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higher order shear and normal deformation theory

Tahar Hassaine Daouadiji™? and Belkacem Adim*?

lDépar‘cement de Génie Civil, Université Ibn Khaldoun Tiaret, BP 78 Zaaroura, 14000 Tiaret, Algérie
?Laboratoire de Géomatique et Développement Durable, Université Ibn Khaldoun de Tiaret, Algérie

(Received June 5, 2016, Revised July 21, 2016, Accepted September 10, 2016)

Abstract. This paper presents an original hyperbolic (first present model) and parabolic (second present model) shear and
normal deformation theory for the bending analysis to account for the effect of thickness stretching in functionally graded
sandwich plates. Indeed, the number of unknown functions involved in these presents theories is only five, as opposed to six or
even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear
deformation and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and satisfies the
stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. It is
evident from the present analyses; the thickness stretching effect is more pronounced for thick plates and it needs to be taken into
consideration in more physically realistic simulations. The numerical results are compared with 3D exact solution, quasi-3-
dimensional solutions and with other higher-order shear deformation theories, and the superiority of the present theory can be

noticed.
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1. Introduction

The concept of Sandwich construction is one of the most
functional forms of composite structures developed by the
composite industry. It has attained broad acceptance in
aerospace and many other industries and it is widely
employed in aircraft and space vehicles, ships, boats, cargo
containers, and residential constructions. Sandwich
composite construction offers great potential for large civil
infrastructure projects such as industrial buildings and
vehicular bridges. Sandwich structures represent a special
form of a layered structure that consists of two thin stiff and
strong face sheets separated by a thin and a relatively thick,
lightweight, and compliant core material. In modern
sandwich structures the faces are usually made of metal or
laminated composite materials, and typically a compliant
compressible core made of a low-strength honeycomb type
material or polymeric foam. The faces and the core are
joined by adhesive bonding, which ensures the load transfer
between the sandwich constituent parts. However, the
demand for improved structural efficiency in many
engineering fields has resulted in the development of a new
class of materials, called functionally graded materials
(FGMs).

Recently, the researches on functionally graded material
plates have received substantial attention, and an extensive
spectrum of plate theories has been introduced based on the
classical plate theory and shear deformation plate theory.
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The classical plate theory (CPT) neglects shear
deformations and can lead to inaccurate results for
moderately thick plates. The First-order shear deformation
theory (FSDT) Reissner (1945) and Mindlin (1951),
considers the transverse shear deformation effects, but
needs a shear correction factor in order to satisfy the zero
transverse shear stress boundary conditions at the top and
bottom of the plate. Many studies of the mechanical
behavior of plates have been carried out using FSDT (Della
Croce 2004, Tounsi, Menaa et al. 2012, Rashidi, Shooshtari
et al. 2012, Bouazza 2014, Bourada 2015, Hamidi 2015,
Mahi 2015). To avoid the use of shear correction factors,
several higher-order shear deformation plate theories
(HSDTs) have been proposed such as the theory
propounded by Nelson and Lorch (1974) with nine
unknowns, Lo, Christensen et al. (1977) with eleven
unknowns, Reddy (1984) with five unknowns. Some higher
order theories based on Carrera’s unified Formulation
(CUF) such as proposed in Refs. (Neves, Ferreira et al.
2012, Reddy 2000, Benyoucef, Mechab et al. 2010, Ait
Amar 2015, Tounsi 2013, Bellifa 2015, Benoun 2016,
Bouazza 2015, Bouderba 2015, Abdelhak 2015) have been
used also to study FGM structures. The majority of HSDTs
used to investigate FGM plate mechanics have the same
five unknowns. The resulting equations of motion are much
more complicated than those yielded with FSDT. In
addition, it should be noted that the above-mentioned two-
dimensional plate theories discard the thickness stretching
effect as they consider a constant transverse displacement
through the thickness. This assumption is appropriate for
thin or moderately thick FGM plates, but is inadequate for
thick FGM plates (Qian 2004). The importance of the
thickness stretching effect in FGM plates has been
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Fig. 1 Geometry of rectangular FGM sandwich plate with
uniform thickness in the rectangular Cartesian coordinates

identified succinctly in the work of Carrera, Brischetto et al.
(2011). This effect plays a significant role in thick FGM
plates and should be taken into consideration. In general,
higher order shear and normal deformation theories which
consider thickness stretching effect can be implemented
using the unified formulation initially proposed by Carrera
(2011). Many higher order shear and normal deformation
theories have been proposed in the literature, these theories
are cumbersome and computation-ally expensive since they
invariably generate a host of unknowns (e.g., theories by
Reddy (2000) with eleven unknowns; and Neves, Ferreira et
al. (2012) with nine unknowns). Although some well-
known quasi-three-dimensional theories developed by
Zenkour (2007) and recently by Mantari and Guedes Soares
(2014) have six unknowns, they are still more complicated
than the FSDT. Thus, there is a scope to develop an
accurate higher order shear and normal deformation theory,
which is relatively simple to use and simultaneously retains
important physical characteristics. Indeed, Thai and Kim
(2013) presented recently a quasi-3D sinusoidal shear
deformation theory with only five unknowns for bending
behavior of FGM plates.

In this present research, a simple quasi -3D
trigonometric shear and normal deformation theory with
only five unknowns is developed for FGM sandwich plates.
Contrary to the four-variable refined theories elaborated in
(Tlidji, Hassaine Daouadji et al. 2014, Benferhat 2015),
where the stretching effect is neglected, in the current
investigation this so-called “stretching effect” is taken into
consideration. The present theory complies with the
tangential stress-free boundary conditions on the plate
boundary surface, and thus a shear correction factor is not
required. The plate governing equations and their boundary
conditions are derived by employing the principle of virtual
work. Navier-type analytical solution is obtained for plates
subjected to bi-sinusoidal transverse load for simply
supported boundary conditions. The results of present
optimized higher order shear deformation theory are
compared with 3D exact, quasi-exact, and with other
closed-form solution published in the literature.

2. Problem formulation for FGM sandwich plates
2.1 Geometrical configuration
Consider the case of a uniform thickness, rectangular

FGM sandwich plate composed of three microscopically
heterogeneous layers referring to rectangular coordinates (x,

Fig. 2 The material variation along the thickness of the
FGM sandwich plate: (a) FGM face sheet and
homogeneous core (b) homogeneous face sheet and FGM
core

y, z) as shown in Fig. 1. The top and bottom faces of the
plate are at z=+h/2, and the edges of the plate are parallel to
axes x and y. The sandwich plate is composed of three
elastic layers, namely, ‘‘Layer 1°°, “‘Layer 2°°, and ‘‘Layer
3’ from bottom to top of the plate. The vertical ordinates of
the bottom, the two interfaces, and the top are denoted by
h,;=-h/2, h,, hs, h;=h/2, respectively. For the brevity, the
ratio of the thickness of each layer from bottom to top is
denoted by the combination of three numbers, i.e., *“1-0-1,
¢“2-1-2°’ and so on. As shown in Fig. 2, two types A and B
are considered in the present study:

- Type A: FGM facesheet and homogeneous core

- Type B: Homogeneous facesheet and FGM core

2.2 Material properties

The properties of FGM vary continuously due to
gradually changing the volume fraction of the constituent
materials, usually in the thickness direction only. Power-
law function is commonly used to describe these variations
of materials properties. The sandwich structures made of
two types of power-law FGMs mentioned before are
discussed as follows.

221 Type A: power-law FGM face sheet and
homogeneous core

The volume fraction of the FGMs is assumed to obey a
power-law function along the thickness direction

P
vo o[ 2= ] emng (12)
hz_h1
V® =1, ze[h,h] (1b)
V(e):[z_h4 jp' Fefiend (1c)
h, —h,

Where V¥, (k=1,2,3) denotes the volume fraction
function of layer k; p is the volume fraction index
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(0<p<+w), which dictates the material variation profile
through the thickness.

2.2.2 Type B: homogeneous facesheet and power-
law FGM core

The volume fraction of the FGMs is assumed to obey a
power-law function along the thickness direction

V“’:O' zelh;,h,] (22)
v<z>_(2—_hsz ze[h, h,] (2b)

= hs_hz , 21773

v® -1 ze[h,h,] (2¢)

In which V®, and p are as same as defined in Eq. (1).

The effective material properties, like Young’s modulus
E, and Poisson’s ratio v, then can be expressed by the rule
of mixture (Marur 1999) as

PO@) =P+ (R-PV @

Where P is the effective material property of FGM of
layer k. For type A, P, and P, are the properties of the top
and bottom faces of layer 1, respectively, and vice versa for
layer 3 depending on the volume fraction V¥, (k=1,2,3). For
type B, P; and P, are the properties of layer 3 and layer 1,
respectively. These two types of FGM sandwich plates will
be discussed later in the following sections. For simplicity,
Poisson’s ratio of plate is assumed to be constant in this
study for that the effect of Poisson’s ratio on the
deformation is much less than that of Young’s modulus
(Delale and Erdogan 1983).

2.3 Basic assumptions

The displacement field of the present theory is chosen
based on the following assumptions:

- The transverse displacements are partitioned into
bending, shear and stretching components;

- The in-plane displacement is partitioned into
extension, bending and shear components;

- The bending parts of the in-plane displacements are
similar to those given by CPT;

-The shear parts of the in-plane displacements give rise
to the trigonometric variations of shear strains and hence
to shear stresses through the thickness of the plate in
such a way that the shear stresses vanish on the top and
bottom surfaces of the plate.

2.4 Kinematics and constitutive equations

Based on these assumptions, the following displacement
field relations can be obtained

avvs
OX
oW, (4)
oy
W(X, Y, 2) =W, (X, ¥) + W, (X, ¥) + 9(2)w, (X, Y)

U(X, ¥,2) = U (X, ) — 2 aavi (@)

v(x.y,z)=vo(x,y)—z%— f(2)

Where u, and v, denote the displacements along the x
and y coordinate directions of a point on the mid-plane of
the plate; wy, and wg are the bending and shear components
of the transverse displacement, respectively; and the
additional displacement w, accounts for the effect of normal
stress. In this study, the shape functions f(z) represents
shape functions determining the distribution of the
transverse shear strains and stresses along the thickness and
is given as :

Present model 1: The function f(z) is an hyperbolic
shape function (Hassaine Daouadji 2013) (Hyperbolic Shear
Deformation Theory)

3 o1 3
f(z)=1z |:1+77Zsech [Eﬂ—ghtanh [E) (5a)

Present model 2: The function f(z) is an parabolic shape
function (Parabolic Shear Deformation Theory)

4z2
f(z)= z—z[l— 3h2j (5b)

The non-zero strains associated with the new
displacement field in Eq. (4) are

au, ow, GRA
. X ox? ox?
) ov, 02 0?
g b= EO —z ay"gb ~f(2) ay"‘z’s (6a)
7Xy % + % 2 62Wb 2 azWs
oy  Ox oxoy oxoy
ava + %
Y of 0
14 0z oW oW
Xz S + Z
OX OX
5, =8 0 g(a)w, (60)
oz

The linear constitutive relations of a FG plate can be
written as

o, Cu » C O 0 0 || &4
(Ty C12 C:22 C23 0 0 0 y
o, | C; C,, Ci; O 0 0 &,
o,/ 0O 0 o0 cCc, 0 0 ||lr, 0
Oy 0 0 0 0 Cyx O |7
oy] O 0 0 O Cos | |7

Where (oy, 0y, 65, Ty Tuw Txy) AN (e, &y &2 Pyz Px Py) F€ the
stress and strain components, respectively. The computation
of the elastic constants C;; depends on which assumption of
&, we consider. If &,=0, then Cj; are the plane stress reduced
elastic constants, defined as

_~ _ E@®»
w=Co=g- % (5)
Cp=VCy, (8b)



52 Tahar Hassaine Daouadji and Belkacem Adim

E(2)

C44 = Css :Cee = 2(1+V)

(8c)

If &#0 (thickness stretching), then Cj are the three-
dimensional elastic constants, given by

C1=Cp=Cy= A-nE@ (9a)
@-2v)1+v)
__E@ (9b)
1—2v)(1+v)

012: 13 = 23 ©

C44 = Css = Cee = E(Z) (9c)
2(L+v)
Lame’s coefficients are:
_ VE(2) : o _ E(z) 10
A= oy “O=C@D =50, (0

The module E(z), G(z) and the elastic coefficients Cj vary
through the thickness according to Eq. (3)

2.5 Governing equations

The governing equations of equilibrium can be derived
by using the principle of virtual displacements. The
principle of virtual work in the present case yields

A +6V =0 (11)

Where oU is the variation of strain energy and oV is the
variation of potential energy. The variation of strain energy
of the plate is calculated by

h/2
oU = J. I(GX55X +0o,08, +0,0¢, +
—-h/2 A (12)

O-xyé‘yxy + O-yZ5;/yZ + O-XZ5;/XZ)'dA'dZ

2 2
T T
2°A7 7 OX OX OX
N, Qo _pn W s OW,
oy oy

(13)

2 2
N, | Loy Xo | opgp TWo _ppys OV
oy o oxdy oxdy

+SX(6WS 6WJ+S (aw aW]]dA
oX  OX oy oy

Where A is the top surface and the stress resultants N;
M, and Q are defined by

N, N, N, 1
MP, ME ME L= d
X1 y! xy [ J:h/Z (O-x 1O-y l O-xy) z z (14&)
M, M, MG f(2)
h/2 ,
N, = (c.)9'(2)dz (14b)

h/2
(55) =] (77,)9(2)dz
Where
azwb
B ox?

N _Au Aiz

Bzz ayz — b2 GXZS 22 ayzs + L23W
2
ny=A66 %+3V ZBeeaWb 2B§eaws
oy X oxoy oXoy
2
My = Bu% + By, z\;; -Dy aaV\z/b
X X
o*w, s O°W, oW, .,
D12 b D11 8X2 - DlZ ayz + L13Wz
v, oW,
BlZ Bzzg D12 8X2b
o*w, , 0° W, . 0 W, o
- D22 b D12 8X Dzz ay L23Wz
2
M:y:Be %4’% 2D666Wb 2D§66WS
oy o X0y oxoy
ou . O°W,
Bll 0 BlZ axzb
2 2
- Dlsz aabe Hlsl 66)\:\215 - Hlsz aayvgs + R13Wz
9] oV o*w,
= B132 stz EO - D152 5X2b
, 0w, , O°W. s 0w
- Dzz . H12 : sz >+ stwz

oy? o Py

s oefou, ov . O°w, . O°W,
Mxy = Bee(o"';j_ZDse ° —2Hg

oy o oxoy oxdy
LM M e o'W,
. =L ax +Ly Y |—13

o°W,

+ R33W

- I—zs R13 23 8y

(14c)

(15a)

(15b)

(15¢)

(15d)

(15e)

(15f)

(159)

(15h)

(15i)

(15))
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OW, 8W
S, = A ( o ] (15Kk)
oW, ow,
S, = =A 15l
()

Where Aj;, B, etc., are the plate stiffness, defined by

A, B, Dy B151 D131 Hlsl
A, B, Dy Blsz Dlsz H152 =
A Bes Des Bsse Dée H 26

16a
-, (162)
3 hkl V
Y[kt @22, 12 @) 1 id
k=1 -2V
2v
And
(A,,B,.D,,,B5,, D5, H3, )= (A, B, Dy, B, D3 HS, )
(16b)
S chy,
AL =A% =2 [ " u(2)(g(2)?dz  (160)
k=1"
L 1
L2 3 .h, z
:ZJ'h:“i(z) f(z) (9'(2)dz (16d)
= o 1l=v
R? g(Z)T

The variation of potential energy of the applied loads
can be expressed thus

& =—| a(w, +3w, +g(2)ow,)dA  (17)

Where q is the distributed transverse load. Substituting
the expressions for U and 6V from Egs. (12) and (17) into
Eg. (11) and integrating by parts, and collecting the
coefficients of dug; Jovg;, owy, ows and ow,, the following
equilibrium equations of the plate are obtained

Sug: al\17x+76ny =0 (18a)
OX oy
SV, : LNXV Jr—aNy =0 (18b)
OoX oy
2 b aZMb 82
SW,: 6NZIX+2 A +q o (18¢)
ox Oxoy oy?
2 s 2 s 2 s
Sw,: o NZIX 129 My | 8 Nzly +@+§+Q=O
OX oxoy oy ox oy
(18d)
oS
Oy +—L_N,+g(z)g=0  (18¢)

Toox oy

By substituting Eq. (6) into Eq. (7) and the subsequent
results into Eq. (14), the stress resultants are readily
obtained as

N A B B[e L
MPL=| A D D°[Kk’b+qL% el
M| |B° D° H°|[lk*| |R

S = AS},, (19b)
N, =R°w, + (] +&)) + L (k; +k) + R(k; +k;)  (19¢)

(19a)

Where

N={N,N, N} M°={M> M2 M? },

M®={M:, M3, M3, }, (20a)
0o .0 0 b b b b
8:{8X,8y,)/xy} k {kx,ky,k }
ke ={ ks, K . (20b)
Ail A12 O B]_]_ BlZ O
=|A, A, 0| B=|B, B, 07p
0 0 A 0 0 By
o D (20¢)
D=|D, D, O '
0 O DGG
B, B, O n Dy, 0
B°=|B, B, O D°=|D;, D;, O
0 0 B 0 0 D
Hi, H;, O (20d)
H®=/H; H; 0 ’
0 0 Hg
S:{Sx’sy}’ y:{yxwyyz}* A5:|:AE‘)‘4 AZS:| (20e)
5

Equilibrium equations in terms of displacements

Introducing Eq. (20) into Eq. (18), the equilibrium
equations can be expressed in terms of displacements (duo;
Ovg;, owp; ows and owy,,) and the appropriate equations take
the form

0%V, ow,
Ail 2 Aee ay +Aee)7ay_ 11 8X3
_ 21a
(BlZ+ZBGG)a ay ( 12+ZB ay ( )
- Blsla bt L13 -
Ao S Ay ek (A +A6)62”°— W,
2 6 2 6 oxdy 22 8y3
— (B, + 2866) — (B, + 2866) 8y (21b)
S 83 S a\/VZ
_822%4‘ L23W=0
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Table 1 Comparison of the Dimensionless stress and deflection of sandwich square plates embedding an FGM (Al/
Al,0O3) core with a polynomial material law subjected to sinusoidal distributed load

w(a/2,b/2,0)

5.,(0,b/2,h/6)

&5,.(0,b/2,n/3)

Theor
P y a/h=4 a/h=10 a/h=100 a/h=4 a/h=10 a/h=100 a/h=4 a/h=100
Present Model 1- ,7#0 0.7276  0.6060 0.5827 0.2713 0.2724 0.2726 0.6131 15.2932
Present Model 2- ,#0 0.7263  0.6050 0.5817 0.2718 0.2728 0.2730 0.6044 14.9927
Mantari (2014)- ¢,#0 0.728 0.606 0.583 0.271 0.272 0.273 0.613 15.290
1 Thai and Kim (2013)- ¢,=0 0.725 0.604 0.581 0.272 0.273 0.273 0.601 14.861
Neves, Ferreira et al.
- Quasi-3D (2012) 0.742 0.631 0.609 0.274 0.279 0.279 - -
Tounsi, Menaa et al.
_FSDT- £,20 - (2012) 0.774 0.634 0.607 0.246 0.246 0.246 0.697 17.344
Present Model 1- ,#0 1.0164 0.7815 0.7366 0.2596 0.2610 0.2613 0.4606 12.1058
Present Model 2- ,#0 1.0170 0.7805 0.7351 0.2633  0.2649 0.2652 0.4480 11.7222
Mantari (2014)- &,#0 1.016 0.782 0.737 0.260 0.261 0.261 - -
4 Thai and Kim (2013)- &,=0 1.017 0.780 0.734 0.265 0.266 0.267 - -
Neves, Ferreira et al.
- Quasi-3D (2012) 1.039 0.820 0.778 0.272 0.278 0.279 - -
Tounsi, Menaa et al.
FSDT. 20- (2012) 1029 0819 0780 0188 0.188  0.188 - -
Present Model 1- ,#0 1.1535 0.8316 0.7701 0.1900 0.1912 0.1914 0.3234 9.0206
Present Model 2- ,#0 1.1562 0.8321 0.7700 0.1930 0.1945 0.1947 0.3097 8.6357
Mantari (2014)- &,#0 1.153 0.832 0.770 0.190 0.191 0.191 0.323 9.015
10 Thai and Kim (2013)- &,#0 1.157 0.832 0.769 0.194 0.196 0.196 0.304 8.458
Neves, Ferreira et al.
- Quasi-3D (2012) 1.178 0.865 0.805 0.202 0.206 0.206 - -
Tounsi, Menaa et al.
FSDT. 20- (2012) 1111 0856  0.808 0123 0123 0123 0420  10.495
d°u &%u o2
B, 175x 30 + (B, +2Bge) axa;z + +(R13+A55 +(R23+A44) ayV\ZIS
d%v, o*w, (21e)
(B, + 2Bse) 80y + By, ay3o —Dy, 8X4b + A 66)\(NZ + A, o V\ZIZ —R&wW, +9q=0
“w, o'w, . 0w
~2(Dy; +2Dg,) X2 a;b/ — Dz, ay4b —Di ox? (21c) 2.6 Analytical solutions
o' o*w, . . .
—2(Dy; +2Dce) Zoy? D, ayi Consider a simply supported rectangular sandwich plate
with length a and width b under transverse load q. Based on
e 2 a, & e Navier solution method, the following expansions of
displacements (Ug; Vo, Wy; Ws; W,) are assumed as
BS 63U0 Bs oBS uO X =
n g (Bt 2Be) F o Uo (%, ¥) = 223U o, COS(AX)SiN 489)
3y 8%, o*w, metn=
B ZBS ] BS o __ DS b =) 0
+ (B v 66)6 6y + Pz oy? ooxt Vo (X, Y) = ZZ  Sin( Ax) cos(xy)
“w, o*w, m=1n=1
- 2(D152 + 2D66) 6 . Dzsz 4b > &
, “oy* % (21d) W, (X, y) = Z omn SIN(AX) siN( 24y) (22)
s 0w, o*w, =1n=1
—HE SR - 2(HE  2HE) Xz‘gyz e
w, (X, y) ZZ on SINCAX) SIN( 22y)
s O%w, . 0w . O%w, ——=
- H22 4S + A55 25 + A44 25 + © o
oy ay . .
o w, (X,y) = ZZ on SIN(AX) SiN( 22y)
+(R13+ ASS) _'_(R23_'_’A\S m=1n=1
Where Upn,Vinn, Womns Wemn @and W, unknown parameters
s 62Wz s 62Wz mr nﬂ'
+(Ryz + Ags) Eval (Ras + ALy oy +0q=0 must be determined, and 1=— and y=-——
a
o ov, Q 02 2 07 . . i
_ ._13%_ Ly, a; + 18, axv;/b + 13, ay"‘z’b T_he t_ransve_rse load q is also expanded in the double
Fourier sine series as follows
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Table 2 Comparisons of dimensionless deflection w of simply supported of sandwich square power-law FGM (Al/

Zr0O,) plates with other theories (a/b=1, a/h=10)

W
p Théorie &
1-0-1 2-1-2 1-1-1 2-2-1 1-2-1
Present Model 1 &40 0.19457 0.19457 0.19457 0.19457 0.19457
Present Model 2 &70 0.19487 0.19487 0.19487 0.19487 0.19487
0 Model Daouadii,
Tounsi et al. (2013) &#0 0.19606 0.19606 0.19606 0.19606 0.19606
Model Reddy (1984) &=0 0.19605 0.19605 0.19605 0.19605 0.19605
Present Model 1 &#0 0.32096 0.30383 0.28963 0.27834 0.26879
Present Model 2 &#0 0.32149 0.30431 0.29007 0.27876 0.26916
1 Model Daouadii, _
Tounsi et al. (2013) &~=0 0.32358 0.30631 0.29199 0.28085 0.27094
Model Reddy (1984) &=0 0.32349 0.30624 0.29194 0.28082 0.27093
Present Model 1 &,#0 0.37028 0.34939 0.33013 0.31303 0.30017
Present Model 2 &,#0 0.37096 0.35002 0.33069 0.31356 0.30061
2 Model Daouadji, _
Tounsi et al. (2013) &=0 0.37334 0.35231 0.33288 0.31616 0.30263
Model Reddy (1984) &=0 0.37319 0.35218 0.33284 0.31611 0.30260
Present Model 1 &,#0 0.40595 0.38855 0.36832 0.34576 0.33201
Present Model 2 &,#0 0.40672 0.38933 0.36903 0.34648 0.33256
5 Model Daouadji, B
Tounsi et al. (2013) &=0 0.40927 0.39182 0.37144 0.34960 0.33480
Model Reddy (1984) &=0 0.40905 0.39160 0.37128 0.34950 0.33474
Present Model 1 &40 0.41412 0.40093 0.37809 0.35803 0.34532
Present Model 2 &40 0.41515 0.40153 0.38303 0.35883 0.34592
10 Model Daouadji, _
Tounsi et al. (2013) &=0 0.41772 0.40407 0.38551 0.36212 0.34823
Model Reddy (1984) &~=0 0.41750 0.40376 0.38490 0.34916 0.34119
) 2 2
a(x, y) = 2> Qpysin(Ax) sin( z4y) (23) Ay, = Al + A

m=1 n=1

The coefficients Qmn are given below for some typical
loads

Q,, = %La I:’q(x, y)sin( Ax) sin( zgy)dxdy

an = qO (24)
16

Qu ==k
mnz

Substituting from Eq. (22) into Eq. (21), we obtain the
following operator equation

a; &, &3 a,; a5||Upy, 0

&, 8y, @y Ay 8y || Vi, 0 (25)
Qs 8y 8y 8y Ags [\Womn [ = 1 Qmn

y 8y 8y Ay A (W, Qumn

Qs 8y gy Q5 Ags | (Wi, 0

Where

8, = Ail/’)’2 + A66:u2 18, = Ap(A, + Ag) s
&5 = —A[B A% + (B, +2Bg) %]

a, = —A[B A + (B, +2B) 1] s =LyAs

Qy5 = — [ Byopt® + (B, + 2B, ) 7]
8,y = —H[Bypt” + (B +2B3) 15 Ay = Lyyut
85 = LA + Lopt”
8, = DA +2(D,, + 2D) 2 + Doypt®
a,, = DA +2(Dg, + 2Dg) A2 pi® + Dt
A, = HO A + 2(H, + 2H ) A1 + H,ut + B2 + A P
845 = (Rg + A+ (Ros + AL’
855 = A535/12 + A:A./lz +Rg

(26)

3. Numerical results and discussions

To illustrate the proposed approach, a simple quasi-3D
higher order shear and normal deformation theory with
stretching effect for composite sandwich plates is suggested
for investigation. Navier solutions for bending analysis of
FGM plates are presented by solving Eq. (25). In this
section, the analysis is conducted for two combinations of
metal and ceramic. The first set of materials chosen is
aluminium and alumina. The second combination of
materials consisted of aluminium and zirconia. The material
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Table 3 Comparisons of dimensionless axial stress &  of simply supported of sandwich square power-law FGM (Al/
Zr0,) plates with other theories (a/b=1, a/h=5)

L. O x
P Theorie & 1-0-1 212 1-1-1 2:2-1 12-1
Present Model 1 &40 2.17149 2.17149 2.17149 2.17149 2.17149
Present Model 2 &40 2.09913 2.09913 2.09913 2.09913 2.09913
0 Model Daouadiji, _
Tounsi et al. (2013) &=0 2.04985 2.04985 2.04985 2.04985 2.04985
Model Reddy (1984) &~=0 2.05452 2.05452 2.05452 2.05452 2.05452
Present Model 1 &70 1.95497 1.85357 1.76916 1.62906 1.64362
Present Model 2 &#0 1.82413 1.72791 1.64816 1.51308 1.53055
1 Model Daouadji, _
Tounsi et al. (2013) &~=0 1.57923 1.49587 1.42617 1.32062 1.32309
Model Reddy (1984) &~=0 1.58204 1.49859 1.42892 1.32342 1.32590
Present Model 1 &#0 2.24963 2.12892 2.01678 1.81178 1.83896
Present Model 2 &#0 2.10177 1.98540 1.87804 1.67955 1.71005
2 Model Daouadji, _
Tounsi et al. (2013) &~=0 1.82167 1.72144 1.62748 1.47095 1.47988
Model Reddy (1984) &~=0 1.82450 1.72412 1.63025 1.47387 1.48283
Present Model 1 &,#0 2.45428 2.35697 2.24326 1.98085 2.03306
Present Model 2 &,#0 2.29951 2.20357 2.09209 1.83534 1.89036
5 Model Daouadji, _
Tounsi et al. (2013) &~=0 1.99272 1.91302 1.81580 1.61181 1.63814
Model Reddy (1984) =0 1.99567 1.91547 1.81838 1.61477 1.64108
Present Model 1 &,#0 2.50188 2.41351 2.23916 2.04386 2.11217
Present Model 2 &40 2.34582 2.27035 2.16923 1.89412 1.96490
10 Model Daouadji, _
Tounsi et al. (2013) &~ 2.03036 1.97126 1.88377 1.66480 1.70383
Model Reddy (1984) &~=0 2.03360 1.97313 1.88147 1.66979 1.64851

Table 4 Comparisons of dimensionless transverse shear stress 7,

., Of simply supported of sandwich square power-law
FGM (Al/ ZrO,) plates with other theories (a/b=1, a/h=5)

T

p Théorie & X
1-0-1 2-1-2 1-11 2-2-1 1-2-1
Present Model 1 20 0.24300 0.24300 0.24300 0.24300 0.24300
Present Model 2 40 0.23805 0.23805 0.23805 0.23805 0.23805
0 Model Daouadji, _
Tounsi et al. (2013) =0 0.23857 0.23857 0.23857 0.23857 0.23857
Model Reddy (1984) = 0.24918 0.24918 0.24918 0.24918 0.24918
Present Model 1 40 0.29604 0.27490 0.26521 0.26382 0.25703
Present Model 2 40 0.29157 0.27063 0.26077 0.25910 0.25218
1 Model Daouadji, _
Tounsi et al. (2013) =0 0.29202 0.27104 0.26116 0.25950 0.25258
Model Reddy (1984) =0 0.29907 0.27774 0.26809 0.26680 0.26004
Present Model 1 20 0.32982 0.29157 0.27537 0.27339 0.26253
Present Model 2 £,40 0.32572 0.28796 0.27148 0.26900 0.25796
2 Model Daouadji, _
Tounsi et al. (2013) =0 0.32622 0.28838 0.27187 0.26939 0.25833
Model Reddy (1984) =0 0.33285 0.29422 0.27807 0.27627 0.26543
Present Model 1 20 0.39022 0.31688 0.28906 0.28620 0.26878
Present Model 2 £,40 0.38570 0.31409 0.28602 0.28225 0.26474
5 Model Daouadji, _
Tounsi et al. (2003) =0 0.38634 0.31454 0.28642 0.28265 0.26512
Model Reddy (1984) &= 0.39370 0.31930 0.29150 0.28895 0.27153
Present Model 1 20 0.43703 0.33454 0.29789 0.29421 0.27227
Present Model 2 £,40 0.43127 0.33194 0.29525 0.29042 0.26856
10 Model Daouadji, =0 0.43206 0.33242 0.29083 0.29083 0.26894

Tounsi et al. (2013)
Model Reddy (1984) &=0 0.44147 0.33644 0.29529 0.29671 0.27676
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Table 5 Effect of aspect ratio a/b on the dimensionless deflection of the FGM (Al/ ZrO,) sandwich plates (P=2, a/h=10)

Théorie & v
alb=1/3 alb=1/2 alb=1 alb=312 alb=2

Present Model 1 240 1.18240 003638 037028 014306 006211

Present Model 2 6740 0.18450 093805 037096 014333  0.06224

1ol ng?le:);o%ggjlls) £=0 1.18877 004185 037335 014481  0.06321
Model Reddy (1984) £=0 1.18849 094160 037319 014472  0.06315

Present Model 1 240 1.11684 088432 034939 013480 005842

Present Model 2 240 1.11882 088589 035002 013505  0.05852

212 TngfLP;?‘éggjl'é) =0 1.12293 088954 035231  0.13647 0.05946
Model Reddy (1984) £=0 1.12269 0.88933 035218 013639  0.05941

Present Model 1 240 1.05521 083553 033013 012738 0.05521

Present Model 2 640 1.05702 083696  0.33069 012759  0.05530

11 Tg{'fr’gthD:IOLéggll'S) £=0 1.06096 0.84046 033288 012895  0.05619
Model Reddy (1984) £=0 1.06080 0.84032 033280 012890  0.05615

Present Model 1 240 0.99974 079171 031303 012092  0.05248

Present Model 2 240 1.00150 079309 031356 012111  0.05256

2-21 TngfLPQO‘zgg{g) £=0 1.00694 0.79776 031617 012260  0.05349
Model Reddy (1984) £=0 1.00683 079767 031611 012256  0.05347

Present Model 1 240 0.95860 0.75914 030017  0.11596  0.05034

L1 Present Model 2 640 0.96009 076031 030061 011611  0.05040
Tgfj?\if'et[’;(’%ggll'g) &= 0.96371 076353  0.30263 011737  0.05122

Model Reddy (1984) £=0 0.96366 0.76348 030260  0.1735 0.05121

properties are as follow:

Ceramic (Zirconia, ZrO,): E.= 151 GPa; v=0.3.

Ceramic (Alumina, Al,Os): E.= 380 GPa; v=0.3.

Metal (Aluminium, Al): E,,= 70 GPa; v=0.3.

Numerical results are presented in terms of non-
dimensional stresses and deflection. The various
nondimensional parameters used are

o 2
W zlohgow[g,gj, 5, = 10" GX[E,E,D}
doa 2 2 d.a 222

;xz = h TXZ(O,E,O]'
Qo 2

Numerical results are presented in tabulated in Tables 1-
5 and graphically plotted in Figs. 3-11 using the present
model (Present model 1). The non-dimensional transverse
displacement w(a/2,b/2,0), in-plane normal stresses

&,,(0,b/2,h/6), and transverse shear stress &,,(0,b/2,h/3)

are presented in Table 1. The present results are compared
by accurate quasi-3D higher order shear deformation theory
by Neves, Ferreira et al. (2012). The last group of theories
were built based on previous authors experience on
meshless numerical method and the CUF within a
remarkable joint work between the authors (Carrera 2011).
Displacement and transverse shear stresses results are in
good agreement with the referential solution (Tounsi 2012,
Neves 2012, Mantari 2014, Thai 2013). Neves which use 9-
unknowns to model the displacement field. The Neves

theory in (Neves 2012) also use 9-unknowns but the results
of transverse shear stresses are far from the referential
solution. This theory could be perhaps optimized in order to
select a proper shear strain functions. In the case of normal
stresses, these presents theories produces results that are
closer to the referential solution (Neves 2012) than the
model presented by Thai and Kim (2013). In general, we
can say that this theory is more effective, as long as the
results are comparable to the models presented. Analytical
study emerged the numerical results of simply supported
square power-law FGM (Al/ ZrO2) plates are presented in
Tables 2, 3 and 4. These Tables consider the case of
homogeneous hardcore in which the Young’s modulus of
layer 1 ZrO2 are Ec=51 GPa at the top face and Em=70
GPa at the bottom face Al. The results are considered for
P=0, 1, 2, 5, and 10 and different types of sandwich square
plates. It can be seen that the results obtained by Hassaine
Daouadji el al (¢,=0) (2013); Reddy (¢,=0) (1984) and these
presents theories (e,#0) are signified clearly the stretching
effect. The comparisons of the maximum deflections are
given in Table 5 for FGM (Al/ ZrO2) sandwich plate with
homogeneous hardcore and with volume fraction indices
P=2. We can say that in the light of the results obtained that
the stretching effect is very well demonstrated; object of our
research. In addition, the deflection will decreases as the
aspect ratio a/b increases.

The second part of the results will be devoted to the
graphical presentation which Figs. 3-8 present some
numerical results of simply supported square power-law
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Fig. 3 Dimensionless center deflection W as a function of side-to-thickness ratio a’/h of FGM sandwich (Al/ ZrO,)
plate with homogeneous hardcore for various values of P and different types of sandwich plates
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Fig. 4 Variation of normal stress &, through plate thickness of FGM sandwich plate (Al/ ZrO,) with homogeneous
hardcore for various values of P and different types of sandwich plates (a/h=10)

- Present model 1 -

FGM (Al/ ZrQO,) plates using the present model 1
(Hyperbolic Shear Deformation Theory). Fig. 3 shows the
variation of the center deflection with side to-thickness ratio
a/h for different type of FGM (Al/ ZrO,) symmetric plates
with a homogeneous hardcore. The deflection of the
Aluminium plate is found to be the largest magnitude and
that of the ceramic (ZrO,) plate of the smallest magnitude.
The deflections increase when a/h>10. All the plates with
intermediate properties undergo corresponding intermediate
values of center deflection. Which can be classified as very
logical because the Aluminium plate is the one with the

lowest stiffness and the ceramic (ZrO,) plate is the one with
the highest stiffness. The axial stress &, through-the-

X
thickness of the plate with a homogeneous hardcore (Fig.
4). Under the application of the sinusoidal loading, the
stresses are tensile at the top surface and compressive at the
bottom surface. The homogeneous ceramic (ZrO,) plate
yields the maximum compressive (tensile) stress at the
bottom (top) surface. The shape of the curves shows that the
stress profile for plate made of pure material ZrO, (ceramic)
changes linearly through the thickness. However, the axial
stress variation is not linear for FGM plate. We have plotted
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homogeneous hardcore for various values of P and different types of sandwich plates (a/h=10)

- Present model 1 -

the transverse shear stress 7,, through-the-thickness of the

plate in Fig. 5 with a homogeneous hardcore. The
maximum value occurs at a point on the mid-plane of the
plate and its magnitude for FGM (Al/ ZrO,) plate is larger
than that for homogeneous ceramic plate (ZrO;). The

59

variation of the center deflection with side-to-thickness
ratio for different type of FGM symmetric plates with a
homogeneous soft core in which the Young’s modulus is
presented in Fig. 6. Contrary to the case of homogeneous
hard core, it can be observed that for FGM (Al/ ZrO,) plates
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Fig. 7 Variation of normal stress &, through plate thickness of FGM sandwich plate (Al/ ZrO,) with homogeneous

softcore for various values of P and different types of sandwich plates (a/h=10)
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with a homogeneous soft core, transverse deflection homogeneous plate (P=0) yields the maximum compressive
decreases as power law exponent P is increased. The (tensile) stress at the bottom (top) surface. The
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Fig. 8 Variation of transverse shear stress 7z_ through plate thickness of FGM sandwich (Al/ ZrO,) plate with

homogeneous softcore for various values of P and different types of sandwich plates (a/h=10)
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homogeneous plate (P=0) yields the minimum compressive for plate made of pure material (P=0) changes linearly
(tensile) stress at the bottom (top) surface. The stress profile through the thickness (Fig. 7). However, the axial stress
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variation is not linear for FGM plate. Fig. 8 show the plot of
shear stress across the FGM (Al/ ZrO,) plate, the maximum
value occurs at a point on the mid-plane of the plate and its
magnitude for homogeneous metal plate (P=0) is larger
than that for FGM (Al/ ZrO,) plate. Using the first present
model (Hyperbolic Shear Deformation Theory ) we present
in Figs. 9-11 for the (1-4-1) sandwich square plate with
FGM core (All ZrO,) (FGM core) with P=1, 2, 5, In this
case, the FGM core is metal-rich at the top face and
ceramic-rich at the bottom face. The FGM plate deflection
is between those of plate made of ceramic and metal (Fig.
9), than the axial stress is compressive throughout the plate
up and then they become tensile. The maximum
compressive stresses occur at a point on the bottom surface
and the maximum tensile stresses occur, of course, at a
point on the top surface of the FGM plate (Fig. 10). And the
distribution of the shear stress is not symmetric in the case
of sandwich plate (Fig. 11).

4. Conclusions

In this paper a new models quasi-3D (Model 1:
Hyperbolic and Model 2: Parabolic) shear deformation

z/h

T
0,30

Fig. 11 Dimensionless transverse shear stresses 7,, of the

1-4-1 sandwich square plate with FGM core (Al/ ZrO,)
(a/h=10) - Present model 1 -

theory accounting for through-the-thickness deformations
was presented. Bending deformations of functionally
graded sandwich plates were analysed. The theory accounts
for the stretching and shear deformation effects without
requiring a shear correction factor. By dividing the
transverse displacement into bending, shear and stretching
components, the number of unknowns and governing
equations of the present theory is reduced to five and is
therefore less than alternate theories available in the
scientific literature. The governing equations and boundary
conditions are derived by employing the principle of virtual
work. These equations are solved via a Navier-type, closed
form solution, for FG plates subjected to transverse bi-
sinusoidal load for simply supported boundary conditions. It
is evident from the present analyses; the thickness
stretching effect is more pronounced for thick plates and it
needs to be taken into consideration in more physically
realistic simulations. The numerical results are compared
with 3D exact solution and with other higher-order shear
deformation theories, and the superiority of these presents
theories can be noticed. in the light of the results, we can
say that the proposed theories are not only accurate but also
efficient in predicting the deflection and stresses of FGM
sandwich plates into account the effect of stretching thick.
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