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1. Introduction 
 

The dynamic response of civil engineering structures 

that support railway traffic is a classic problem that has 

been studied since the middle of the 19th century (Willis 

1849, Timoshenko 1922). During the second half of the 

20th century, theoretical knowledge of these phenomena 

(Hillerborg 1948, Frýba 1999) afforded the maturity 

required to develop the first dynamic-aware structural 

standards (UIC 1979). With the birth of high-speed rail in 

Japan, and later in Europe, the state of knowledge grew 

during the last decades of the 20th century. In Europe, this 

work was carried out by the D-214 Work Group of the 

ERRI (ERRI-D214-RP9-A 1999, ERRI-D214-RP9-B 1999, 

leading to the latest European railway standards (I/SC/PS-

OM/2298 1997, EN 1991-2 2003, IAPF07 2007). 

This development was mainly focused on structures 

comparable to the simply supported beam, which was the 

most commonly used structural typology for the first high-

speed railways. During the last few decades, the spread of 

high-speed railway lines has increased the number and 

complexity of the projected crossings, thus multiplying the 

structural typologies used to solve them. This tendency is 

likely to persist into the future (UIC 2010). Much of the 

recent research on high-speed railway structural dynamics 

analyzes the behavior of such structures as continuous 

bridges (Gabaldón, Goicolea et al. (2004)), arch bridges (Ju 

and Lin 2003, Lacarbonara and Colone 2007), or cable-

stayed bridges (Yau and Yang 2004, Bruno, Greco et al. 

2008). Nonetheless, there are still very few studies about 
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the dynamic behavior of bridges with two dimensional 

geometry. These structural typologies are usually 

characterized by the relative importance of the transverse 

behavior, and are increasingly present on high-speed 

railway lines. In this field it is important to mention studies 

such as Marchesiello, Fasana et al. (1999), (Zhu and Law 

2003, Carnerero 2007 or Martínez-Rodrigo, Lavado et al. 

2010, which analyze different phenomena, all related to the 

two dimensional nature of some typologies of bridge decks. 

The pergola bridge is one of the main structural 

typologies used on high-speed railway lines that has a 

marked two dimensional geometry. However, almost no 

research exists on pergola bridges except for a few studies 

that refer to particular examples (Goicolea 2007). Thus, this 

deck typology lacks any treatment by the current standards 

of dynamic effects on railway structures, leading to time-

consuming and sometimes unsecure structural designs. 

The aim of this paper is to study the characteristics of 

the dynamic behavior of pergola bridge decks, and to 

propose analytical tools that produce deeper understanding. 

To this end, the paper is organized in two parts. In the first 

section, the authors propose an analytical methodology for 

the dynamic analysis of pergola bridge decks. The second 

part focuses on the numerical verification of the analytical 

methodology, trying to establish its validity and explain its 

applications and main restrictions. The final section 

presents the main conclusions of the paper. 

 
 
2. Analytical methodology for the dynamic study of 
pergola bridge decks 

 

As defended in the following section (2.1), the deck of a 

pergola bridge can be dynamically analyzed by means of a 

rectangular orthotropic plate simply supported on its four 

edges. The methodology explained in the current section  
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analytically resolves the integration of its equation of 

motion, subjected to the skewed passage of moving loads.  

The procedure follows the one proposed in Yang, Yau et 

al. (1997) for integrating the equation of motion of a simply 

supported beam that is subjected to the passage of moving 

vehicles. This procedure is also used in Carnerero (2007) 

and Carnerero, Ripa et al. (2014) to integrate the equation 

of motion of a simply supported rectangular orthotropic 

plate subjected to the passage of moving loads along the 

direction of one of its main axes. The current study applies 

this research to the case of skewed passage of moving 

loads, which permits application of the analytical 

methodology to the specific case of pergola bridges 

characterized by crossings with small skew angles (angle 

formed between the track to be constructed and the 

approximately linear obstacle over which the railway is 

projected to pass), Fig. 1. 

The presented methodology is valid for any kind of 

moving vehicles crossing at any angle over an orthotropic 

plate simply supported along its four edges. The paper is 

focused on the skewed passage of high-speed railway trains 

over the most frequently used pergola bridge deck typology: 

precast transverse beams spanning the direction of the short 

edge topped by an in-situ concrete slab (Fig. 1). 

 
2.1 Modelization of a pergola bridge deck by an 

orthotropic plate simply supported on its four edges 
 

To develop the analytical model, the deck of a pergola 

bridge was conceptualized by an orthotropic plate simply 

supported along its four edges. This conceptualization was 

based on reasoned simplifications that were later analyzed 

and checked by FE numerical models (section 3). Note the 

following simplifications: 

Support of the short edges: The short edges of a pergola 

bridge deck are free. However, to simplify the formulation 

of the modal shapes of the deck, the authors decided to 

simply support them. 

Uniform distribution of the mass: On the deck of a 

pergola bridge, the mass coming from the track (whether 

ballasted or not) concentrates in a narrow band around the 

actual track (henceforth referred to as “central band”). 

However, the proposed analytical methodology considers 

 

 

the mass to be uniformly distributed over the total surface 

of the deck. Therefore, for the development of the analytical 

method the mass per unit surface of the whole deck was 

assumed to be identical to the mass per unit surface of the 

central band. 

Slab over the entire deck surface: Although this is 

common on some pergola bridges, usually the concrete slab 

tends to cover only the minimum surface necessary. This 

approximately coincides with the central band. For the same 

reasons mentioned in the previous point, the analytical 

methodology supposes the slab to be continuous over the 

entire deck surface. 

 
2.2 Theoretical basis 
 

The theoretical principles of the orthotropic plate are 

well known and explained in Cusens and Pama (1975), 

Manterola (1977) or Arenas (1981). The main 

characteristics of the rectangular orthotropic plate are 

summarized here 
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The equation of motion of the orthotropic plate can be 

found in Frýba (1999) or Carnerero (2007), and it is 

represented in Eq. (7). 
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Fig. 1 Left: Pergola bridge on the Spanish high-speed railway network. Right: Diagram of the geometric and structural 

basis of pergola bridges 
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Fig. 2 Geometric parameters of a pergola bridge deck 

considered in the analytical methodology 

 

 

For clarity, Appendix A lists and explains the 

parameters presented in the previous equation, as well as all 

other parameters included in this paper. 

The mentioned bibliography solves the frequency 

equation for the case in which the four edges of the plate are 

simply supported, producing the following modal shapes 

and vibration frequencies (Fig. 2 presents the geometric 

parameters) 
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2.3 Integration of the equation of motion for a single 
moving load 

 
Fig. 2 presents the geometric parameters of the deck of a 

pergola bridge considered in the analytical methodology. 

The track along which vehicles cross the deck is assumed to 

be linear, and s denotes the position coordinate along the 

track. In Fig. 2, s1 and s2 show two different track 

possibilities in which the vehicles enter the deck from its 

long and short edges, respectively. The main parameters in 

Fig. 2 are defined in Notation. 

This study is focused on pergola bridge decks when 

moving loads enter the decks at the long edges. The 

proposed analytical methodology can also be applied to 

instances where moving loads enter decks at the short 

edges, but not to cases where moving loads enter the deck at 

the long edge and leave through the short edge, and vice 

versa. The mathematical formulae could be modified to 

include these particular cases, but the increased 

mathematical complexity this would cause, as well as a lack 

of interest in these cases, led the authors to exclude them 

during the preliminary research stages. This applies to other 

analytically definable track geometries, such as a circular 

alignment. 

Using the geometric parameters previously defined and 

the Heaviside step function, the position of one load of P 

value that enters the deck at the temporal origin is defined 

at any instant on the global coordinates by the following 

expressions 
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Where  (   ) refers to the position of the load along the 

track once it enters the deck. Hence, the modal shapes of 

the deck can be expressed only in terms of a single spatial 

parameter,    (   ). 
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Due to the time-space dependency (      ), the 

generalized load can be obtained by means of the Dirac 

function 
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Contrary to what happens when a punctual load passes 

over a simply supported beam (Yang, Yau et al. 1997) and 

passes longitudinally over an orthotropic plate (Carnerero 

2007), the resulting generalized load is not a harmonic load. 

In the cases studied in the references, the temporal 

discontinuity of the generalized load can be eliminated 

using a fictitious load (Yang, Yau et al. 1997), and the 

equation of motion directly integrated. 

In the case study, the skewed passage of the punctual 

load forces consideration of the double curvature of the 

deck, and so the generalized load becomes the product of 

two  harmonic  loads.  This  is  the  first  and  main 

methodological difference between the mentioned 

references and the analytical solution presented in this 

paper. Notice that if the skew angle is assumed to be equal 

to 0 (longitudinal passage), the second harmonic in Eq. (14) 

becomes constant, achieving the particular case studied in 

Carnerero (2007) and Yang, Yau et al. (1997). In the case 

of a skewed passage, a prior step is needed that becomes the 

generalized load of P amplitude in a sum of two harmonic 

loads with     amplitude. The mathematical operation that 

allows this conversion is the following basic trigonometric 

principle 
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 (15) 

Taking into account that the sine and the cosine 

functions are related by    ( )     (     ) ,  the  
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following generalized load expression can easily be derived 
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The previous expression can be seen as the combination 

of two different harmonic loads, truncated once the real 

load leaves the deck by the Heaviside function  (    ) 
(Fig. 3, left). 
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The last step that enables the direct integration of the 

equation of motion is to eliminate the time discontinuity 

that truncates the defined two harmonic loads once the real 

load leaves the deck. First, truncation of the two defined 

harmonic loads is eliminated, achieving two infinite 

harmonic loads (    and    ) whose combination achieves 

the non-truncated generalized load that is going to be 

defined as front load (   ). Then, the effect of the front load 

over the deck once the real load leaves the structure is 

 

 

eliminated by a fictitious load defined as rear load (   ), 
equal and opposite in sign to the front load, that begins to 

act at the same instant the real load leaves the deck. The 

rear load is composed of two other harmonic functions that 

eliminate     and     and are defined as     and     
respectively. Thus, the generalized load can be stated as the 

composition of the front and the rear loads. 

  
          (20) 

        (    ) (21) 

        (    ) (22) 

Fig. 3 describes the mathematical mechanism for the 

definition of the generalized load (  
 ) by two truncated 

harmonic loads (left) and by four non-truncated harmonic 

loads (right).The generalized load is represented for the 

particular case of the first vibration mode of a deck with the 

following characteristics: 

Dimensions:        y       . 

• Passage speed:           . 

• Position of a singular point along the track and skew 

angle: centered on the deck and      . 
• Value of the single punctual load:        . 

The definition of these four harmonic loads takes the 

following shape 

 

 

 

Fig. 4 Sketch of the train of loads and distance of each load 

to the spatial origin-Plan view and folded train elevation 
 

         

Fig. 3 Left: Composition of the generalized load as the sum of two truncated harmonic loads; Right: Composition of the 

generalized load as the sum of four non-truncated harmonic loads 
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Appendix A defines the circular frequency and the 

phase angle of each of the four harmonic loads that form the 

generalized load. 

This is the second methodological difference between 

the analytical methodology proposed in this paper and the 

methodology presented in Carnerero (2007), Yang, Yau et 

al. (1997). In these references, due to the definition of the 

front load by a single harmonic, it is possible to maintain 

the phase angle of the rear load equal to the phase angle of 

the front load (both equal to 0) by the explicit definition of 

the sign of the rear load related to the number of the 

vibration mode:   
      (  )

       . This method 

cannot be used in the current case, and this is why the phase 

angle of the two harmonic functions of the rear load need to 

be defined as described in Eq. (A.7) and Eq. (A.8). On the 

other hand, the methodology proposed in this paper can be 

used in both cases presented in Yang, Yau et al. (1997), 

Carnerero (2007), and so, it can be seen as a generalization 

of the methodology used in the mentioned references. 

Once the generalized load is formed by four 

independent harmonic loads by means of the superposition 

principle, their effect over the structure can be obtained as 

the superposition of the effects of each one of them. 

Integrating a system with a single degree of freedom (in this 

case, each vibration mode) is a well-known dynamic 

problem described in Clough and Penzien (1995). However, 

it must be remarked that the existence of a phase angle on 

the harmonic loads slightly changes the definition of the 

integration constants to those of the basic case. By means of 

the modal superposition method and the mathematic tools 

previously mentioned, the vertical displacement of any 

point of a deck subjected to the skewed passage of a single 

moving load can be defined as the following time 

dependent function 
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  ( ) ,   ( ) ,   ( )  and   ( )  are temporal functions 

used to simplify the general formulae. Appendix B defines 

these functions for the case of Eq. (25). 

 
2.4 Generalization for a train of moving loads 
 
Generalization of the results presented in the previous 

section is easily achievable using the superposition 

principle for a moving train of loads. Therefore, the effect 

of each load can be obtained independently and later 

superposed. However, some considerations must be taken 

into account. 

On one hand, some new parameters need to be defined: 

the relative distance of each single load to a common spatial 

origin, and the different values of each load. Using the 

distance along the track from each load to a common spatial 

origin and the distance from that to the beginning of the 

structure, one can easily define the instant when each load 

enters and then leaves the deck. Usually, it is best to define 

the spatial origin of the first load of the train along with the 

time that this first load enters the deck. The speed of the 

train of loads is considered to be constant, which is quite 

reasonable for the common lengths of high-speed pergola 

bridges. 

In this way, the vertical displacement of any of the 

points of a deck subjected to the skewed passage of a 

moving train of loads can be defined as a time dependent 

function as follows 
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Finally, Appendix B lists the definition of the temporal 

functions mentioned in the previous section. Note that the 

rest of the dynamic parameters of the deck (velocity and 

acceleration) can easily be obtained by the time derivation 

of  the  mentioned  temporal  functions,  while  Eq.  (25) 

remains unchanged. Their resolution is elementary, which is 

why they are not represented here. 

 
 
3. Numerical simulation of a pergola bridge deck by 
FEM: validation and main limitations of the analytical 
methodology 
 

This section discusses the validity of the proposed 

analytical methodology to represent the dynamic behavior 

of pergola bridge decks, and to analyze its main limitations 

by comparison to gradually more complex numerical FE 

models. 

The assessment begins with a comparison of the 

analytical model (AM) and an equivalent numerical model 

(NMT0), which validates the analytical formulae. Then, the 

influence of the support of the short edges is analyzed, 

comparing the NMT0 (simply supported on its four edges) 

and the NMT1 (simply supported only along its long 

edges). Finally, we present three different models that 

represent real types of pergola bridge decks (NMT2, NMT3 

and NMT4) and compare them to the analytical model 

(AM). This is done to assess the validity of the proposed 

analytical methodology to simulate the real dynamic 

behavior of a pergola bridge deck. 

This section begins with a brief summary of the 

analyzed numerical models. Next, the characteristics of the 

numerical dynamic analysis are stated, ending the section 

with a comparison of the dynamic results obtained from the  
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Fig. 5 Cross section of the analyzed deck of a pergola 

bridge 

 

 

different models studied. 

 
3.1 Analyzed numerical models 
 
Numerical model type 0 (NMT0): This numerical model 

is equivalent to the proposed analytical model (AM), and 

therefore represents the same reality. The short edges are 

simply supported, and the mass and the slab uniformly 

distributed. It tries to validate the functioning of the AM. 

Numerical model type 1 (NMT1): This represents the 

NMT0 in which the support of the short edges has been 

eliminated. It attempts to analyze the influence of the 

support on the short edges. 

Numerical model type 2 (NMT2): This represents the 

NMT1 in which the mass has been concentrated on the 

central band. It tries to analyze the influence of the non-

uniform distribution of the vibrating mass. The NMT2 

represents the real situation of a pergola bridge deck in 

which the concrete slab is distributed over the total deck 

surface. 

Numerical model type 3 (NMT3): This represents the 

NMT2 in which the slab has been concentrated on the 

central band. In spite of it, the bending inertia of the 

transverse beams remains constant. It attempts to analyze 

the influence of the longitudinal stiffness of the slab outside 

the central band. The NMT3 represents the real situation of 

a pergola bridge deck in which the longitudinal continuity 

of the slab has been eliminated, maintaining a certain width 

of the slab over each transverse precast beam and thus, their 

bending inertia. 

Numerical model type 4 (NMT4): This represents the 

 

 

NMT3 where outside the central band the bending inertia of 

the model’s transverse bars is reduced to the bending inertia 

of the precast beams. It tries to analyze the effect of the loss 

of transverse stiffness of the deck caused by eliminating the 

slab over the transverse beams. The NMT4 represents the 

most common pergola bridge deck typology in which the 

in-situ slab is concentrated on the central band. 

In all cases, the numerical simulation of a pergola bridge 

deck has been carried out by means of grillage models 

Hambly (1991). Fig. 4 represents the studied FE models. 

 
3.2 Modelization and definition of the parameters 

involved 

 
A standard pergola bridge deck is used for the numerical 

analysis. It has been pre-dimensioned using general design 

rules. It is supposed to be a deck 20 m width ( ) and 100 m 

long ( ), formed with 1.05 m height ( ) precast I beams 

topped by a 0.30 m slab ( ). Thus, the span to height ratio 

    is 14.81, a typical value for railway bridges. The skew 

angle of the rail and the main beams ( ) is 15º, a common 

value for pergola bridges. This angle is in good correlation 

with the length to width ratio of the deck (     ). The 

separation between transverse beam axes ( ) is 1.30 m, 

which is a low value typical for I beams in this kind of 

structures. Fig. 6 represents the cross section of the assessed 

deck, showing its main geometrical parameters. 

As mentioned before, grillage models were used for the 

numerical simulation of a pergola bridge deck. The 

longitudinal bars of the grillage represent the slab of the 

deck, while the transverse bars represent the transversal 

composed beams, formed by the composition of the precast 

beams and the in-situ concrete slab, as shown on the figure 

7. The longitudinal and the transverse bars are placed on the 

same plane, linked to their corresponding gravity centers. 

The table below presents the main geometric and 

mechanical characteristics of the different analytical and 

numerical models. The concrete compressive strength in 

cylindrical, standardized samples is assumed to be 50 MPa 

for the precast beams and 30 MPa for the in-situ slab. The 

bars of the numerical models are homogenized to 50 MPa 

  

  
Fig. 4 From left to right and from top to bottom NMT0, NMT1 and NMT2 (represented by the same model with different 

mass distributions), NMT3 and NMT4 

NMT1 and NMT2 

NMT3 NMT4 

NMT0 
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Table 2 Geometric and mechanical characteristics of the 

AM 

a (m) b (m) θ (º) Itrans. (m
4) Strans. (m) Jtrans. (m

4) e (m) m (kg/m2) 

100 20 15 0.1330 1.3 0.00266 0.3 2325 

 

Table 3 Geometric characteristics of the NM 

a (m) b (m) θ (º) Strans. (m) e (m) Slong. (m) 

98.8 20 15 2.60 0.3 2.00 

 

 

Fig. 7 Displacement response on the center of the deck for 

the TALGO AV passing over the AM and the NMT0 

 

 

concrete, consequently adapting the width of the slab (Fig. 

7). The elastic modulus of the concrete is considered to be 

             √     
 

, and its density 2500 kg/m3 

(EN 1992-1-1 (2004)). The density of the ballast is 

considered to be 1800 kg/m3 (IAPF-07 2007). 

In Table 3 two values are defined for the bending and 

torsional inertia of the main beams, separated by an inclined 

bar (“value 1”/“value 2”). “Value 1” defines the value of 

the parameter for the composed beam, while “value 2” 

defines the value of the parameter for the precast beam 

 

 

 

alone. 

In order to reduce the numerical complexity of the FE 

models, the distance between the axes of the transverse 

beams is increased to the double on the numerical models, 

increasing accordingly their mechanical characteristics. As 

explained in reference Ugarte (2013), this variation does not 

affect the dynamic behavior of the AM and so, the results 

are totally equivalent. 

On the following paragraphs, the dynamic parameters of 

the developed analysis are described. As stated in the 

previous section, the proposed analytical methodology was 

developed using the modal superposition method. Its 

dynamic results were obtained by using its first 56 vibration 

modes. The frequency limit considered in the analysis was 

30 Hz, as stated by the Spanish and European standards EN 

1991-2 (2003), IAPF-07 (2007). Thirty-one of these 

vibration modes respond to mode shapes of a single 

transverse curvature, and 25 of them to mode shapes of a 

double transverse curvature. However, it must be taken into 

account that even vibration modes do not excite the 

evaluated point, situated on the center of the deck. In this 

way, only 16 vibration modes (odd vibration modes with a 

single transversal curvature) influence the dynamic 

behavior of the deck at the studied position. 

On the other hand, SOFISTIK, the FE commercial 

program used to study the numerical models, develops a 

step-by-step integration method based on the Newmark 

Beta methods. In this case, two main parameters must be 

taken into account: frequency limitation and time step 

length. The time step length for which the Newmark Beta 

methods are stable is     
√ 

 
. The minimum required 

period ( ) corresponds to the highest frequency of the 

analyzed frequency range, in this case 30 Hz. To achieve a 

reliable accuracy, the utilized time step length was set at  

 

Fig. 6 Explicative sketch of the numerical FE grillage models 

Table 1 Mechanical characteristics of the NM 

       (m
4)        (m

4)        (m
4)        (m

4)         (kg/m)              (kg/m)               (kg/m) 

0.266/0.1078 0.015/0.0052 0.0039 0.0078 1732 1500 1800 
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Fig. 8 Acceleration response on the center of the deck for 

the TALGO AV passing over the AM and the NMT0 

 

 

  
 

    
 
 

 
            . The frequency limitation was 

made using the Rayleigh damping formulae. The relative 

damping stated on the Spanish and European standards (EN 

1991-2 2003, IAPF-07 2007) for concrete structures 

(       ) was applied to the frequency of the first 

vibration mode of each numerical model and to the highest 

frequency of the studied range (30 Hz). This ensured that 

the relative damping of the frequency range under analysis 

was lower than the normative one, and that vibration modes 

with frequencies over 30 Hz did not influence the dynamic 

behavior of the structure (due to their comparatively high 

damping). In most cases, the relative damping of the 

vibration modes within the studied range were very similar 

to the reference damping. 

The vehicle for this study was a train of moving 

punctual loads. The train used to compare the dynamic 

results of the different models is the TALGO AV, described 

in reference IAPF-07 (2007). 

 

 

 

Fig. 9 Displacement response on the center of the deck for 

the TALGO AV passing over the NMT0 and the NMT1 

 
 
3.3 Dynamic analysis 
 
3.3.1 Validation of the analytical model 
Figs. 8 and 9 represent the results of the dynamic 

assessment of the passage of a TALGO AV train over the 

AM and the NMT0. The analyzed velocity range was 20 

km/h to 550 km/h with 10 km/h steps. The evaluation point 

was set at the center of the deck. 

In Figs. 8 and 9, one may observe a good correlation 

between the AM and the equivalent NMT0. The following 

table summarizes the main results. 

As can be seen, the general dynamic response of the 

AM is strongly similar to the one of the equivalent NM 

(NMT0). The achieved error is for most parameters lower 

than 5%. The maximum displacement obtains a slightly 

higher error, yet still lower than 10%. The error of the 

maximum displacement to the static displacement ratio (the 

impact coefficient) remains between 5-10%. 

Table 4 TALGO AV train as defined in IAPF-07 (2007) 

dk (m) Pk (kN) dk (m) Pk (kN) dk (m) Pk (kN) dk (m) Pk (kN) 

0 170 93.8 170 183.49 170 277.29 170 

2.65 170 106.94 170 186.14 170 290.43 170 

11 170 120.08 170 194.49 170 303.57 170 

13.65 170 133.22 170 197.14 170 316.71 170 

19.13 170 146.36 170 202.62 170 329.85 170 

28.1 170 155.33 170 211.59 170 338.82 170 

41.24 170 160.8 170 224.73 170 344.29 170 

54.38 170 163.45 170 237.87 170 346.94 170 

67.52 170 171.8 170 251.01 170 355.29 170 

80.66 170 174.45 170 264.15 170 357.94 170 

dk: Distance from load axis Pk to first load axis (P1) in m 

Pk: Value of the load of axis k in kN 

Table 5 Main dynamic parameters of the displacement and acceleration response on the center of the deck for the 

TALGO AV passing over the AM and the NMT0 

Model dmax (mm) vd,max (km/h) dmax/dstatic amax (m/s2) va,max (km/h) 

AM 5.68 430.00 3.11 17.34 500.00 

NMT0 6.27 420.00 3.36 17.32 500.00 

AM error (%) -9.32 +2.38 -7.30 +0.10 0.00 
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The dynamic parameters involved in design obtained  

errors below or very similar to 5%, and the general response 

of the deck is practically identical in both cases. The 

authors consider that this confirms the validity of the 

analytical methodology proposed in the previous section. 

 
3.3.2 Evaluation of the influence of the support of the 

short edges 
 

Figs. 10 and 11 represent the results of the dynamic 

assessment of the passage of a TALGO AV train over the 

NMT0 and the NMT1. The analyzed velocity range was 20 

km/h to 550 km/h with 10 km/h steps. The evaluation point 

was set at the center of the deck. 

From Figs. 10 and 11, one may conclude that the 

general dynamic behavior is almost equal in both cases. If 

the modal shapes of the vibration modes of both models are 

compared, the similarity is clearly visible, showing that the 

shape along the track is almost equivalent. 

The table below shows the summarized results of the 

dynamic analysis shown in Fig. 9 and Fig. 11. 

Table 6 shows clearly the minor influence the support of 

the short edges had on the dynamic behavior of the deck. In 

general, the achieved error is less than or nearly equal to 

5%, including the impact factor. The only parameter with a 

slightly greater error is the resonant velocity for the 

maximum acceleration. Nevertheless, as can be seen in Fig. 

11, there are two resonant peaks for accelerations in both 

NMT0 and NMT1, with very similar shape and maximum 

values.  The  difference  in  the  resonant  velocity  is  

 

 

 

Fig. 11 Acceleration response on the center of the deck for 

the TALGO AV passing over the NMT0 and the NMT1 

 

 

determined by small differences in which of the peaks is 

more relevant on each model. This way, the low influence of 

the support of the short edges is considered to be confirmed. 

 

3.3.3 Evaluation of the validity of the Analytical 
Model to represent the deck of a pergola bridge 

As mentioned before, models NMT2 to NMT4 represent 

different construction typologies of pergola bridge decks 

formed by precast transverse beams that are topped by an in 

situ concrete slab. The differences between these models 

are based on different distributions of mass and stiffness. 

Next, the dynamic analyses of the three numerical models 

are carried out by comparing their dynamic behaviors to the 

one obtained for the AM. 

  

  
Fig. 10 Mode shapes of the 5th and the 8th vibration modes of the NMT0 and the NMT1, respectively 

Table 6 Main dynamic parameters of the displacement and acceleration response on the center of the deck for the 

TALGO AV passing over the NMT0 and the NMT1 

Model dmax (mm) vd,max (km/h) dmax/dstatic amax (m/s2) va,max (km/h) 

NMT0 6.27 420.00 3.36 17.32 500.00 

NMT1 5.91 430.00 3.18 17.99 430.00 

NMT0 error (%) +5.99 -2.33 +5.76 -3.72 +16.28 

NMT0: 5th vibration mode NMT1: 5th vibration mode 

NMT0: 8th vibration mode NMT1: 8th vibration mode 
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Fig. 12 Displacement response on the center of the deck for 

the TALGO AV passing over the AM, the NMT2, the 

NMT3 and the NMT4 

 

Table 7 Main dynamic parameters of the displacement and 

acceleration response on the center of the deck for the 

TALGO AV passing over the AM, the NMT2, the NMT3 

and the NMT4 

Model dmax (mm) 
vd,max 

(km/h) 
dmax/dstatic 

amax 

(m/s2) 

va,max 

(km/h) 

AM 5.68 430.00 3.11 17.34 500.00 

NMT2 6.10 430.00 3.28 22.04 500.00 

NMT3 5.25 450.00 2.69 18.24 450.00 

NMT4 5.63 380.00 2.71 16.88 420.00 

AM to NMT2 

error (%) 
-6.76 0.00 -5.04 -21.34 0.00 

AM to NMT3 

error (%) 
+8.31 -4.44 +15.65 -4.95 +11.11 

AM to NMT4 

error (%) 
+1.03 +13.16 +15.07 +2.71 +19.05 

 

 

Figs. 13 and 14 represent the results of the dynamic 

assessment of the passage of a TALGO AV train over the 

AM, the NMT2, the NMT3 and the NMT4. The analyzed 

velocity range was 20 km/h to 550 km/h with 10 km/h 

steps. The evaluation point was set at the center of the deck. 

In spite of the significant differences in mass and 

stiffness istributions between the analyzed models, the 

general shape of the dynamic behavior remains very 

similar. To better understand the specific characteristics of 

each model and their main differences, the table below 

shows the summarized results of the dynamic analysis 

illustrated in Fig. 12 and Fig. 14. 

The results shown in Table 7 permit the extraction of the 

following conclusions: 

 

NMT2 compared to the AM. 

Displacements: Once the minor influence of the support 

of the short edges is established, it can be stated that NMT2 

maintains the stiffness distribution of NMT0. In this way, it 

achieves a similar displacement response with an 

errorclearly below 10% on the maximum displacement and 

close to the 5% on the impact factor. 

Accelerations: The mass of NMT2 is clearly reduced 

from NMT0, NMT1 or AM. It is well known that a 

reduction of the mass increases the acceleration level by the 

same amount on simple-degree-of-freedom systems (ERRI- 

 

Fig. 13 Displacement response on the center of the deck for 

the TALGO AV passing over the AM, the NMT2, the 

NMT3 and the NMT4 

 

 

D214-RP9-A 1999, ERRI-D214-RP9-N 1999, Carnerero 

2007). In complex structural typologies, participation by a 

great number of vibration modes reduces this 

proportionality, but the tendency to increase the 

acceleration level with the mass reduction is still clear 

(Ugarte 2013). This explains differences of about 20% on 

the maximum acceleration of AM and NMT2. 

 

NMT3 compared to the AM and to the NMT2. 

Displacements: The transverse stiffness of NMT3 

remains very similar to the stiffness of NMT0, NMT1, or 

AM. As displacements are mainly governed by low 

vibration modes whose generalized stiffness is determined 

by the transverse stiffness of the deck, the maximum 

dynamic displacement remains significantly unchanged, 

obtaining an error below 10%. The static displacement is 

determined by fewer vibration modes than the dynamic 

displacement, and it is affected more by the minor decrease 

of the generalized stiffness, which leads to a slight decrease 

of the impact factor (around 15%). 

Accelerations: The mass and stiffness distribution on the 

central band is similar to the mass and stiffness distribution 

on AM, while the surface outside the central band has less 

influence than in NMT2. Hence, the obtained maximum 

acceleration is slightly higher but very similar to the one 

obtained on AM, maintaining an error below 5%. 

Nonetheless, it must be taken into account that the 

acceleration response is governed by higher vibration 

modes than the displacement behavior. The weight of the 

longitudinal stiffness over the global stiffness increases 

with the vibration modes, and thus the slab elimination 

outside the central band mainly affects the acceleration 

response. Although the acceleration level is approximately 

independent of stiffness variations (not completely, see 

Ugarte (2013), the resonant velocity is not, showing a 

decrease of around 10% on the resonant velocity of the 

maximum acceleration from AM to NMT3. 

 

NMT4 compared to the AM and the NMT3. 

Displacements: Because of reduced bending inertia of 

the transverse beams outside the central band, the transverse 

stiffness of the first vibration modes of NMT4 is slightly 

decreased compared to NMT3. Thus, the maximum 
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displacement is increased, although it is not quite 

proportional (see Ugarte 2013). The particular amount of 

this increase depends on the specific characteristics and 

position of the central band over the deck. According to the 

results obtained, one can say that the influence of this 

phenomenon is limited for the usual deck width to central 

band width ratios, achieving in this case an increase of the 

maximum displacement from NMT3 to NMT4 of 7.23%. 

As for NMT3, the static displacement tends to increase 

over the dynamic displacement, and thus the impact factor 

tends to decrease slightly in comparison to AM. For the 

usual pergola bridge deck width to central band width 

ratios, the impact factor is expected to remain similar to the 

one obtained for the NMT3, and so the error on the impact 

factor is estimated to remain below 15-20%. The reduction 

of stiffness of the first vibration modes also affects the 

resonant velocity of the maximum displacement, showing a 

reduction of about 15%. 

Accelerations: Comparing AM and NMT4, we may 

observe the independence of the acceleration level to the 

stiffness variation, achieving an error on the maximum 

acceleration of less than 5% (as happened when comparing 

AM to NMT3). In spite of this, the reduction of stiffness is 

clearly patent on the reduction of resonant velocity of the 

maximum acceleration as well, obtaining an error that 

slightly exceeds 20%. 

 

 

4. Conclusions 
 

Throughout this paper, the authors propose a simple 

analytical model to study the dynamic behavior of pergola 

bridge decks. Also, this model is compared to the dynamic 

response of bi-dimensional FE models that represent the 

real distributions of mass and stiffness on this kind of 

structure. The following conclusions can be drawn: 

1. The analytical model accurately represents the 

simplified structural reality that it represents, achieving 

an error on the main dynamic design parameters below 

or very similar to 5% when compared to an equivalent 

FE numerical model. 

2. The influence of the support of the short edges is 

found to be negligible. 

3. When it is compared to more complex numerical 

models that represent real alternatives of pergola bridge 

decks, the overall behavior of the analytical model is 

still very good, achieving errors below 5-10%. 

Nevertheless, in some specific cases the following 

considerations need to be made. 

a. For those decks of pergola bridges where the slab 

is uniformly distributed over the entire surface of the 

deck, a moderate increase of the maximum 

acceleration is expected. Its magnitude depends 

mainly on the ratio between the mass on the central 

band and the mass outside it, achieving values 

around 20% higher than those of the analytical 

model for the usual mass ratios. 

b. For those decks of pergola bridges where the slab 

is only defined on the central band along which the 

track is settled, a slight decrease of the impact factor 

is expected, achieving values around 15% lower than 

those of the analytical model. 

c. In these cases, special attention should be taken 

with the upper limit of the analyzed velocity range, 

as a reduction of 15-20% on the resonant velocity of 

both displacement and acceleration response is 

expected. Thus, for this kind of deck the 

recommendation is to increase the upper limit of the 

velocity range the same amount to obtain the 

expected resonant peaks in the analyzed range. 

Taking into account these considerations, the analytical 

model proposed in this paper has been shown to be a simple 

and reliable methodology to develop usually complex and 

difficult-to-evaluate dynamic calculations. The analytical 

model allows structural engineers to make dynamically 

aware designs for pergola bridge decks, beginning in the 

early stages of the project. In this way, the structure can 

easily be dimensioned, employing more complex and time 

consuming numerical methods only as a verification tool at 

the final stages of the project. 
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Notations 
 
The following symbols are used in this paper: 
 ,   = longitudinal and transverse dimensions of a deck; 

  ,    = longitudinal and transverse position of a singular 

point along the track; 

  ( ) ,   ( ) ,   ( ) ,   ( )  = Temporal functions for the 

definition of the dynamic parameters of the deck; 

 (   ) = damping coefficient; 

   = distance between the first load of a train and the load 

  ; 

  ,    = longitudinal and transverse coupling unit stiffness 

of an orthotropic plate; 

  ,    = longitudinal and transverse flexural unit stiffness 

of an orthotropic plate; 

   ,     = longitudinal and transverse torsional unit 

stiffness of an orthotropic plate; 

  = slab thickness; 

     ,       = elasticity modulus; 

     ,       = shear modulus; 

  = time step length utilised for the step-by-step integration 

method on the numerical analysis; 
    ,      = flexural stiffness of longitudinal and transverse 

beams; 

  ,    = torsional stiffness of longitudinal and transverse 

beams; 

  = number of certain load of a train; 

  
  = generalized stiffness of vibration mode  ; 

   = number of the last load of a train; 

 (   ) = mass per unit area of an orthotropic plate; 

 ,   = number of longitudinal and transverse half sin 

waves of the modal form of an orthotropic plate; 

 (     ) = load at position  ,   and instant  ; 
 ,    = load of a single axis; 

   ,    ,    ,    ,    ,     = fictitious harmonic load 

functions for the definition of the generalized load of 

vibration mode  ; 
  
  = generalized load of vibration mode  ; 
  = number of the vibration mode of an orthotropic plate; 

  = number of the highest vibration mode considered in the 

analysis; 

  = position coordinate along the direction of the track; 

  ,    = longitudinal spacing between transverse beams and 

viceversa; 

  = time; 

   = time between the origin and the entrance of the load    

on the deck; 

  = train velocity; 

 (     ) = vertical displacement of an orthotropic plate; 

  = circular frequency of vibration mode  ; 
   = circular damped frequency of vibration mode  ; 

      = circular frequency of the fictitious harmonic load 

function    ; 
 ,   = longitudinal and transverse position coordinates; 

    ,      = frequency ratio for fictitious loads     and    , 
and     and     respectively; 

   = time that needs a single load to cross the deck at 

certain constant velocity  ; 

  = angle between the direction of the track and the 

longitudinal direction; 

      =   angle for which the track enters the deck over its 

corner; 

  = poisson’s coefficient; 

   = damping ratio of vibration mode  ; 
      = phase angle of the fictitious harmonic load function 

   ; 
  (   ) = modal shape at position  ,   for vibration mode 

 ; 
   = torsional and coupled unit stiffness of an orthotropic 

plate; 
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Appendix A 
 

Definition of the circular frequency and the phase 
angle of the 4 harmonic loads that form the 
generalized load of a single load moving over an 
orthotropic plate 

 
Comparing Eqs. (18), (19) and (23), the circular 

frequency and phase angle of loads     and     can 

directly be obtained. 
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Therefore, taking into account that the circular 

frequency of the two harmonic functions of the rear load 

has to be equal to that of the two harmonic functions of the 

front load, the rear load can be obtained solely by defining 

the right phase angle for its harmonics 
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Appendix B 
 

Definition of the temporal functions for Eq. (25) 
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