2 63.8823 15.8757 

4 15.9616 3.9489 

1 

1 383.0393 111.9597 

2 112.580 30.576 

4 30.7374 7.8196 

2 

1 
527.4673 

(526.13) 
191.3804 

2 
192.821 

(192.12) 
83.9052 

4 
84.2213 

(83.93) 
40.1712 

 

 

Fig. 13 Buckled shape of 5×1 m SFSC orthotropic plate 

for material=1 αx=2 

Table 4 Critical buckling load Nx(cri) (Newtons for 

orthotropic rectangular plate for 

Various axial force distributions for SFSC plates (b=1) 

Material αx a 
This 

Analysis 

Lopatin and 

Morozov(2014) 

Mat-1 (orthotropic) 

Ex=142.8 GPa 

Ey=9.13 GPa 

Gxy=5.13 GPa 

vxy=0.32 

vyx=0.02 

0 

1 125.407 127.26 

2 29.98 29.86 

4 33.0 33 

1 

1 155.1051 157.78 

2 37.51 37.02 

4 40.82 40.92 

2 

1 229.293 207.58 

2 49.48 48.70 

4 53.687 53.83 

Mat-2 (isotorpic) 

Ex=54.55 GPa 

Ey=54.55 GPa 

Gxy=20.67 GPa 

vxy=0.32 

vyx=0.32 

0 

1 86.24  

2 63.06  

4 62.69  

1 

1 110.25  

2 80.08  

4 78.66  

2 

1 147.63  

2 106.4  

4 104.32  

Mat-3 (orthotropic) 

Ex=9.13 GPa 

Ey=142.8 GPa 

Gxy=5.49 GPa 

vxy=0.02 

vyx=0.32 

0 

1 30.48 30.64 

2 28.986 29.96 

4 29.22 29.39 

1 

1 37.98 37.99 

2 36.14 37.15 

4 36.49 36.44 

2 

1 49.996 49.98 

2 47.452 48.87 

4 48.07 47.94 

 

 

Fig. 14 Buckled shape of 5×1 m SFSC orthotropic plate 

for material=3 αx=2 

 

 

(a×b) orthotropic plate with material properties =material 3 

as shown in Table 4 for αx=2 is shown in Fig. 14. 

 

15.2 Buckling of non-homogeneous orthotropic plates 
with varying thickness  

 

First the method is applied to simply supported isotropic  
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Table 5(a) Effect of taper ratio on buckling load parameter 

av

yx

D

LN
p

2

2


  for different modes of buckling. (h0=1; E=1; 

v=.33) for a square plate 

(*values are from Reference Eisenberger and Alexandrev 

2003) 

Mode 

\h1/h0 
1 1.125 1.25 1.5 1.75 2.0 

1 4.0000 
3.9660 

3.966* 

3.8811 

3.882* 

3.6355 

3.638* 

3.3607 

3.364* 

3.0954 

3.1000* 

2 6.2499 6.2346 6.2346 6.1740 6.0580 5.8950 

3 11.1111 11.0723 10.9773 10.6689 10.2979 8.9399 

4 15.9998 15.4375 14.3635 12.1892 10.3835 9.9084 

5 18.0626 17.9916 17.8100 17.2497 16.5604 15.2002 

 

Table 5(b) Non-homogeneous orthotropic plate with 

varying thickness 

(Critical load in Newtons) 

BCS a/b μ β m=n=13 m=n=17 m=n=21 m=n=25 m=n=29 

SCSF 2.0 0.5 0.5 27.1888 23.0286 21.5280 20.7136 20.6072 

SCSS 1.0 0 0 32.2174 32.2174 32.2174 32.2174 32.2174 

SCSC 0.5 -0.5 -0.5 18.0138 18.0139 18.0139 18.0139 18.0139 

 

 

plate with varying thickness 









a

x
hh x10

 in x 

direction where 
 

0

01

h

hh 
 , and h1 and h0 represent the 

thickness of the plate at x=0 and x=a respectively. 

Nondimensional buckling load parameter is givn by 

av

yx

D

LN
p

2

2


  where Nx is the axial compressive load in x-

direction, Ly, length of the plate in y-direction and Dav is the 

average stiffness of the plate. 
)(

2

3

112 
 av

av

Eh
D . hav is he 

average thickness of the plate given by 
 

2

10 hh
hav


  and 

Poisson‟s ratio v=0.33. Table 5(a) gives the nondimensional 

buckling loads for various modes for different thickness 

ratios. The fundamental mode buckling load is compared 

with Eisenberger and Alexandrov (2003) in Table 5(a) and 

there is a good comparison. It is seen that non dimensional 

buckling load parameter decreases for all the modes as the 

thickness ratio increases.  

Consider a non-homogeneous orthotropic plate of 

variable thickness is subjected to axial force in x-direction. 

The Youngs modulii Ex,Ey thickness vary as 

xXX

y

X

x ehheEEeEE 
021  ;;      (60) 

where E1,E2 and h0 are the values of Ex,Ey and h at the 

origin x=0 and X=x/a a non-dimensional variable. The 

elastic constants for the material are taken as E1=1×10
10

 

MPa; E2=5×10
9
 MPa; vxy=0.2; vyx=0.1, 

 yxxy

yx

xy

EE
G




12
 

and h0 is taken as 0.001 m. The boundary condition x=0 and 

x=a can be taken as simply supported and we will consider 

three boundary conditions at y=0 and y=b as CC, CS and  

 

Fig. 15 Layout of Levy square plate having two and three 

spans 

 

 

Fig. 16 Isotropic square plate with irregular boundary 

 

 

CF and the aspect ratio is taken as c=a/b. μ, β are varied for 

each problem and the buckling load is calculated as shown 

in Table 5(b) and no comparison is available. Results are 

available for m=n=13, 17, 21, 25 and one can see the 

monotonic convergence of the critical load. 

 

15.3 Buckling of continuous isotropic plates of 
uniform thickness  
 

Fig. 15 shows the layout of Levy square plate having 

two or three spans. The location of interior line supports are 

denoted by location parameter c as shown in Fig. 15. The 

plate may be loaded with a uni-axial in-plane loading in the 

x-direction (tx=1, px=1; ty=0) or y direction (tx=0, ty=1, py=1) 

or biaxial in-plane loading (tx=1, px=1; ty=1, py=1) 

respectively. The buckling load in terms of non-dimensional 

buckling parameter is given by 
D

bN
n cr

cr 2

2


 . AD and BC 

are simply supported ends. The two span plate will have 

boundary condition denoted by SSIS-ISSS denoting AB and 

DC also simply supported. „I‟ denotes the intermediate 

continuous support. Table 6 shows the comparison of 

buckling load parameter with those of Xiang (2003) for 

symmetric boundary conditions and Table 7 to un-

symmetric boundary conditions. Xiang used Levy‟s 

solution procedure for the calculation of buckling load. Two 

or three elements for one or two spans with m=n=17 are 

used. 
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Table 8 Buckling coefficient factor for an isotropic plate 

with irregular boundary  

 px=1; py=0 px=0; py=0 px=1; py=10 px=0; py=0, txy=1 

ncr 7.3032 6.4293 3.5206 11.7765 

 

 

Fig. 17 One step Levy rectangular isotropic stiffened plate 

 

 

 

15.4 Buckling of isotropic square plate with irregular 
boundary 
 

Consider an isotropic square plate with irregular 

boundary as shown in Fig. 16 is subjected to uni-axial, 

biaxial compressive forces and shear force on all edges. The 

critical buckling load parameters are calculated and 

tabulated in Table 8 and no comparison is available. Three 

EDQM elements with m=n=17 are used. 

 

15.5 Buckling of isotropic rectangular plate with one 
step change in thickness 

 

A one step square Levy plate subjected in in-plane load 

as shown in Fig. 17 is considered. For the buckling analysis 

of thin plate, we consider three in-plane loading cases 

namely 1) uni-axial in-plane compressive load in x-

direction 2) uni-axial in-plane compressive load in y-

direction 3) eqi-biaxial in-plane compressive load. Table 9 

presents the buckling coefficient (ncr=
d

BNCR

2

2


 ) generated  

Table 6 Exact buckling factor 
D

bN
n cr

cr 2

2


  for symmetric Levy plate with SS, FF and CC boundary conditions for two 

and three unequal spans 

Values shown by * are those obtained by Xiang (2003) 

Span 

case 
c 

px=1; py=0 px=0; py=1 px=1; py=1 

SS FF CC SS FF CC SS FF CC 

Two 

Unequal 

spans 

1/5 
5.3165 

5.3165* 

2.3966 

2.3966* 

8.0315 

8.0315* 

8.4838 

8.4838* 

1.7611 

1.7611* 

10.209 

10.209* 

3.3631 

3.3631* 

1.1076 

1.1076* 

5.2776 

5.2776* 

2/5 
6.0482 

6.0482* 

2.0936 

2.0936* 

9.8920 

9.8921* 

12.8672 

12.8672* 

2.4128 

2.4128* 

17.3611 

17.3611* 

4.5774 

4.5774* 

1.1746 

1.1746* 

7.7621 

7.7621* 

1/2 
6.2499 

6.25* 

2.0429 

2.0429* 

10.386 

10.386* 

15.999 

16.0* 

2.6726 

2.6726* 

22.422 

22.422* 

5.0 

5.0* 

1.1899 

1.1899* 

8.6205 

8.6205* 

Three 

Unequal 

spans 

1/3 
11.111 

11.111* 

2.5935 

2.5935* 

15.6715 

15.665* 

35.998 

36.0* 

8.6897 

8.6974* 

43.1573 

43.115* 

9.9998 

10.0* 

2.0215 

2.0218* 

14.2329 

14.225* 

1/2 
10.3865 

10.386* 

2.6265 

2.6277* 

12.114 

12.114* 

22.420 

22.422* 

12.389 

12.389* 

22.800 

22.801* 

8.6205 

8.6205* 

2.2039 

2.2040* 

9.9270 

9.9270* 

7/10 
8.6119 

8.6119* 

2.8741 

2.8740* 

9.0573 

9.0524* 

12.0356 

12.036* 

10.1904 

10.191* 

12.3421 

12.342* 

6.0147 

6.0147* 

2.3133 

2.3133* 

6.3532 

6.3532* 

Table 7 Exact buckling factor 
D

bN
n cr

cr 2

2


  for symmetric Levy plate with SF, CF and CS boundary conditions for two 

and three unequal spans 

Values shown by * are those obtained by Xiang (2003) 

Span 

case 
c 

px=1; py=0 px=0; py=1 px=1; py=1 

SF CF CS SF CF CS SF CF CS 

Two 

Unequal 

spans 

3/10 
2.3928 

2.3928* 

2.3959 

2.3959* 

5.8880 

5.8880* 

2.3220 

2.3221* 

2.3693 

2.3693* 

10.223 

10.223* 

1.2857 

1.2857* 

1.3005 

1.3005* 

4.0610 

4.0610* 

1/2 
2.3658 

2.3658* 

2.4078 

2.4078* 

7.4163 

7.4163* 

3.8046 

3.8046* 

3.9455 

3.9455* 

17.7883 

17.788* 

1.5125 

1.5125* 

1.5551 

1.5551* 

5.9943 

5.9943* 

7/10 
2.5264 

2.5264* 

2.6811 

2.6811* 

8.2579 

8.2579* 

7.8082 

7.8082* 

9.7427 

9.7427* 

12.6566 

12.657* 

1.9557 

1.9557* 

2.1346 

2.1346* 

6.0121 

6.0121* 

Three 

Unequal 

spans 

1/3 
2.8629 

2.8657* 

2.8748 

2.8777* 

12.3028 

12.317* 

9.4466 

9.4716* 

9.4534 

9.4785* 

37.7275 

37.794* 

2.2616 

2.2655* 

2.2719 

2.2758* 

11.0969 

11.112* 

1/2 
3.1204 

3.1203* 

3.1415 

3.1415* 

11.124 

11.124* 

13.5268 

13.527* 

13.5731 

13.573* 

22.6084 

22.609* 

2.6544 

2.6543* 

2.6745 

2.6745* 

9.2001 

9.2001* 

7/10 
3.6601 

3.6597* 

3.6681 

3.6850* 

8.8269 

8.8269* 

11.0139 

11.014* 

11.1458 

11.137* 

12.1869 

12.187* 

3.0543 

3.0540* 

3.0751 

3.0876* 

6.1793 

6.1793* 
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Table 9 Comparison of buckling factor for a thin iso-tropic 

square plate with one step subjected to uni-axial, biaxial and 

shear loadings  

Values denoted by * are from Xiang and Wei (2004) 

(px, py, pxy) t1/t0 C SS CC SF CS 

(1,0,0) 

1.2 

0.3 
5.7331 

5.7389* 

10.1841 

101929* 

4.2068 

3.9616* 

7.7198 

7.7310* 

0.5 
4.9827 

4.9616* 

8.4421 

8.3862* 

3.9781 

3.97668* 

6.8243 

6.8186* 

0.7 
4.5346 

4.5093* 

7.6326 

7.5966* 

3.6487 

3.4945 

5.8510 

5.8171* 

2 

0.3 
10.6025 

10.4296* 

19.8860 

19.6097* 

10.5777 

10.3339* 

18.9232 

18.7209* 

0.5 
7.8921 

7.7698* 

14.0292 

13.8128* 

7.8882 

7.7133* 

12.6111 

12.2933* 

0.7 
5.9374 

5.8981* 

9.8776 

9.8258* 

5.9309 

5.8587* 

9.1842 

9.0179* 

(0,1,0) 

1.2 

0.3 
5.96645 

5.9772* 

11.7770 

11.7662* 

2.3053 

2.2603* 

8.6345 

8.6478* 

0.5 
5.2107 

5.1961* 

9.9643 

9.9132* 

2.1258 

2.0894* 

7.6638 

7.6546* 

0.7 
4.6289 

4.6011* 

8.6090 

8.5567* 

1.8846 

1.8654* 

6.7218 

6.6832* 

2 

0.3 
16.5408 

16.4352* 

34.0522 

33.8744* 

8.6284 

8.5261* 

25.1581 

25.1480* 

0.5 
11.1327 

10.8789* 

19.1717 

18.8222* 

6.4215 

6.3249* 

16.2563 

15.9189* 

0.7 
7.7557 

7.5921 

11.623 

11.4514* 

4.4907 

4.3931* 

11.1794 

10.9912* 

(1,1,0) 

1.2 

0.3 
2.9472 

2.9524* 

5.7281 

5.7385* 

1.7902 

1.7328* 

4.1079 

4.1147* 

0.5 
2.5670 

2.5584* 

4.9931 

4.8650* 

1.6678 

1.6246* 

3.6307 

3.6270* 

0.7 
2.2984 

2.2848* 

4.4124 

4.3902* 

1.4905 

1.4652* 

3.155 

3.1367* 

2 

0.3 
6.7742 

6.6699* 

13.1434 

13.0149* 

5.9192 

5.8610* 

11.2688 

11.2214* 

0.5 
4.8327 

4.7072* 

8.9332 

8.7214* 

4.2660 

4.1886* 

7.2562 

7.0850* 

0.7 
3.4962 

3.4286* 

6.4851 

6.4258* 

3.0492 

3.0002* 

5.2243 

5.0902* 

(0,0,1) 

1.2 

0.3 13.850 18.8697 13.817 16.2719 

0.5 11.9393 16.0808 11.6648 14.0703 

0.7 10.5767 14.1354 9.7945 12.2303 

2 

0.3 33.7097 47.6975 32.4006 43.8622 

0.5 19.5812 25.9741 18.1113 23.9167 

0.7 14.2918 18.4366 12.8108 16.4361 

 

 

the present analysis and compared with Xiang and Wei 

(2004) for the four symmetric Levy plates (SS, CS, SF, CS) 

for x=0 and x=a and simply supported at y=0 and y=b. The 

step parameter „c‟ varies as 0.3,0.5 and 0.7. The stepped 

thickness ratios of the plates are set to t1/t0=1.2 and 2.0 for 

thin plates. Two elements with m=n=17 are used to idealize 

the plate. It is observed that the buckling factor decreases as 

the step length parameter „c‟ increases in all cases. The ratio 

of decrease is more pronounced for plates subjected to uni-

axial in-plane load in y-direction  

The buckling coefficient increases as the step thickness 

ratio changes from 1.2 to 2. Even in this case, it is observed 

that the ratio is more significant for plates subjected to uni-

axial in-plane load in y-direction. Table 10 shows the  

Table 10 Comparison of buckling coefficients 
D

LN
n cr

cr 2

2




for thin isotropic rectangular plate having one, two and 

three steps (longer edges simply supported) (t1/t0=1.1; 

t2/t0=1.1; t3/t0=1.3) 
Values indicated by * are from Rajasekaran and Wilson (2013) 

case (px, py, pxy) SS CC SF CS 

One step 

(1,0,0) 
4.4176 

4.3694* 

5.2392 

5.3294* 

3.0604 

3.0597* 

5.2253 

5.0288* 

(0,1,0) 
1.7912 

1.7886* 

2.2075 

2.1434* 

1.3618 

1.3503* 

2.0055 

1.9872* 

(1,1,0) 
1.3762 

1.4173* 

1.6906 

1.6070* 

1.2593 

1.2069* 

1.4844 

1.5075* 

(0,0,1) 7.1064 7.3144 7.0923 7.3018 

Two 

steps 

(1,0,0) 
4.4164 

4.3743* 

5.2381 

5.1655* 

3.971 

4.3742* 

5.2174 

5.1655* 

(0,1,0) 
1.5793 

1.5415* 

1.7142 

1.6277* 

1.5010 

1.5313* 

1.6003 

1.6247* 

(1,1,0) 
1.3747 

1.3623* 

1.4964 

1.4654* 

1.3674 

1.3616* 

1.3802 

1.4649* 

(0,0,1) 7.0893 7.3138 7.0880 7.0893 

Three 

steps 

(1,0,0) 
4.4176 

4.3743* 

5.2267 

5.1655* 

4.4175 

4.3742* 

5.2267 

5.3655* 

(0,1,0) 
1.5537 

1.5415* 

1.643 

1.6277* 

1.5478 

1.5313* 

1.6394 

1.6247* 

(1,1,0) 
1.3740 

1.3623* 

1.4788 

1.4654* 

1.3738 

1.3616* 

1.4782 

1.4649* 

(0,0,1) 7.0910 7.2970 7.0907 7.2965 

 

Table 11 Frequency parameter 4

1

2

D

h
a


   for orthotropic 

plate a×b=1×1.2 m h=0.002 for material 1 of Table 1  


















)1(12

3

1

yxxy

xhE
D


 

BCS 
4

1

2

D

h
a


 

 

1 2 2 3 4 5 

SSCC 

Xiang 

and Liu 

(2009) 

4.02 

4.02 

4.39 

4.39 

5.10 

5.10 

6.06 

6.07 

7.12 

7.12 

7.17 

7.17 

SCCC 

Xiang 

and Liu 

(2009) 

4.05 

4.05 

4.5 

4.5 

5.293 

5.29 

6.31 

6.31 

7.123 

7.12 

7.307 

7.31 

CCCC 

Xiang 

and Liu 

(2009) 

4.806 

4.80 

5.1023 

5.10 

5.704 

5.70 

6.573 

6.57 

7.612 

7.62 

7.80 

7.90 

SFSF 3.1404 3.2368 3.5839 4.2495 5.1774 6.1774 

SSCF 3.9451 4.0923 4.4877 5.1923 6.1376 7.0851 

SCCF 3.9510 4.1373 4.6060 5.3849 6.3793 7.0860 

CCCF 4.7531 4.8738 5.1921 5.7902 6.6511 7.6665 

 

 

critical buckling coefficient values for two and three steps 

isotropic stiffened rectangular plate and compared with 

Rajasekaran and Wilson (2013) and most of the values are 

in good agreement.  
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Table 12 Frequency parameter 4

2

2

1 )( yxxyD

h
a







  for 

orthotropic plate with material 4 of Table 1 of Part I 

h=0.002 m (values denoted by * are from Xiang and Liu 

(2009) (
yxxy

yhE
D




112

3

2
(

) (Boundary conditions correspond 

to WSEN) 

BCS b/a 
4

2

2

1 )( yxxyD

h
a









 

1 2 3 4 5 6 

SSSC 

1 
5.821 

5.803* 

8.098 

8.087* 

9.343 

9.339* 

10.7123 

10.703* 

10.9157 

10.911* 

12.8133 

12.806* 

2 
5.1173 

5.113* 

5.4869 

5.679* 

6.6262 

6.618* 

7.8187 

7.813* 

8.990 

8.99* 

9.157 

9.299* 

SCCC 

1 
6.357 

6.119* 

8.427 

8.696* 

10.234 

9.437* 

11.072 

11.007* 

11.373 

11.599* 

13.252 

13.189* 

2 
5.1581 

5.149* 

5.8206 

5.803* 

6.8471 

6.831* 

8.0984 

8.087* 

9.0020 

9.0* 

9.3438 

9.339* 

CCCC 

1 
6.8058 

6.714* 

8.966 

8.921* 

10.316 

10.277* 

11.641 

11.605* 

11.74 

11.72* 

13.694 

13.663* 

2 
6.103 

6.073* 

6.537 

6.503* 

7.34 

7.308* 

8.367 

8.401* 

9.696 

9.678* 

9.964 

9.962* 

SFSF 
1 3.9411 4.649 6.457 7.891 .308 8.945 

2 3.9457 4.1543 4.7606 5.6801 6.8251 7.8965 

CFCF 
1 5.9553 6.2848 7.4054 9.4365 9.8897 10.1769 

2 5.9680 6.0838 6.3124 6.8913 7.6783 8.7128 

SSCF 
1 5.068 6.2 8.366 8.98 9.697 11.076 

2 4.9803 5.2703 5.8859 6.8108 7.967 8.925 

SCCF 

1 5.1278 6.5485 8.9372 9.0011 9.8480 11.4679 

2 4.988 5.3316 6.0279 7.0287 8.2401 8.9284 

1 6.0782 7.1172 9.2124 9.9777 10.6645 11.8926 

2 5.9971 6.225 6.7212 7.518 8.5742 9.8113 

 

 

16. Free vibration problems 
 

16.1 Free vibration of orthotropic plate of uniform 
thickness 

 

Xiang and Liu (2009) obtained the exact solutions for 

free vibrations of thin orthotropic rectangular plates by 

using the method of novel separation of variables for the 

three cases SSCC, SCCC, CCCC boundary conditions and 

computed with Finite element Method. The thickness of the 

plate is considered as 0.002 m. Free vibration analysis is 

carried out using EDQM for the plate a×b=1×1.2 m with 

material 1 as given in Table 1. The frequency parameter 

4

1

2

D

h
a


   is calculated and compared with Xiang and 

Liu only for some boundary condition in Table 11. In Table 

12 the frequency parameters compared with the method of 

Green function method of Xiang and Liu (2009) for SSCC, 

CSCC, CCCC plates and the results for SFSF, CFCF, 

SSCF. SCCF and CCCF are given for completeness. ρ 

value is assumed as 1600 kg/m
3
. Most of the results agree 

with Xiang and Liu (2009) except fifth and sixth natural 

frequencies for CSCC plate with b/a=2 are in error as 4% 

and 6% respectively. 

Table 13 Natural frequency parameter 4

0

42

00

1 )( yxxyD

ah







  

for orthotropic plate with variable thickness varying in one 

direction for various boundary conditions- Material 4 of 

Table 1) (the values indicated by * are from Huang et.al 

(2005) 

BCS b/a βx 
4

0

42

00

1 )( yxxyD

ah









 

1 2 3 4 5 6 

CSCS 

0.5 

0 
7.9481 

7.943* 

11.147 

11.124* 

13.2865 

13.268* 

14.7659 

14.792* 

15.1067 

14.956* 

17.7536 

17.664* 

0.4 
8.68 

8.672* 

12.176 

12.141* 

14.464 

14.437* 

16.122 

16.01* 

16.519 

16.472* 

19.4 

19.2821* 

0.8 
9.3178 

9.307* 

13.071 

13.026* 

15.432 

15.397* 

17.3 

17.344* 

17.774 

17.528* 

20.849 

20.71* 

1.0 

0 
6.366 

6.361* 

7.948 

9.961* 

10.172 

10.149* 

10.433 

10.408* 

11.149 

11.125* 

12.851 

12.814* 

0.4 
6.9522 

6.945* 

8.68 

8.67* 

11.1058 

11.35* 

11.3817 

11.35* 

12.1755 

12.141* 

14.0413 

13.993* 

0.8 
7.464 

7.454* 

9.318 

9.305* 

11.916 

11.874* 

12.192 

12.155* 

13.071 

13.026* 

15.089 

15.026* 

2.0 

0 
6.0406 

6.036* 

6.3697 

6.361* 

7.00 

6.992* 

7.95 

7.905* 

9.119 

8.972* 

9.9476 

9.925* 

0.4 
6.596 

6.589* 

6.952 

6.945* 

7.669 

7.635* 

8.680 

8.631* 

9.955 

9.743* 

10.86 

10.83* 

0.8 
7.079 

7.078* 

7.464 

7.454* 

8.213 

8.196* 

9.318 

9.263* 

10.679 

10.804* 

11.653 

11.611* 

SSFS 

0.5 

0 
6.519 

6.515* 

8.133 

8.126* 

10.877 

10.853* 

12.734 

12.719* 

13.628 

13.608* 

14.211 

14.148* 

0.4 
7.318 

7.292* 

8.936 

8,.126* 

10.877 

10.853* 

12.734 

12.719* 

13.628 

13.608* 

14.211 

14.148* 

0.8 
8.004 

7.935* 

9.671 

9.753* 

12.821 

12.714* 

15.094 

15.086* 

16..549 

16.433* 

16.684 

16.611* 

1.0 

0 
3.517 

3.533* 

5.95 

5.945* 

6.52 

6.509* 

8.13 

8.129* 

9.42 

9.41* 

9.61 

9.571* 

0.4 
3.924 

3.916* 

6.484 

6.485* 

7.318 

7.310* 

8.937 

8.917* 

10.27 

10.243* 

10.76 

10.712* 

0.8 
4.285 

4.280* 

6.981 

6.967* 

8.003 

7.994* 

9.671 

9.647* 

11.016 

10.982* 

11.642 

11.59* 

2.0 

0 
2.123 

2.126* 

3.528 

3.523* 

4.999 

4.994* 

5.222 

5.219* 

5.957 

5.952* 

6.52 

6.474* 

0.4 
2.344 

2.323* 

3.929 

3.918* 

5.598 

5.62* 

5.626 

5.587* 

6.495 

6.482* 

7.31 

7.267* 

0.8 
2.613 

2.519* 

4.309 

4.281* 

5.997 

5.982* 

6.141 

6,.12* 

6.989 

6.965* 

8.007 

7.95* 

 

 

16.2 Free vibration of orthotropic plate of variable 
thickness 

 

The described method is used to obtain the frequency 

parameter of orthotropic plate with variable thickness and 

various boundary conditions. E-Glass/Epoxy (material 4 of 

Table 1) is used. The thickness function is chosen as 











a

x
hh x10

 if  it  varies  in  x  direction  or 




















b

y

a

x
hh

yx


110
 if the thickness varies in both x 

and y directions respectively. The thickness h0 is assumed 

as a/100 (a=1 m) is adopted in all the calculations of Table 

13.  The  results  of the  frequency  parameter 
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Table 14 Natural frequency parameter 4

0

42

00

1 )( yxxyD

ah







  

for orthotropic square plate with variable thickness varying 

in two direction for various boundary conditions- Material 4 

of Table 1 of Part I ) (the values indicated by * are from 

Huang et al. (2005) 

BCS βx βy 
4

0

42

00

1 )( yxxyD

ah







  

1 2 3 4 5 6 

CCCC 

-0.5 -0.5 
4.956 

4.955* 

6.549 

6.548* 

7.443 

7.440* 

8.47 

8.52* 

8.6063 

8.533* 

9.984 

9.989* 

-0.5 0.5 
6.457 

6.453* 

8.521 

8.510* 

9.767 

9.748* 

11.044 

11.070* 

11.149 

11.056* 

13.085 

13.031* 

0.5 -0.5 
6.451 

6.447* 

8.536 

8.510* 

9.689 

9.671* 

11.097 

11.103* 

11.189 

11.108* 

13.014 

12.993* 

0.5 0.5 
8.403 

8.390* 

11.106 

11.076* 

12.717 

12.666* 

14.438 

14.389* 

14.523 

14.418* 

17.003 

16.887* 

SSSC 

-0.5 -0.5 
3.871 

3.872* 

5.722 

5.716* 

6.255 

6.252* 

7.479 

7.483* 

7.798 

7.778* 

8.805 

8.786* 

-0.5 0.5 
5.034 

5.038* 

7.509 

7.499* 

8.027 

8.015* 

9.667 

9.678* 

10.175 

10.148* 

11.460 

11.433* 

0.5 -0.5 
5.016 

5.016* 

7.447 

7.442* 

8.121 

8.115* 

9.726 

9.717* 

10.200 

10.169* 

11.454 

11.423* 

0.5 0.5 
6.523 

6.536* 

9.772 

9.729* 

10.429 

10.318* 

12.554 

12.580* 

13.345 

13.311* 

14.911 

14.855* 

SSSS 

-0.5 -0.5 
3.631 

3.635* 

5.338 

5.335* 

6.089 

6.086* 

7.212 

7.221* 

7.377 

7.358* 

8.634 

8.614* 

-0.5 0.5 
4.706 

4.704* 

6.937 

6.937* 

7.97 

7.904* 

9.379 

9.372* 

9.561 

9.536* 

11.439 

11.425* 

0.5 -0.5 
4.707 

4.708* 

6.937 

6.9338 

7.91 

7.904* 

9.4 

9.397* 

9.613 

9.59* 

11.235 

11.207* 

0.5 0.5 
6.100 

6.086* 

9.011 

9.022* 

10.357 

10.35* 

12.193 

12.136* 

12.490 

12.439* 

14.856 

14.858* 

SCFC 

-0.5 0.5 
3.428 

3.431* 

4.818 

4.815* 

5.448 

5.475* 

6.708 

6.730* 

7.061 

7.064* 

7.441 

7.410* 

-0.5 0.5 
4.458 

4.467* 

6.272 

6.303* 

7.093 

6.989* 

8.734 

8.628* 

9.233 

9.206* 

9.694 

9.717* 

0.5 -0.5 
4.883 

4.831* 

6.267 

6.231* 

7.87 

7.879* 

8.893 

8.771* 

9.126 

9.069* 

10.894 

10.936* 

0.5 0.5 
6.285 

6.301* 

8.066 

8.084* 

10.285 

10.235* 

11.488 

11.429* 

11.896 

11.849* 

14.084 

14.20* 

CCCS 

-0.5 -0.5 
4.734 

4.734* 

6.187 

6.184* 

7.265 

7.258* 

8.064 

8.047* 

8.352 

8.336* 

9.721 

9.706* 

-0.5 0.5 
6.262 

6.259* 

8.016 

8.009* 

9.739 

9.72* 

10.45 

10.421* 

10.916 

10.891* 

12.665 

12.629* 

0.5 -0.5 
6.161 

6.158* 

8.06 

8.052* 

9.46 

9.444* 

10.548 

10.522* 

10.861 

10.832* 

12.651 

12.613* 

0.5 0.5 
8.151 

8.137* 

10.439 

10.417* 

12.682 

12.63* 

13.663 

13.605* 

14.198 

14.132* 

16.474 

16.382* 

SSCC 

-0.5 -0.5 
4.245 

4.248* 

5.961 

5.959* 

6.784 

6.779* 

7.864 

7.875* 

8.047 

8.015* 

9.353 

9.329* 

-0.5 0.5 
5.481 

5.481* 

7.801 

7.795* 

8.725 

8.715* 

10.198 

10.187* 

10.446 

10.412* 

12.223 

12.198* 

0.5 -0.5 
5.639 

5.637* 

7.659 

7.653* 

8.933 

8.922* 

10.229 

10.270* 

10.362 

10.274* 

12.22 

12.191* 

0.5 0.5 
7.253 

7.248* 

10.01 

9.991* 

11.507 

11.475* 

13.287 

13.252* 

13.415 

13.359* 

15.872 

15.781* 
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 are compared 

with Huang et al. (2005) and there is very good agreement.  

Table 15 Natural frequency parameter 
0
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ah 
   for 

the stepped plate 312111
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h

h

h
   

(width of the plate=1 and each step of length=1) (m=n=12) 

No of 

steps 
mode SS CC SF CS 

One 

step 

λ1 16.8846 27.3235 11.0925 21.2722 

λ2 44.5814 50.0608 23.5039 47.1479 

λ3 46.2912 68.3553 41.5453 56.4755 

λ4 67.6968 85.2163 51.0003 75.6674 

λ5 92.9429 96.2865 58.5132 95.1742 

Two 

steps 

λ1 29.277 37.2850 28.3562 32.6867 

λ2 56.5911 77.5105 30.3977 68.4618 

λ3 96.8455 100.6072 69.6352 99.5708 

λ4 109.0106 130.0388 96.2299 123.733 

λ5 117.5422 142.1167 106.1503 124.412 

Three 

steps 

λ1 48.6207 54.6359 46.5387 51.6732 

λ2 73.8599 92.9032 56.6947 82.7206 

λ3 124.8373 156.9582 88.0259 140.513 

λ4 171.8243 176.3608 144.772 176.219 

λ5 196.988 205.5754 171.8103 202.4145 

 

 
Fig. 18(a) First mode shape of two stepped orthotropic plate 

 
Fig. 18(b) Second mode shape of two stepped orthotropic 

plate 

 

 

As another application of the present method, the numerical 

results are given for the orthotropic plate with linearly 

varying thickness in two directions. Table 14 presents the 

results for the plate with six kinds of boundary conditions 

and four kinds of thickness variation and compared with the 

results of Huang et al. (2005) that solved the problem by 

using Green function. 
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Fig. 18(c) Third mode shape of two stepped orthotropic 

plate 

 
Fig. 18(d) Fourth mode shape of two stepped orthotropic 

plate 

 

Fig. 18(e) Fifth mode shape of two stepped orthotropic plate 

 

 

16.3 Free vibration of stepped orthotropic plate  
 

A one, two and three steps rectangular Levy orthotropic 

plate is considered for four boundary conditions (SS, CS, 

SF, CS) and simply supported boundary conditions at y=0 

and y=b. The step thickness is considered as (1+.1n)*0.002 

where n is the number of steps. The material properties of 

material 1 from Table 1 is considered. The natural 

frequencies are tabulated as shown in Table 15. Fig. 18 

shows the all the five mode shapes for SSSS two stepped 

orthotropic plate. Because of memory limitations m=n=13 

is adopted for all the plates and no comparison is available. 

 

16.4 Free vibration of non-homogeneous orthotropic 
plate with varying thickness  
 

Consider a non-homogeneous plate of variable thickness  

Table 16 Six frequencies for Non-homogeneous orthotropic 

plate with Variable Thickness for various m and n 

BCS a/b μ β γ 
λ 

m=n=13 m=n=17 m=n=21 m=n=25 m=n=29 

SCSC 0.5 -0.5 -0.5 0 

8.4897 

13.3925 
20.5719 

28.3796 

29.8438 
32.7822 

8.4897 

13.3923 
20.5720 

28.3796 

29.8345 
32.7826 

8.4897 

13.3923 
20.5720 

28.3796 

29.8346 
32.7826 

8.4897 

13.3925 
20.5719 

28.3796 

29.8346 
32.7822 

8.4897 

13.3925 
20.5720 

28.3794 

29.8346 
32.7823 

SCSS 1 0.0 0.0 -0.5 

19.3374 

44.0804 
47.8554 

71.9630 

82.7234 
96.7380 

19.3374 

44.0804 
47.8554 

71.9630 

82.7234 
96.7380 

19.3374 

44.0804 
47.8554 

71.9633 

82.7230 
96.7394 

19.3374 

44.0804 
47.8554 

71.9633 

82.7230 
96.7394 

 

SCSF 2 0.5 0.5 0.5 

36.6401 

79.2453 

113.6747 

153.3554 

174.5363 
242.5662 

32.6324 

74.4003 

109.82222 

145.3066 

165.4132 
239.4490 

31.2893 

72.4976 

108.2584 

143.0301 

162.1788 
236.3347 

30.5519 

71.8859 

107.4324 

142.0359 

160.6868 
234.4580 

30.7176 

71.0671 

106.9445 

141.3087 

158.8697 
232.7721 

 

Table 17 Frequency parameter for isotropic plate a×b as 

1×1, t=1 for different boundary conditions 

Boundary 

condition 
 

mode 

1 

mode 

2 

mode 

3 

mode 

4 

mode 

5 

mode 

6 

CCCC 

present 35.98 73.39 73.39 108.21 131.58 132.21 

Leissa 

(1969) 
35.98 73.39 73.39 108.21 131.58 132.21 

SSSS 

present 19.73 49.34 49.34 78.95 98.69 98.69 

Leissa 

(1969) 
19.73 49.34 49.34 78.95 98.69 98.69 

CCCS 

present 31.82 63.33 71.07 100.79 116.35 130.35 

Leissa 

(1969) 
31.82 63.34 71.08 100.83 116.41 130.37 

CCSS 

present 27.05 60.53 60.78 92.83 114.55 114.71 

Leissa 

(1969) 
27.05 60.54 60.79 92.86 114.57 114.72 

SCSS 

present 23.64 51.67 58.64 86.13 100.26 113.22 

Leissa 

(1969) 
23.64 51.67 58.64 86.13 100.26 113.22 

CSCS 

present 28.95 54.74 69.32 94.58 102.21 129.09 

Leissa 

(1969) 
28.95 54.74 69.32 94.58 102.21 129.09 

SCSF 

present 12.68 33.06 41.71 63.01 72.39 90.61 

Leissa 

(1969) 
12.68 33.06 41.71 63.01 72.39 90.61 

CFCF 

present 22.71 27.92 44.81 62.75 71.01 80.68 

Leissa 

(1969) 
22.27 26.52 43.66 61.46 67.54 79.94 

SSSF 

present 11.68 27.75 41.19 59.06 61.86 90.29 

Leissa 

(1969) 
11.68 27.75 41.19 59.06 61.86 90.29 

SFSF 

present 9.63 16.13 36.72 38.94 46.73 70.73 

Leissa 

(1969) 
9.63 16.13 36.72 38.94 46.73 70.74 

CCSF 

present 17.79 36.26 52.69 71.92 74.48 106.89 

Leissa 

(1969) 
17.61 36.04 52.06 72.194 74.35 106.28 

 

 

considered in section 2.2 in which Ex=Ex0e
μX

; Ey=Ey0e
μX

; 

h=h0e
βX

; ρ=ρ0e
γX

; where X=x/a, Ex0=1×10
10

 MPa; Ey0=5×10
9
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Fig. 19(e) Fifth mode shape of isotropic plate 

a/b=0.8333 of uniform thickness 
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and h0 is 

taken as 0.001 m and ρ0=1600 kg/m
3
. The boundary 

conditions x=0 and x=a are assumed as simply supported 

and y=0 and y=b as CC, CS, and CF boundary conditions. 

The dimensionless frequency parameter 2

0

00 a
D

h

x




   

(where 
)( yxxy

x
x

hE
D




112

3

0
0  is calculated and tabulated in 

Table 16 and no previous results is available for 

comparison. 

 

16.5 Free vibration of isotropic plate with uniform 
thickness 

 

 

Table 17 shows the results of free vibration of isotropic 

square plate of uniform thickness with various boundary 

conditions and compared with Leissa (1969) and the 

comparison is quite good. Fig. 19 shows all the five modes 

shapes for a/b=0.8333 with SSCC boundary conditions. 

Fig. 20 shows the mode shapes for square plate for SSSS, 

SCSS and SCSF boundary conditions. For all the examples 

considered m=n=16 is adopted. 

 

 

17. Conclusions 
 

In this paper, general formulation for non-homogeneous, 

orthotropic and isotropic plate with continuously varying or 

stepped thickness is discussed and the Element Based 

Differential Quadrature (EBDQ) has been explained and the 

relevant matrices are derived to solve equilibrium, stability 

and free vibration problems. Numerical examples are solved 

and compared with the published results and the efficiency 

of the method is discussed. 

The buckling problem has been solved for the 

orthotropic non-homogeneous plate. The critical buckling 

coefficients have been determined as a result of the 

numerical solution of the corresponding eigen-value 

problem. The buckling problem was solved for a CFCF, 

SFSF and SFSC orthotropic plate subjected to linearly 

varying axial load that can be of uniform compression, 

combination uniform compression and in-plane bending or 

pure in-plane bending. The buckling problem has been 

solved for orthotropic plate having various aspect ratios.  

  
Fig. 19(a) First mode shape of isotropic plate a/b=0.8333 

of uniform thickness 

Fig. 19(b) Second mode shape of isotropic plate 

a/b=0.8333 of uniform thickness 

  
Fig. 19(c) Third mode shape of isotropic plate 

a/b=0.8333 of uniform thickness 

Fig. 19(d) Fourth mode shape of isotropic plate 

a/b=0.8333 of uniform thickness 
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The effect of the stiffness characteristics on the buckling 

loads and buckled shapes were demonstrated for orthotropic 

plate with various aspect ratios. Results of EDQM were 

validated for isotropic and orthotropic plates and compared 

with the values found in the literature. The comparisons 

have shown that the calculation of buckling coefficients for 

the plate under study can be performed with sufficient 

accuracy using the analytical approach developed in the 

paper. 

Vibration of thin orthotropic plate of uniform thickness 

has been carried out using EDQM for SSCC, SCCC, CCCC 

plates and compared with the results obtained by using 

exact Method of Xiang and Liu (2009) and there is very 

good agreement. The formulation is applied to find the 

natural frequency of orthotropic plate where two kinds of 

thickness variation are compared with Huang (2005) who 

used Green functions.  

Free vibration analysis is also carried out for stepped 

orthotropic plate for one, two and three steps. Non-

homogeneous orthotropic pate with varying thickness is  

 

 

analyzed for the vibration for SCSC, SCSS and SCSF 

boundary conditions. Lastly the free vibration analysis is 

carried out for isotropic plate with uniform thickness for 

various boundary conditions and compared with the values 

obtained by Leissa (1969). 

Besides advantages of numerical solution technique, the 

EDQM method is recognized for analytical simplicity. The 

author believes that the paper presents EDQM to 

ortho/isotopic plates and it may be very well be employed 

to other problems with the same advantages as exemplified 

by the plate problems of this paper. 
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Fig. 20 Mode shapes of isotropic square plate for SSSS, SCSS and SCSF boundary condition 
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Symbols 
 

a length of the plate in x-direction 

a/b aspect ratio 

b length of the plate in y-direction 

[B] boundary condition matrix (nr×nt) 

Dx, Dy flexural rigidities of the plate in x and y directions 

Dt torsional rigidity 

[D] equilibrium matrix (nt×nt) 

Ex, Ey Youngs moduli in x and y directions 

[EE] stability matrix 

[FF] dynamic matrix 

G shear modulus 

h thickness of the plate 

[K] flexural stiffness matrix 

k buckling coefficient 

[KG] geometric stiffness matrix 

Mx,My bending moments in x and y directions 

Mxy twisting moment 

[M] mass matrix 

nx,ny number of grid points in x and y directions 

Nx,Ny 
in-plane forces per unit length in x and y 

directions 

Nxy in-plane shearing force per unit length 

nti total degrees of freedom for element „i‟ 

Qx,Qy 
vertical shearing forces per unit length in x and y 

planes 

tx,ty,txy Tracers for Nx,Ny and Nxy 

Vx,Vy 
modified shearing forces per unit length in x and y 

planes 

W lateral deflection 

αx, αy 
non-dimensional parameter to denote the variation 

of Nx,Ny 

βx, βy 
non-dimensional parameter to denote the variation 

of thickness in x and y directions 

εx, εy strain in x and y directions respectively 

η y/b 

λ Lagrangian multipliers 

μ1, μ2 
Exponential operator for variation of Ex,Ey along x 

direction 

vxy, vyx Poisson‟s ratios in x and y directions 

ρ density of plate material 

ω natural frequency 

ξ non-dimensional variable X/a 
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