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1. Introduction 
 

Earlier studies (e.g., Gent and Lindley 1959) have 

showed that the compression/bending stiffness of an elastic 

layer bonded to reinforcing sheets may be several orders of 

magnitude greater than that of the corresponding unbonded 

layer while the effect of the bonded faces to the shear 

behavior of the layer is almost negligible unless the layer 

thickness and/or the applied loads are considerably large. 

This is an important property in view of that the resistance 

of a soft elastic layer to compression and bending can be 

increased, without compromising from its flexibility in 

shear, by bonding it to reinforcing plates at its top and 

bottom faces.  

Composed of several elastomer layers bonded to steel 

reinforcing sheets, steel-laminated elastomeric isolators 

have been developed using this favorable mechanical 

property of “bonded” elastic layers. Steel-reinforced 

elastomeric isolators are widely used in many engineering 

applications to isolate the structural/mechanical systems 

from the detrimental effects of different types of vibrations 

(Kelly 1997, Kelly and Konstantinidis 2011). Since the 

stiffness ratio for a typical interior steel-rubber unit is 

significantly large, steel plates are usually assumed to be 

“rigid” unless they are too thin or the applied loads are too 

large. In an effort to develop light-weight, low-cost isolators 

to be used in developing countries, Kelly (1994) sought the 

minimum steel plate thickness that ensures their “rigidity” 
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and studied the possibility and viability of using thinner 

steel plates or more flexible reinforcement. He found out 

that the reinforcement flexibility, which causes “warping” 

(distortional) deformations in the reinforcing sheets, has 

significant effect on buckling behavior of a multi-layered 

elastomeric isolator and stated that “for the typical range of 

sizes of isolators for buildings, the reduction in buckling 

load from the completely rigid plate case to the completely 

flexible plate case is from 25% to 50%”. He also indicated 

that “3.18 mm (1/8 in.) thick steel plates have almost the 

same buckling load as the completely rigid case and 0.79 

mm (1/32 in.) thick steel plates have almost the same 

buckling load as the completely flexible case”. Kelly (1994) 

also highlighted that, although it analytically appears to be 

possible to reduce the thickness of steel plates significantly, 

it may not always be possible to do so in practice since 

these plates have to be sand-blasted before being bonded to 

the elastomer, which can easily damage them if they are too 

thin. Thus, as proposed by Kelly (1999), it seems to be 

more practical and feasible to reduce the weight and cost of 

the bearings by replacing steel reinforcement with 

“equivalent” fiber reinforcement. In literature, many studies 

have been conducted on fiber-reinforced elastomeric 

isolators (e.g., Kelly and Takhirov 2001, Kelly 2002, Tsai 

and Kelly 2005, Pinarbasi and Mengi 2008, Pinarbasi, 
Mengi et al. 2008, Toopchi-Nezhad, Tait et al. 2011, 

Pinarbasi and Okay 2011, Kelly and Calabrese 2012, 

Angeli, Russo et al. 2013, Osgooei, Tait et al. 2014, 

Toopchi-Nezhad 2014, Osgooei, Engelen et al. 2015, Yasser 

and Tait 2015). These studies have verified the viability of 

the use of fiber sheets as reinforcing agents in multi-layered 

seismic isolators. 
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Abstract.  As a relatively new type of multi-layered rubber-based seismic isolators, fiber-reinforced elastomeric isolators 

(FREIs) are composed of several thin rubber layers reinforced with flexible fiber sheets. Limited analytical studies in literature 

have pointed out that “warping” (distortion) of reinforcing sheets has significant influence on buckling behavior of FREIs. 

However, none of these studies, to the best knowledge of authors, has investigated their warping behavior, thoroughly. This 

study aims to investigate, in detail, the warping behavior of strip-shaped FREIs by deriving advanced analytical solutions 

without utilizing the commonly used “pressure”, incompressibility, inextensibility and the “linear axial displacement variation 

through the thickness” assumptions. Studies show that the warping behavior of FREIs mainly depends on the (i) aspect ratio 

(shape factor) of the interior elastomer layers, (ii) Poisson’s ratio of the elastomer and (iii) extensibility of the fiber sheets. The 

basic assumptions of the “pressure” method as well as the commonly used incompressibility assumption are valid only for 

isolators with relatively large shape factors, strictly incompressible elastomeric material and nearly inextensible fiber 

reinforcement. 
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The compressive or bending behavior of a multi-layered 

elastomeric isolator can realistically be studied by analyzing 

its typical interior “bonded” elastomer layer (Kelly and 

Konstantinidis 2011). As reviewed in Pinarbasi, Akyuz et 

al. (2006) in detail, in the last century, many researchers 

have studied the behavior of rigidly-bonded (i.e., steel-

reinforced) elastic layers. The earliest studies on this subject 

(e.g., Gent and Lindley 1959) put forward three 

fundamental assumptions on displacement and stress 

patterns in a bonded elastic layer: (i) initially vertical lateral 

surfaces take a parabolic shape in the deformed 

configuration, (ii) horizontal plane sections remain plane 

after deformation, (iii) state of stress at any point in the 

material is dominated by the hydrostatic pressure. Due to 

the last, i.e., “pressure” assumption, the formulations 

developed using these fundamental assumptions are 

commonly named, in literature, as the “pressure method”. 

With the proposal of using fiber-reinforcement in 

seismic isolators, analytical studies on bonded elastic layers 

are directed towards elastic layers bonded to flexible 

reinforcements. The effect of reinforcement flexibility on 

compressive and bending behavior of fiber-reinforced 

elastomeric isolators has been studied in various works 

(e.g., Kelly 1999, Kelly and Takhirov 2001, Kelly 2002, 

Tsai and Kelly 2005, Tsai 2007, Pinarbasi and Mengi 2008, 

Pinarbasi, Mengi et al. 2008, Pinarbasi and Okay 2011, 

Kelly and Konstantinidis 2011, Angeli, Russo et al. 2013) 

Similar to the steel-reinforced case, most of these analytical 

studies are conducted on an individual elastomer layer 

bonded to flexible fiber-reinforced sheets. There is an 

important difference, however, in the analyses of these two 

cases: while in the analysis of a steel-reinforced layer, the 

reinforcement is assumed to be rigid both in extension and 

flexure, in the analysis of a fiber-reinforced layer, it is 

assumed to be “flexible in extension but completely without 

 

 

flexure rigidity” (Kelly 2002). Earlier studies on fiber-

reinforced layers (Fig. 1(a)) have mostly been concentrated 

on investigating the layer behavior under uniform 

compression (Fig. 1(b)) and/or “pure” bending, i.e., bending 

without warping (Fig. 1(c)). The works by Kelly (1994) and 

Tsai and Kelly (2005) are different from the others in that 

they included in their formulations “pure” warping 

(distortional deformations) of the reinforcing sheets (Fig. 

1(d)). Ignoring the extensibility of the reinforcement and 

using the pressure approach, Kelly (1994) derived a closed-

form expression for effective “warping modulus” of strip-

shaped bonded elastic layers. Following a similar approach 

and including the extensibility of the reinforcing sheets, 

Tsai and Kelly (2005) obtained a more general expression 

for the warping modulus. However, neither Kelly (1994), 

nor Tsai and Kelly (2005) investigated the warping behavior 

of the layer thoroughly. It is to be noted that their 

formulations are based on three fundamental assumptions of 

the pressure method as well as the incompressibility 

assumption. 

Our recent studies (Pinarbasi, Akyuz et al. 2006, 

Pinarbasi and Mengi 2008, Pinarbasi, Mengi et al. 2008) 

showed that it is possible to eliminate most of these 

assumptions by using the higher order theory developed by 

Mengi (1980). The aim of this study is to investigate, in 

detail, the warping behavior of elastomeric layers bonded to 

flexible reinforcements, thus the warping behavior of multi-

layered fiber-reinforced elastomeric isolators, by using the 

advanced solutions derived for strip-shaped layers from this 

higher order theory. The application of the theory to the 

associated warping problem (Fig. 1(d)) has already been 

shown in Pinarbasi and Mengi (2008), where the governing 

equations of the problem were solved for strip-shaped 

layers by using the zeroth order theory. For a 

comprehensive study on warping behavior, particularly for 

 

 

(a) Undeformed shape (b) Deformed shape under uniform compression 

  

(c) Deformed shape under pure bending (d) Deformed shape under pure warping 

Fig. 1 An elastic layer bonded to flexible reinforcements under uniform compression, pure bending and pure warping 
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a detailed analysis on stress distributions, it is more 

convenient to increase the order of the theory. Our earlier 

studies with higher order theories have indicated that while 

it is not possible to obtain closed-form solutions to the 

problem when second or higher order theories are used due 

to highly nonlinear and coupled forms of the governing 

equations, it is possible to do so when the first order theory 

is used in the formulation. In this paper, these analytical 

solutions are derived first. Free from the commonly used 

incompressibility, inextensibility, “pressure” and the “linear 

variation of axial displacement through the thickness” 

assumptions, these advanced solutions become handy tools 

for investigating warping behavior of fiber-reinforced strips 

thoroughly. 

 

 

2. Analysis of strip-shaped fiber-reinforced 
elastomeric isolators under pure warping 
 

2.1 Review of the theory used in the study 
 

The analytical formulation used in this study to 

investigate the warping behavior of a strip-shaped fiber-

reinforced elastomeric isolator, in other words, warping 

behavior of its typical interior elastomer layer bonded to 

fiber reinforcement at its top and bottom faces, has been 

developed from an approximate theory proposed by Mengi 

(1980), which is reviewed shortly in this section to 

introduce the notation.  

Consider an elastic and isotropic layer with uniform 

thickness of 2h referred to a Cartesian coordinate system (x1 

x2 x3), where the x1x3 plane coincides the mid-plane of the 

layer, as shown in Fig. 1(a). The theory by Mengi (1980) 

contains two types of field variables: (i) “generalized 

variables” representing the weighted averages of 

displacements (ui, i=1-3) and stresses (ij, i,j=1-3) over the 

thickness of the layer, denoted respectively by n

iu  and 
n

ij  

where n=0-m for the mth order theory, and (ii) “face 

variables” representing the components of displacements 

and tractions on the lateral faces of the layer, denoted, 

respectively: 
2

i i x h
u u


  and 

2
2 2i i x h
 


 . In the 

development of the theory, a set of distribution functions 

2( )n x  (n=0,1,2,…; 
2 2 /x x h ) is chosen. For the mth 

order theory, the elements ϕn (n=0 to (m+2)) are retained in 

the set. 

There are basically two sets of equations. The “weighted 

averages of elasticity equations” are obtained by applying 

the operator 2

1
(.)

2

h
n

n

h

L dx
h






  , with ϕn (n=0−m)), to the 

equilibrium and constitutive equations of linear elasticity. 

The “constitutive equations for face variables” are obtained 

through the expansion of displacements in terms of the 

distribution functions as 
2

0

m
i

i k k

k

u a 




  (where i
ka  are some 

constants) and using it in the exact constitutive equations of 

tractions on flat faces of the layer. 

Written in indicial notation, the fundamental equations 

of linear elasticity, namely, equilibrium (in the absence of 

body forces) and constitutive equations are 

0j ji      (i,j=1-3) (1) 

 ij i j j i ij k ku u u             (i,j=1-3) (2) 

where , μ are Lamé’s constants and ij is the Kronecker 

delta. In writing Eqs. (1) and (2), the summation convention 

is used, thus any repeated index indicates summation over 

its range. Moreover, ∂i implies partial differentiation with 

respect to xi. 

The weighted averages of fundamental equations are 

established by applying the operator 2

1
(.)

2

h
n

n

h

L dx
h






   

with n=0-m to Eqs. (1) and (2), which gives 

1 1 3 3 2( ) 0n n n n
i i i iR            (i=1-3, n=0-m) (3) 

where 

ˆ (1)

2

n
n i n
i

R
R

h


  where  

2 2

2 2

   for even 
ˆ

   for odd 

i i in
i

i i i

R n
R

R n

 

 

  

  

  
 

 

 with 

2
2 2i i x h
 


  

(4) 

   ,  =1,3n n
ji jiL i  ,   

2 2
n n
i iL     with   

2

2

1
(.)

2

h
n n

h

d
L dx

h dx





   
(5) 

and 

11 1 1 3 3 2 2( )n n n n nu u S u            

22 1 1 3 3 2 2( )n n n n nu u S u          

(6) 33 3 3 1 1 2 2( )n n n n nu u S u           

12 1 2 1 1( )n n n nu S u       

nnn uu 133113  
 

)( 332323

nnnn uSu  
    

(n=0-m) 

where 

ˆ (1)

2

n
n i n
i

S
S

h


  where 

   for even 
ˆ

   for odd 

i i in
i

i i i

S u u n
S

S u u n

  

  

  
 

 

   with  

2
i i x h

u u


  

n n
i iu L u     and     n n

i iu L u       (i=1-3) 

(7) 

In Eqs. (3)-(7), =2μ+, and p=m and p=m-1 for even 

m and p=m-1 and p=m for odd m. While deriving Eqs. (3)-

(7), the theory assumes that ϕn is even function of x2 for 

even n, and odd function of x2 for odd n, and that 
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2/n nd dx    is related to ϕj through some coefficients cnj 

by 
0

m

n nj j

j

c 


  , implying that 
2
n
i  and n

iu  are related to 

2
n
i  and n

iu  by 

2 2

0

1
( , ) ( , )

m
n n j j

i i nj i i

j

u c u
h

 


   (8) 

For the derivation of the constitutive equations for face 

variables Ri

, displacements ui are expanded in terms of k 

(k=0,1,2,…,m+2) as 

2

0

m
i

i k k

k

u a 




  (9) 

where i

ka  
are some coefficients which are functions of x1 

and x3. When L
n
 (n=0-m) operator is applied to this 

expression, one obtains 

2

0

m
n i
i nk k

k

u d a




  where 

2

1

2

h
n

nk k n k

h

d L dx
h

  


    

(10) 

Assumed properties of k lead to the following 

uncoupled system of equations for the determination of 

coefficients 
i
ka  

2

0,2

p
n i
i nk k

k

u d a




   and  
2

0,2

1
2

p
ii
k k

k

S
a 

 



    (n=0,2,…, 

p)   for even k 
2

1,3

p
n i
i nk k

k

u d a




   and  
2

1,3

1
2

p
ii
k k

k

S
a 

 



   (n=1,3,…, 

p)   for odd k 

(11) 

where p=m and p =m-1 for even m and p=m-1 and p =m 

for odd m. From the solutions of above equations, the 

coefficients 
i
ka  are determined in terms of 

n
iu  and Si


 as 

, 2

0,2

p
i j
k kj i k p i

j

a f u f S 




   for even k and 

, 2

1,3

p
i j
k kj i k p i

j

a f u f S







   for odd k 

(12) 

where the coefficients fkj (k,j=0-m+2) may be computed 

whenever ϕn are chosen. 

Finally, the constitutive equations for face variables can 

be obtained by using Eq. (9) in 
2 2i i iR       with 

2 2 2 2( )i i i i k ku u u        , which gives  

2

1,3

2
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R S u S
h
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  


   
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R S u S i
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(13) 
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where 

 
2

1,3

1
p

j kj k

k

f 
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

    for j=1,3,…, p  and  
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2

0,2

1
p

j kj k
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f 

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1
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k p k
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
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    and   

 
2

, 2

0,2

1
p

k p k

k

f 







   

The coefficients cnj and the constants 
i
ka , γj, γ

±
 of the 

theory can be determined for any order of the theory 

whenever the distribution functions ϕn are chosen. 

 
2.2 Application of the theory to the warping problem 
 

The theory can easily be applied to the problem 

illustrated in Fig. 1(d), where a strip-shaped layer whose 

length is much larger than its width 2w and thickness t is 

subjected to the warping moments Q so that the reinforcing 

sheets with an equivalent thickness of tf deform about x3 

axis with a warping shape (/2)(x1). Since such a layer 

may be approximated in a state of plane strain, u3=0, 

3 0u  , and u1, u2 and 
1u  (stretching of the reinforcing 

sheets, which is also assumed to be in a state of plane stress, 

in the direction of “finite” length of the layer) are 

independent of x3. It is also known that, under pure 

warping, u2 is antisymmetric whereas u1 and u3 are 

symmetric about the mid-plane of the layer (see Fig. 1(d)). 

Since the distribution functions are even functions of 
2x  

for even n, and odd functions of 
2x  for odd n, one has 

1 0nu     and   
2 0nu     for odd n; 

1 0nu     and   
2 0nu     for even n 

(15) 

Considering that u1 and u3 are also symmetric about the 

mid-plane of the layer, the face displacements can be 

written in the following form 

1 1u u     and    2 1
2

u x 
    (16) 

which leads to 

1 2 0S S   ,  
1 1 12 2S u u    ,  and   

 2 1S x   
(17) 

Then, with the selection of Legendre’s polynomials as 

the distribution functions, the governing equations of the 

approximate theory reduce to the following equations for  
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the studied plane strain problem (for details, refer to 

Pinarbasi and Mengi 2008): 

• weighted equilibrium equations 
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• weighted constitutive equations 
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where 
n

iu  and 2
n
i are related to 

n
iu  and 2

n
i  by, in 

view of Eq. (8) 
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
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in which 2
j
i  can be expressed in terms of 

n
iu  and 1u

 

by Eq. (19). 

For a monotonically-deformed interior bonded layer, 

internal forces on an infinitesimal area of a reinforcing 

sheet bonded to elastic layers at its top and bottom surfaces 

are illustrated in Fig. 2, where N11 is the stretching force per 

unit length in the x1 direction and 
21   and 

21   are bonding 

shear stresses. As shown by Pinarbasi and Mengi (2008), by 

using the elastic stress strain relation for the reinforcement 

deformation, the additional equation coming from the 

reinforcement equilibrium can be obtained as follows 
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where “in-plane stiffness of the reinforcement” kf, i.e., N11/

1 1u , is defined as 

21

f f

f

f

E t
k





 (22) 

with Ef and f being respectively elasticity modulus and 

Poisson’s ratio of the reinforcing sheet. The necessary 

boundary conditions for the solution of the governing 

equations, i.e., Eqs. (18) and (21), are the traction free 

boundary conditions (i.e., 
11 0n  ,

12 0n  ) at the lateral 

bulge-free surfaces of the layer and the force-free boundary 

conditions (i.e., N11=0, thus, 
1 1u =0) at the edges of the 

reinforcing sheets. 

 

2.3 Solution of the warping problem using first order 
theory 

 
To simplify the analysis of the layer under combined 

loading, it is desirable to make pure compressional, pure 

bending and pure warping deformations uncoupled from 

each other (Kelly 1994). Since the compressional 

deformation is already uncoupled from bending and 

warping deformations, to achieve such an uncoupling, it is 

sufficient to choose the warping shape so that the resultant 

axial force P and bending moment M associated with this 

warping deformation are zero. As proposed by Kelly 

(1994), selecting a cubic function, which can be written as 

3
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x f

w w
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assures the first condition, i.e., the condition that P is zero. 

The constant f in Eq. (23), which is kept as an unknown 

warping-related constant until the analytical expressions are 

obtained for stress distributions, can, then, be computed 

from the condition that M has to be zero.  

When the first order theory (m=1, p=0, p′=1, γ0=−3, 

γ1=−15, γ
+
=3/2, γ

-
 =3 and c10=1 with all other cnj=0) is 

applied to the warping problem, one has, in view of Eqs. 

(15)-(16), three unknown displacements: two weighted  

 

 

Fig. 2 Forces on an infinitesimal area of a reinforcing sheet bonded to rubber layers at its top/bottom faces 
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displacements, 0
1u  and 1

2u , and one face displacement, 

1u . From these unknowns, 0
1u  and 

1u  can be solved 

independently from 1
2u . Coupled differential equations for 

0
1u  and 

1u  are obtained from Eq. (18) with n=0 and Eq. 

(21) using the relation given in Eq. (20). In view of Eq. 

(23), these equations are 
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One can see that Eqs. (24) and (25) are identical to Eqs. 

(74) and (75) in Pinarbasi and Mengi (2008). Thus, 

increasing the order of the theory from zero to one does not  

alter the form of the lateral displacements, i.e., 0
1u  and 

1u   

still have the following forms 
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where 
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The main effect of increasing the order of the theory is, 

in fact, to improve the axial displacement through the  

appearance of the weighted displacement 1
2u  in the  

governing equations. The equation associated with this new 

variable comes from Eq. (18) with n=1, which can be 

written in view of Eqs. (19)-(20), as 
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From Eq. (26), one has 
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Thus, in view of Eq. (23), Eq. (28) becomes 
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(30) 

It is clear that 1
2u  has the following form 
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where the constants A, B and C (coming from the particular 

solution) are 
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and the constant a22 can be obtained from the boundary 

condition that 
1

1
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 , which yields 
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(33) 

Once the governing equations are solved for the  

unknown displacements; i.e., for 0
1u , 1

2u  and 
1u , the  

determination of displacement/stress distributions or any 

other parameter, such as, effective warping modulus of the 

layer, is straightforward (Pinarbasi and Mengi 2008). For 

FOT (m=1), the displacement distributions ui (i=1-2) may  

be computed, in terms of n
iu  and 

iS  , from 
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which, in view of Eq. (17), leads to 
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Analysis of fiber-reinforced elastomeric isolators under pure “warping” 
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When Eq. (35) is compared with Eq. (83) in Pinarbasi 

and Mengi (2008), it may be seen that increasing the order 

of the theory from zero to one eliminates the commonly 

used assumption that the variation of axial displacement 

through the thickness is linear, resulting in advanced 

solutions for the axial displacement distribution and, in turn, 

for the stress distributions. These solutions are also free 

from the widely used incompressibility assumption for the 

material, inextensibility assumption for the sheets and the 

“pressure” assumption for the stress distributions in the 

layer. 

Knowing the expressions for the displacement 

distributions, the expressions for the stress distributions can 

be obtained from linear theory. Then, the warping constant f 

appearing in Eq. (23) can be determined from the condition 

22 1( ) 0
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M x dA   , where 
22  , i.e., axial face stresses, 

can be obtained, referring to Pinarbasi and Mengi (2008), 

from 
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The “effective warping modulus” Ew of the layer can be 

determined from 
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where Q is the resultant warping moment and J is the 

“warping” inertia.  

Considering the complexity of the axial face stress 

expression and recalling that the determination of f requires 

the solution of an integral equation, it seems impractical to 

try to derive closed-form expressions for the predictions of 

FOT for f, so for Ew. Surely, numerical results can easily be 

obtained, for both f and Ew, using a mathematical program.  

 

 

It can be recalled that ZOT has yielded the following closed 

form expressions for f and Ew (Pinarbasi and Mengi 2008) 
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(39) 

Inextensible reinforcement case (i.e., kf  which 

m e a n s  
that 

1u =0) may have particular concern. For this special  
case, the predictions of ZOT for f and Ew, denoted as finex 

and Ew,inex, are 
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3. Behavior of strip-shaped fiber-reinforced 
elastomeric isolators under pure warping 
 

For a fiber-reinforced elastomeric isolator subjected to 

pure warping, there are two limiting cases with regard to the 

stiffness (kf) of the reinforcing sheets: (i) completely 

extensible reinforcement case, which occurs when kf  0, 

and (ii) completely inextensible reinforcement case, which 

occurs when kf. In this section, warping behavior of 

  
(a) kf /(μt)=30000 (b) kf /(μt)=300 

Fig. 3 Predictions of zeroth (m=0) and first (m=1) order theories for warping constant f 
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fiber-reinforced isolators is studied in detail by using the 

analytical solutions derived in the previous section. 

Particular emphasis is given to the investigation of the 

effects of three key parameters; namely, k
*

f=kf/t (stiffness 

ratio for the individual bonded elastomer layer, i.e., stiffness 

of the reinforcing sheets with respect to that of the layer), S 

(shape factor of the isolator, i.e., the ratio of one loaded area 

of the bonded elastomer layer to its free-to-bulge areas) and 

 (Poisson’s ratio of the elastomer), on warping constant f, 

warping modulus Ew and stress distributions in the isolator. 

 

3.1 Warping constant 
 
Warping behavior of a fiber-reinforced elastomeric 

isolator is mainly controlled by the warping pattern of the 

reinforcements, thus by the warping constant “f”. As 

already mentioned, even though it is impractical to derive a 

closed-form expression for f when FOT is used in the 

formulation due to the highly nonlinear stress expressions, 

it is possible to compute f numerically and compare the 

numerical results with the predictions of ZOT computed 

from Eq. (38). 

Fig. 3 compares the predictions of ZOT and FOT for f 

for two different stiffness ratios, k
*

f =30000 and 300, and 

various shape factors and Poisson’s ratios. It is to be noted 

that the shape factor of a strip-shaped layer with a thickness 

 

 

t and width 2w equals to S=w/t. As shown in the graphs, the 

predictions of both theories are almost identical in the 

studied ranges of parameters. Thus, Eq. (38) can be used to 

calculate f even when the FOT is used in the analytical 

formulation. 

It can be inferred from Kelly (1994) that there are two 

limiting values for f: fu=3/5=0.6, which is the value 

obtained for an unbonded uniform short “beam”, and 

fb=3/7 @0.43, which is the value predicted by the 

“pressure method” (PM) for an “incompressible” strip-

shaped isolator reinforced with “inextensible” sheets. Fig. 

3(a) shows that, for k
*
f=30000, the f values for high shape 

factor (HSF) isolators are equal to fb when  =0.5, 

indicating that HSF isolators behave as if they were 

reinforced with inextensible sheets when k
*
f=30000. 

Calculated using Ef =210 GPa, f =0.3, tf=0.27 mm, t=3 mm 

and =0.7 MPa, this value of k
*
f corresponds approximately 

to a typical value for the stiffness ratio of rubber-fiber 

reinforcement unit commonly used in seismic isolation 

bearings (Kelly 2002). From Fig. 3, it can also be seen that f 

values for HSF isolators become equal to fu when Poisson’s 

ratio is sufficiently low (e.g., when =0.3). This conclusion 

is valid even when the stiffness ratio is considerably large 

(see Fig. 3(a)). 

However, it is not so easy to understand the effects of 

  
(a) Variation with stiffness ratio 

  
(b) Variation with Poisson’s ratio 

Fig. 4 Variations of warping constant f with stiffness ratio and Poisson’s ratio 
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(a) kf /(μt)=30000 (b) kf /(μt)=300 

Fig. 5 Predictions of zeroth (m=0) and first (m=1) order theories for warping modulus Ew 

  
(a) Variation with stiffness ratio 

  
(b) Variation with shape factor 

  
(c) Variation with Poisson’s ratio 

Fig. 6 Effect of reinforcement flexibility on normalized warping modulus 
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stiffness ratio and Poisson’s ratio on warping constant for 

low shape factor (LSF) isolators from the plots presented in 

Fig. 3. For a thorough investigation on the effects of 

reinforcement flexibility and elastomer compressibility on f, 

the variations of f with k
*

f and  are plotted and presented in 

Fig. 4. The graphs in Fig. 4 clearly show that f approaches fu 

as k
*

f 0 and/or 0. This conclusion is valid both for 

LSF and HSF isolators. A similar conclusion is partially 

valid for fb; f approaches to fb when k
*

f and 0.5 only 

if S is sufficiently large since the pressure method (PM) is 

valid only for HSF isolators.  

 

3.2 Warping modulus 
 
Fig. 5 compares the predictions of FOT and ZOT for 

warping modulus Ew for two different stiffness ratios and 

various shape factors and Poisson’s ratios. It is seen that the 

predictions of both theories for Ew almost exactly match in 

the studied ranges of parameters. Thus, the closed-form 

expression in Eq. (39) can be used to compute Ew values 

when FOT is used in the formulation. 

To investigate the effect of reinforcement flexibility on 

Ew in more detail, the variations of the normalized warping 

modulus with k
*
f, S and  are plotted in Figs. 6(a)-(c). In 

these plots, Ew values are normalized by Ew,inex values 

computed from Eq. (41). Fig. 6(a) shows that EwEw,inex as 

k
*

f. 

While  an  HSF  isolator  attains  its  inextensible-

reinforcement behavior at considerably large values of k
*
f,  

 

 

especially if v is close to 0.5, there is no need to have 

verylarge values of k
*
f for an LSF isolator to behave as if it 

were bonded to inextensible reinforcements. From Figs. 

6(b), (c), it is seen that 30000 is a sufficiently large value 

for the stiffness ratio, even for incompressible HSF 

isolators, to use Ew,inex instead of Ew in the design of fiber-

reinforced isolators. The effect of reinforcement flexibility 

has to be considered, however, for smaller stiffness ratios, 

e.g., k
*
f =300, especially if S is large and  is close to 0.5. 

For LSF isolators of compressible materials, the 

inextensible-reinforcement assumption is valid even when 

k
*
f =300.  

In the analysis of a multi-layered elastomeric isolator, it 

is a common practice to represent its bending or 

warpingmodulus, i.e., Eb or Ew, in terms of its compression 

modulus Ec (e.g., Kelly 1994). In Fig. 7, the Ec/Ew ratio is 

plotted for various S,  and k
*
f values (for the calculation of 

Ec values, the third of Eq. (54) in Pinarbasi and Mengi 

(2008) is used). It is worth noting that the PM prediction for 

the Ec/Ew ratio is 30 for “incompressible” layers bonded to 

“inextensible” reinforcements (Kelly 1994). As shown in 

Fig. 7(a), FOT prediction for the Ec/Ew ratio also tends to 30 

as k
*
f and 0.5 provided that S is sufficiently large. 

However, as seen from Figs. 6(b), (c), this ratio can be 

much smaller than 30 especially if S,  or k
*
f are small. 

Then, taking Ec/Ew =30 may significantly underestimate the 

true value of the warping modulus. 

 

3.3 Stress distributions  

 
(a) kf /(μt) 

  
(b) kf /(μt)=30000 (c) kf /(μt)=300 

Fig. 7 Effect of reinforcement flexibility on Ec/Ew ratio 
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The graphs presented in Figs. 8 to 10 show stress 

distributions, in lateral direction, for an interior elastomer 

layer in a strip-shaped fiber-reinforced elastomeric isolator 

under pure warping for various Poisson’s ratios and two 

shape factors; S=2.5, representing LSF isolators, and S=30, 

representing HSF isolators. Since an LSF isolator is not 

influenced from reinforcement flexibility unless k
*

f is 

considerably low, the graphs in Fig. 8 are plotted only for 

two particular values of k
*

f ; 30000 and 30. On the other 

hand, the graphs in Figs. 9 and 10 are plotted for k
*

f=30000, 

3000, 300, 30 to show the effect of reinforcement flexibility 

on warping behavior of an HSF isolator clearly. In the  

 

 

graphs, stress distributions are plotted over their most 

critical sections (i.e., 11 and 12 at x2=t/2, and 22 at x2=0) 

and stress values are normalized by Ew/t. It can be noted 

that the axial stress in a uniform short beam under pure 

warping, which can be written in the notation of the present 

formulation as 
22 1 2 2( ) ( )E x x      (refer to Kelly 

(1994) for details), reaches its maximum value, 

22 max 2( ) 0.4E    , at the edges of the layer, i.e., at x1=w, 

if the cubic function in Eq. (23) is selected as the warping 

function. Thus, normalizing the stress values by Ew/t can 

be considered as a kind of normalization by a factor of  

  

(a) Lateral stress distribution 

  

(b) Axial stress distribution 

  
(c) Shear stress distribution 

Fig. 8 Effect of reinforcement flexibility on stress distributions in lateral direction for S=2.5 
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maximum axial stress developing in the corresponding 

unreinforced isolator as predicted by the short beam theory. 

From Fig. 8, it is seen that an LSF isolator (S=2.5) 

behaves as if it were bonded to inextensible reinforcements  

 

 

even when k
*
f =30. This means that warping behavior of 

LSF isolators can satisfactorily be predicted by using the 

expressions derived based on inextensible-reinforcement 

assumption. Fig. 8 also shows that while axial stress  

  
(a) kf /(μt)=30000 

  
(b) kf /(μt)=3000 

  
(c) kf /(μt)=300 

  
(d) kf /(μt)=30 

Fig. 9 Effect of reinforcement flexibility on normal stress distributions in lateral direction for S=30 

-0.50

-0.25

0.00

0.25

0.50

0.0 0.2 0.4 0.6 0.8 1.0

x1/w

 1
1
(x

1
,x

2
=

t/
2
)/

(E
w


/t
)

@0.5 0.499
0.45 0.3

-0.50

-0.25

0.00

0.25

0.50

0.0 0.2 0.4 0.6 0.8 1.0

x1/w

 2
2
(x

1
,x

2
=

0
)/

(E
w


/t
)

@0.5 0.499
0.45 0.3

-0.50

-0.25

0.00

0.25

0.50

0.0 0.2 0.4 0.6 0.8 1.0

x1/w

 1
1
(x

1
,x

2
=

t/
2
)/

(E
w


/t
)

@0.5 0.499
0.45 0.3

-0.50

-0.25

0.00

0.25

0.50

0.0 0.2 0.4 0.6 0.8 1.0

x1/w
 2

2
(x

1
,x

2
=

0
)/

(E
w


/t
)

@0.5 0.499
0.45 0.3

-0.50

-0.25

0.00

0.25

0.50

0.0 0.2 0.4 0.6 0.8 1.0

x1/w

 1
1
(x

1
,x

2
=

t/
2

)/
(E

w


/t
)

@0.5 0.499
0.45 0.3

-0.50

-0.25

0.00

0.25

0.50

0.0 0.2 0.4 0.6 0.8 1.0

x1/w

 2
2
(x

1
,x

2
=

0
)/

(E
w


/t
)

@0.5 0.499
0.45 0.3

-0.50

-0.25

0.00

0.25

0.50

0.0 0.2 0.4 0.6 0.8 1.0

x1/w

 1
1
(x

1
,x

2
=

t/
2

)/
(E

w


/t
)

@0.5 0.499
0.45 0.3

-0.50

-0.25

0.00

0.25

0.50

0.0 0.2 0.4 0.6 0.8 1.0

x1/w

 2
2
(x

1
,x

2
=

0
)/

(E
w


/t
)

@0.5 0.499
0.45 0.3

42



 

Analysis of fiber-reinforced elastomeric isolators under pure “warping” 

 

 

 

distribution is almost insensitive to the changes in Poisson’s 

ratio, lateral normal and shear stress decrease as  

decreases. It can also be concluded that warping behavior of 

an LSF isolator is not affected from the presence of slight 

compressibility: stress distributions for  =0.495 and  @0.5 

coincide. This is mainly due to the fact that an LSF isolator 

reaches its incompressible behavior at a smaller value of 






(see Fig. 3(b)). 

Unlike an LSF isolator, the warping behavior of an HSF 

(S=30) isolator is influenced from the reinforcement 

flexibility, considerably (Fig. 9). In general, it can be said 

that k
*
f affects the stress distributions in the same way that  

does: the shapes of the normal stress distributions change 

approximately from a fifth degree polynomial to a third  

  

(a) kf /(μt)=30000 (b) kf /(μt)=3000 

  
(c) kf /(μt)=300 (d) kf /(μt)=30 

Fig. 10 Effect of reinforcement flexibility on shear stress distribution in lateral direction for S=30 

  
(a) Axial stress distribution (b) Shear stress distribution 

Fig. 11 Convergence of FOT predictions to PM predictions for stress distributions in an “incompressible” HSF isolator 

(S=30) reinforced with nearly inextensible sheets 
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Fig. 12 Convergence of FOT solution to the “short beam” 

solution for axial stress distribution in compressible 

(=0.3) LSF. (S=2.5) and HSF (S=30) isolators reinforced 

with nearly inextensible sheets 

 

 
degree polynomial and the normal stress values decrease as 

k
*

f or  decreases until the completely-flexible-

reinforcement behavior is reached. As far as the shear stress 

distributions are concerned (Fig. 10), the effect of  on the 

behavior is significant especially if k
*

f is large. The main 

effect of decreasing k
*

f or  on shear stress is to decrease 

stress values in the layer, except at the edges. If Fig. 10 is 

compared with Fig. 8(c), it can be seen that for the same 

values of k
*
f and  , the normalized shear stress in an LSF 

isolator is, in general, larger than that in an HSF isolator. 

Figs. 9-10 also shows that the warping behavior of an 

HSF isolator can be influenced from the presence of slight 

compressibility (=0.495) significantly: stress distributions 

for =0.495 deviate from those for @0.5 considerably if k
*
f 

is large. This shows the significance of including the 

material compressibility in analysis of HSF isolators 

reinforced with nearly/completely inextensible sheets. It is 

also to be noted that the difference in warping behavior of 

HSF isolators of strictly and nearly incompressible 

materials disappears as k
*

f decreases. In the limit, when k
*
f 

is sufficiently small (e.g., when k
*

f=30), stress distributions 

for =0.495 and @0.5 overlap. This is due to the fact that 

an HSF isolator with a smaller k
*

f reaches its incompressible 

behavior at a smaller value of  than a layer with the same 

S, but, with a larger k
*

f (also see Fig. 4(b)). 

As expected, FOT solutions converge to 

“incompressible and inextensible” PM solutions when 

0.5, k
*
f and S is large. This can be seen from Fig. 

11, where the predictions of FOT and PM for axial and 

shear stress distributions in lateral direction in an isolator 

with S=30 are compared for k
*

f=30000. The 

“incompressible and inextensible” PM expressions Kelly 

(1994) for the normalized axial and shear stresses can be 

expressed, in the notation of the formulation, in the 

following forms 

5 3
22, 1 1 1

5 3

9 10 3

/ 2 7 7

PM

w

x x x

E t ww w

  
    

  

  (42) 

 

4 2
12, 1 1

4 2

9 30 3
5

/ 4 7 7

PM

w

x x

E t S w w

  
   

  

 

On the other hand, for compressible materials, the axial 

stress distribution in an HSF isolator is much closer to the 

predictions of the short beam theory. For =0.3, the 

predictions of both theories are almost identical even for an 

LSF isolator, as shown in Fig. 12. It is to be noted that the 

prediction of the short beam theory for the normalized axial 

stress simply equals to the warping shape. Fig. 12 also 

shows that an HSF isolator of highly compressible material 

behaves as if it were an unreinforced isolator even when k
*
f 

=30000. 

The plots in Figs. 8-10 also provide information about 

the locations and magnitudes of maximum stresses 

developing in a fiber-reinforced elastomeric isolator under 

pure warping. From Figs. 8 and 9, one can notice that the 

normal stress distributions have two extreme points in the 

range 0  x1/w  1.0. Eq. (42) indicates that for axial stress 

distribution in an HSF isolator of incompressible materials 

and inextensible reinforcements, these critical points occur 

at x1 @ 0.34w and x1 @ 0.86w, with corresponding peak 

values 0.42 and 0.31, respectively. It is interesting to see 

that the normalized peak values do not depend on the 

geometric properties of the individual elastomer layer. 

Since warping behavior of an isolator tend to short beam 

behavior as reinforcement extensibility or material 

compressibility increases, these critical points move toward 

x1@0.45w and x1=w, which are the two extreme points for 

the cubic warping shape when f=3/5, as k
*
f or decreases. 

The peak values also change to 0.18 at x1@0.45w and to 

0.4 at x1=w. 

Similarly, from Figs. 8(c) and 10, it is seen that, as far as 

the shear stress distributions are concerned, there are three 

critical points in the range 0x1/w1. Two of them have 

fixed locations: at the center of the layer (x1=0) and at the 

edge (x1=w). PM predicts the location of the third critical 

point as x1= 3/7 w for HSF isolators with incompressible 

materials and inextensible reinforcements, and the peak 

values for the normalized shear stress as approximately 

{0.96/S, 1.10/S, 2.57/S} at respectively x1={0, 3/7

w,w}. When k
*
f or  decreases, the location of the critical 

point near the center of the half-width moves towards the 

edge and the normalized shear stress over the cross section 

reduces, except at the edges. At the limit, when an isolator 

starts to behave as if it were a short uniform beam, shear 

stress is concentrated only on the edges. 

Using the advanced stress expressions derived from 

FOT, it is also possible to study the effect of reinforcement 

flexibility on stress distributions in axial direction. The 

graphs in Figs. 13 and 14 plot normal stress distributions at 

the vertical section x1=0.35w and shear stress distributions 

at x1=0.65w, which are very close to the critical points 

discussed above for HSF isolators with incompressible 

materials and inextensible reinforcements, for two different 

shape factors; S=2.5 and S=30. The effect of reinforcement 

flexibility on stress distributions is examined by plotting the 

graphs for two specific values of stiffness ratio; k
*
f=30000 

and 30. 
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Fig. 14 shows that normal stresses are uniformly and 

shear stress is linearly distributed through the individual 

layer thickness in an HSF isolator, which is not valid, in 

general, for LSF isolator, as shown in Fig. 13. It can also be 

seen that the pressure assumption is valid only for HSF 

isolators with nearly incompressible materials provided that 

the reinforcements are not too flexible. From the graphs 

plotted for S=30 and k
*

f=30, one can observe that the axial 

stress is no longer equal to the lateral normal stress at the 

studied section even when @0.5. 

 

 

4. Conclusions 

 
 

As pointed out by Kelly (1994), the buckling analysis of 

a multi-layered elastomeric isolator necessitates the analysis 

of an individual bonded elastomer layer not only under 

compressional and bending deformations but also under 

“warping” (distortional) deformations if the interior 

reinforcing sheets are extensible. This paper presents a 

detailed study on “warping” behavior of long rectangular 

elastic strips bonded to flexible reinforcements.  

Main conclusions can be summarized as follows: 

• The effect of reinforcement flexibility on warping 

behavior depends mainly on stiffness of the reinforcement 

(kf), shape factor of the isolator (S) and Poisson’s ratio of 

the elastomer (). For a typical fiber- 

  

  

  
(a) kf /(μt)=30000 (b) (a) kf /(μt)=30 

Fig. 13 Effect of reinforcement flexibility on stress distributions in axial direction under pure warping for S=2.5 
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reinforced elastomeric isolator used in seismic isolation 

technique (Ef=210 GPa, f=0.3, tf=0.27 mm, t=3 mm and 

=0.7 MPa, for which k
*

f=kf/t@30000), the effect of 

reinforcement flexibility can be ignored and the 

effective warping modulus (Ew) can be computed from 

Eq. (41). However, the use of fb=3/7 in the calculation 

of Ew is not suggested even when S is large since the 

presence of even slight compressibility (e.g., =0.495) 

can change f significantly. 

• The widely used pressure method (PM) is valid only 

when S is large,  =0.5 and kf . The prediction of 

PM for the Ec/Ew ratio (where Ec is the compression 

modulus of the isolator), i.e., 30, may significantly 

underestimate the true value of Ew for isolators with low 

 

 

shape factors and/or compressible materials and/or 

extensible reinforcement. 

• There are two critical points in normal stress 

distributions along the lateral direction in the range 

0x1/w 1.0. These points are located at x1@0.34w and 

x1@0.86w, with corresponding normalized peak values 

of 0.42 and 0.31 when S is large, =0.5 and kf. As 

 or kf decreases, these critical points move towards 

x1@0.45w and x1=w with the normalized peak values 

0.18 and 0.4, respectively. As far as the shear stress 

distributions are concerned, there are three critical 

points in the same range. When S is large, =0.5 and 

kf, these points are located at x1={0, 3/7 w,w}, 

  

  

  
(a) (a) kf /(t)=30000 (b) (a) kf /(t)=30 

Fig. 14 Effect of reinforcement flexibility on stress distributions in axial direction under pure warping for S=30 
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with corresponding normalized peak values of {0.96/S, 

1.10/S, 2.57/S}. When kf or  decreases, the location of 

the critical point near the center of the half-width moves 

towards the edge and the shear stress over the cross 

section reduces, except at the edges.  

Free from four commonly used assumptions in 

literature; (i) incompressibility assumption for the elastomer 

material, (ii) inextensibility assumption for the reinforcing 

sheets, (iii) “pressure” assumption for the stress 

distributions and (iv) the assumption that the axial 

displacement varies linearly through the layer thickness, the 

closed form expressions derived in the paper for warping 

behavior can effectively be used in buckling analysis of 

multi-layered fiber reinforced isolators/bearings even when 

the shape factor is small, elastomer material is compressible 

or reinforcing sheets are extensible. 
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