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Abstract.  Global sensitivity analysis (GSA) has been widely used to investigate the sensitivity of the 

model output with respect to its input parameters. In this paper a new single-solution search optimization 

algorithm is developed based on the GSA, and applied to the size optimization of truss structures. In this 

method the search space of the optimization is determined using the sensitivity indicator of variables. Unlike 

the common meta-heuristic algorithms, where all the variables are simultaneously changed in the 

optimization process, in this approach the sensitive variables of solution are iteratively changed more rapidly 

than the less sensitive ones in the search space. Comparisons of the present results with those of some 

previous population-based meta-heuristic algorithms demonstrate its capability, especially for decreasing the 

number of fitness functions evaluations, in solving the presented benchmark problems. 
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1. Introduction 
 

The goal of engineering optimization problems is finding the best set of variables that fulfill all 

the design limitations having the lowest possible cost. Optimization algorithms are such 

techniques for solution of this type of problems. Hence, a vast number of algorithms have been 

developed to solve various problems in this field. These methods can generally be divided into two 

categories: deterministic and stochastic methods. The first ones are based on numerical linear and 

nonlinear programming methods that require the gradient information and usually applied to 

optimization problems for improving the solution around a starting point. On the other hand, the 

stochastic algorithms are suitable for global search due to their capability of exploring and finding 

promising regions in the search space by an affordable computational time (Gonzalez 2007, Talbi 

2009, Yang 2010, Kaveh and Mahdavi 2015a),  

These methods have some advantages and some drawbacks. The deterministic methods, for 

example, can obtain solution with higher convergence rate compared to the stochastic approaches 

since the former methods use the gradient information to obtain the minima. However, the 
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estimation of gradient information can be either costly or even impossible for discrete design 

variables, and the optimum result obtained using these methods is completely dependent on the use 

of a good starting point. On the other hand, the meta-heuristic algorithms, as stochastic methods, 

are more general and can easily be implemented. Some examples of these methods are: Genetic 

algorithms (GA) of Holland (1975), Particle swarm optimization (PSO) of Eberhart and Kennedy 

(1995), Ant colony optimization (ACO) of Dorigo, Maniezzo et al. (1996), Big bang-big crunch 

(BB-BC) of Erol and Eksin (2006), Charged system search (CSS) of Kaveh and Talatahari 

(2010), Ray optimization (RO) of Kaveh and Khayatazad (2012), Dolphin echolocation (DE) of 

Kaveh and Farhoudi (2013), Min blast (MB) of Sadollah, Bahreininejad et al. (2012), Colliding 

Bodies Optimization (CBO) of Kaveh and Mahdavi (2014), Water evaporation optimization 

(WEO) of Kaveh and Bakhshpoori (2016), Whale Optimization Algorithm (WOA) of Mirjalili and 

Lewis (2016), Some applications of metaheuristic algorithms can be found in the work of 

Gholizadeh and Poorhoseini (2015) Gholizadeh, Gheyratmand et al. (2016), A meta-heuristic is 

formally defined as an iterative generation process which guides a subordinate heuristic by 

combining intelligently different concepts for exploration (global search) and exploitation (local 

search) of the search space. Learning strategies are used to structure the information in order to 

find efficiently near-optimal solutions, Kaveh and Mahdavi (2015), one of the disadvantages of 

the meta-heuristic algorithms is that they do not consider the sensitivity information of design 

variables to the objective function to push the populations into new positions. In other word, in 

two subsequent optimization iterations, all design variables of a population have the same ranks 

for generating the new population. This makes the meta-heuristic algorithms slow to convergence 

into global optima. However, one can extract the sensitivity information of the current population, 

before generation process, to speedily guide the populations to a near-optimal solution.  

In this paper, we introduce a new single-solution search optimizer, namely Global Sensitivity 

Analysis Based (GSAB) that uses a basic set of mathematical techniques, namely global sensitivity 

analysis (GSA), the sensitivity analysis (SA) studies the sensitivity of the model output with 

respect to its input parameters, Rahman (2011), This analysis is generally categorized as local SA 

and global SA techniques. While local SA studies sensitivity of the model output about variations 

around a specific point, the global SA considers variations of the inputs within their entire 

feasibility space (Pianosi and Wagener 2015, Zhai, Yang et al. 2014), One important feature of the 

GSA is Factor Priorization (FP), which aims at ranking the inputs in terms of their relative 

contribution to output variability. The GSAB comprises of a search optimization strategy and 

GSA-driven procedure, where the search space is guided by ranking the design variables using the 

GSA approach, resulting in an efficient and rapid search. The proposed algorithm can be studied 

within the family of search algorithms such as the Random Search (RS) of Rastrigin (1963), 

Pattern Search (PS) of Hooke and Jeeves (1961), and Vortex Search (VS) of Dog and Ö lmez 

(2015) algorithms. In this method, similar to these algorithms, the search process is conducted in 

the specified boundaries. Contrary to these algorithms, that use different functions for decreasing 

the search space, in the present method the well-known GSA approach is employed to decrease the 

search boundaries. The minimization of an objective function is then performed by moving these 

search space into around the best global sample.  

The present paper is organized as follows: In Section 2, we describe the well-known variance-

based sensitivity approach. In Section 3, the new method is presented. A well-studied constrained 

optimization problem and four structural design examples are investigated in Section 4. 

Conclusions are derived in Section 5. 
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2. Variance-based sensitivity analysis 
 

The search space boundary of the search algorithm proposed in this paper uses the variance-

based SA theory, as the familiar method of GSA. As mentioned before, the purpose of SA is to 

measure the sensitivity of model inputs to output, referred to as sensitivity indicator (SI) of model 

inputs. In order to compute the SI of model inputs, suppose a model Y=g(X), with X=[x1,x2,…,xn] 

being the model input vector, Y being the model output scalar, and g() is a mapping function. The 

uncertainty of X propagates through g(.) and results in the output model, Y. As the uncertainty of 

the output model is represented by its variance, V(Y), to find the effect of an input Xi on the output, 

it is assumed that the true value of Xi can be determined by the variance reduction in the output, 

i.e.,  ( )   (       
 ), where   

  is the true value of Xi and  (       
 ) is the conditional 

expected value of V(Y), Since the true value is unknown, one can employ  ( )     ( (    )) to 

evaluate the expected variance reduction in the output. The first order sensitivity indices of Y to the 

variable Xi can be expressed as (Zhai, Yang et al. 2014) 
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In this equation, V(Y) is the variance of output, Y. Also,  ( )   (       
 ) is the variance 

reduction in the output for the particular value of Xi=  
 . Since we do not know what is the best 

value of Xi, one can measure  ( )     ( (    )) to evaluate the expected variance reduction in 

the output. Therefore, the SIi can be stated as 
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In sensitivity analysis, SIi varies between 0 and 1. The lower value of SIi corresponds to the less 

influential Xi, the higher value of SIi corresponds to the much influential Xi, and for SIi = 0, the Xi 

will have no influence on Y.  

 

 

3. A global sensitivity analysis based algorithm 
 

This section introduces a global sensitivity analysis based (GSAB) optimization algorithm, 

which is a single solution search method. The proposed algorithm is named as “a global sensitivity 

analysis (GSA)” because of determining the sensitivity indicator (SI) of design variables for 

guiding the search boundaries of the algorithm.  

Meta-heuristic algorithms can be divided into two categories: population-based and single-

solution, Kaveh and Mahdavi (2015), in the first group, a number of populations/agents are first 

generated and then all agents are updated iteratively until the termination condition is satisfied. In 

the other hand, single-solution meta-heuristics that are also known as trajectory methods, produce 

single solution by exploring the search space efficiently while reducing the effective size of the 

search space. The samples/populations of GSAB algorithm are used for two purposes: estimating 

the SI of design variables and single-solution of the algorithm. As these samples do not update 

iteratively, the proposed GSBA is studied within the single-solution meta-heuristic category. The 

feasibility space of samples in the GSAB algorithm updates for searching the optimal solution over 

1095



 

 

 

 

 

 

A. Kaveh and V.R. Mahdavi 

several iterations. In each iteration, the feasibility space is updated using two values consisting of 

the sensitivity indicators and the global best sample. It is assumed that the problem is a 

minimization problem in R
D
. The notations used are as follows: 

  : The sample matrix in the tth iteration,    ,  
           - 

  
 : The position of sample vector i in the tth iteration,   

  {   
 |          } 

    : The minimum allowable values vector of variables,      {     |          } 

    : The maximum allowable values vector of variables,      {     |          } 

f (Xi): The fitness of vector i 

UB
t
: The upper search boundary vector of variables in the tth iteration, 

    {   
 |          } 

LB
t
: The lower search boundary vector of variables in the tth iteration,     {   

 |          } 

BW
t
: The band width of search space of variables in the tth iteration,     {   

 |          } 

SF
t
: The scale factor of band width of search space in the tth iteration,     {   

 |          } 

Sbest: The global best sample (i.e. with lower fitness),       {      |          } 

R: A random vector within [0,1]. 

 

3.1 Methodology 
 

The following steps outline the main procedure for the implementation of the GSAB. 

Step 1. Initialization: The initial positions of samples are determined with random initialization 

in the search space 

NiXXRXX i ,...,2,1,)( minmaxmin

0 
          

 (3) 

where 0

iX  determines the initial value vector of the ith sample; and N is the number of samples.  

Step 2. Calculating the sensitivity indices of variables:  In this step, the outputs (the objective 

function of optimization problem) are first calculated. The sensitivity analysis is performed next 

for the generated samples, and the sensitivity indicators (SIs) of variables are calculated.  

The most well-known methods for calculating the variance-based sensitivity indicators are the 

Monte Carlo simulations; however these do not make full use of each output model evaluation. In 

order to calculate the variance-based sensitivity indicators from a given data, the scatterplot 

partitioning method can be utilized (Zhai, Yang et al. 2014), For this method, a single set of 

samples suffices to estimate all the sensitivity indicators. For estimating the variance-based 

sensitivity indices, suppose we have N points/samples *       + and N model output samples 

*       + obtained using the model y=g(X), The variance of Y can be calculated by the sample 

variance  ( )  For the sample bounds of Xi as [b1, b2], let it be decomposed into s successive, 

equal-probability and non-overlapping subintervals    ,       ), with k=1, …, s,       
                and Pr(Ak)=1/s. Decompose the output samples *       + into s 

subsets according to the decomposition of Xi, where   skAxyB k

j

i

j

k ,...,1,  . The 

conditional variance  (        ) can then be evaluated by  

)()( kki BVAxYV 
         

 (4) 

The expected conditional variance,    ( (    )), can now be approximately evaluated using  
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Fig. 1 An illustrative sketch of the search process 
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Ultimately, the sensitivity indicator of the  ith variable, SIi, is calculated using Eq. (2), 

Step 3. Defining the search boundaries: In the GSAB algorithm, the search boundaries are 

moved around to the global best sample (which is updated and memorized in each iteration), Sbest, 

to push the samples into the feasible search space. The search boundaries are also decreased based 

on the values of sensitivity variables, which are evaluated in the previous step. Hence, the upper 

boundary and lower boundary of the search space of variables in the t+1th iteration can be 

computed by 

min

1

max

1

XSFBWSbestLB

XSFBWSbestUB
ttt

ttt








             

 (6) 

where BW
t
 and SF

t
 are the band width and scale factor of boundaries in the tth iteration, 

respectively (Fig. 1), Eq. (6) ensures that the current search space is moved around Sbest with the 

band width BW
t
 in the D-dimensional space. The vector BW

t
 can be calculated as 

),max( SbestUBLBSbestBW ttt                
 (7) 

For the algorithm to converge to a near-optimal solution, further exploitation (strong locality) is 

required to move the current solution towards to the optimal one. In the proposed GSAB 

algorithm, this is achieved by using a scale factor, SF. For this purpose, once SI values of variables 

are calculated, the most sensitive variable, i.e., variable with high SI value is identified for 

reducing the band width, and then the SF is calculated as 

Xmin Xmax LBt UBt 

BWt 

LBt+1 UBt+1 

Sbest 
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This equation shows that the band width of the most sensitive variable is decreased while other 

bands widths are constant in the tth iteration. 

Step 4. Replacement of the current samples: In this step, the samples must be ensured to be 

inside the new search boundaries. For this purpose, the samples that exceed the boundaries are 

randomly regenerated in the new search boundaries (shown in Fig. 1) as 

Otherwise
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where i=1, 2, …, N and t represents the iteration index.  

Step 5. Termination: The optimization process is repeated from Step 2 until a termination 

criterion, such as maximum iteration number or no improvement of the best sample, is satisfied. In 

the GSAB algorithm, if the maximum band width of the search space, max(W), becomes smaller 

than 0.000001, the optimization process will be terminated. This is because the GSAB cannot 

change the search space of the agents. For the sake of clarity, the flowchart of the optimization 

procedure using the proposed GSAB is shown in Fig. 2. 

 

 

4. Numerical examples 
 

In this section, the efficiency of the proposed GSAB algorithm is shown through one 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Fig. 2 The flowchart of the GSAB 
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mathematical constrained function and four well-studied truss structures under static loads taken 

from the optimization literature. These examples have been previously solved using a variety of 

other techniques, and are good examples to show the validity and effectiveness of the proposed 

algorithm. The first example shows the applicable of the GSAB for optimization of the constrained 

problems. In Example 2, a planar truss structure is studied for finding the optimal cross sections. 

Examples 3, 4 and 5 are selected to show the importance of selection of optimization algorithm in 

reducing the number of function evaluations.  

In structural optimization problems the main objective is to minimize the weight of the 

structures under some constraints. The optimization problem for a truss structure can be stated as 

follows 

Find                  X = [x1,x2,x3,..,xn] 

to minimizes    




ne

i

iii lAXW
1

)( 
 

subjected to      gj(X)  0, j=1,2,…,m 

                                xlmin ≤ xl ≤ xlmax  

(10) 

where X is the vector of all design variables with n unknowns; W is the weight of truss structure; 

ρi, Ai and li are mass density, cross sectional area and length of ith member, respectively; ne is 

number of the structural elements; gj is the jth constraint from m inequality constraints. Also, xlmin 

and xlmax are the lower and upper bounds of design variable vector, respectively. 

The employed constraint handling is the penalty function approach proposed by Deb (2000), It 

should be noted that the output model of SA method is the penalized objective function. For 2nd 

through 4th and engineering design examples, the numbers of N=40 and N=20 samples are 

utilized, respectively. Also, these examples are independently optimized 20 times. In the final 

example, N=50 samples are considered. The algorithm is coded in MATLAB. Structural analysis 

is performed by the direct stiffness method. 

 

4.1 Design of a tension/compression spring 
 

This problem was first described by Belegundu (1982) and Arora (1989), It consists of 

minimizing the weight of a tension/compression spring subject to constraints on shear stress, surge 

frequency, and minimum deflection as shown in Fig. 3. The design variables are the mean coil 

diameter D(= x1); the wire diameter d(= x2), and the number of active coils N(= x3), The problem 

can be stated as follows 

Find                                 321 ,, xxx  (11) 

To minimize 

2
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(13) 

The bounds on the design variables are 

            
,152,3.125.0,205.0 321  xxx  (14) 

This problem has been solved by Belegundu (1982) using eight different mathematical 

optimization techniques. Arora (1989) solved this problem using a numerical optimization 

technique called a constraint correction at the constant cost. Coello (2000) as well as Coello and 

Montes (2002) solved this problem using GA-based method. Additionally, He and Wang (2007) 

utilized a co-evolutionary particle swarm optimization (CPSO), Recently, Montes and Coello 

(2008), Kaveh and Talatahari (2010), Kaveh and Mahdavi (2014) used the ES, CSS and CBO to 

solve this problem, respectively. 

Tables 1 and 2 compare the best results obtained in this paper and those of the other researches. 

The GSAB found the best cost as 0.0126652 after 3,729 fitness function evaluations. Although, the  

 

 
Table 1 Comparison of GSAB optimized designs with literature for the tension/compression spring problem 

f(x) 
Optimal design variables 

Methods 
x3 (N) x2 (D) x1 (d) 

0.0128334 14.250000 0.315900 0.050000 Belegundu (1982) 

0.0127303 9.185400 0.399180 0.053396 Arora (1989) 

0.0127048 11.632201 0.351661 0.051480 Coello (2000) 

0.0126810 10.890522 0.363965 0.051989 Coello and Montes (2002) 

0.0126747 11.244543 0.357644 0.051728 He and Wang (2007) 

0.012698 11.397926 0.355360 0.051643 Montes and Coello (2008) 

0.0126384 11.165704 0.358532 0.051744 Kaveh and Talatahari (2010) 

0.0126697 11.007846 0.3616740 0.051894 Kaveh and Mahdavi (2014) 

0.0126652 11.2509979 0.3573671 0.05171604 Present work 

 
Table 2 Statistical results from different optimization methods for tension/compression string problem 

Fitness function 

evaluations 

Std 

Dev 

Worst 

result 

Average 

optimized cost 
Best result Methods 

N/A N/A N/A N/A 0.0128334 Belegundu (1982) 

N/A N/A N/A N/A 0.0127303 Arora (1989) 

900,000 3.9390e-5 0.012822 0.012769 0.0127048 Coello (2000) 

N/A 5.9000e-5 0.012973 0.0127420 0.0126810 Coello and Montes (2002) 

200,000 5.1985e-5 0.012924 0.012730 0.0126747 He and Wang (2007) 

25,000 9.6600e-4 0.16485 0.013461 0.012698 Montes and Coello (2008) 

4,000 8.3564e-5 0.013626 0.012852 0.0126384 Kaveh and Talatahari (2010) 

4,000 5.00376e-5 0.0128808 0.01272964 0.0126697 Kaveh and Mahdavi (2014) 

3,729 2.31935e-4 0.01334400 0.012875334 0.0126652 Present work 
 

1100



 

 

 

 

 

 

Optimal design of truss structures using a new optimization algorithm... 

 

 

 

Fig. 3 Schematic of the tension/compression spring with indication of design variables 

 

 
(a) 

 
(b) 

Fig. 4 Scatter plots for variables: (a) X1; (b) X2; (c) X3 of the first example 
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(c) 

Fig. 4 Continued 

 

 

best cost found was more than the standard CSS, it is the lowest fitness function evalutions 

amongst the existing literature results.  It should be noted that the lighter design found by Kaveh 

and Talatahari (2010) slightly violates the first two optimization constraints. 

In order to show the performance of the GSA method in the GSAB algorithm, a study is 

focused on the influence of the SIs on the proposed algorithm result. As described in Section 3.1, 

the GSA method requires two pre-defined parameters: the number of samples, N, and the number 

of subintervals, s. A larger number of samples leads to an increase of the accuracy of the 

sensitivity indicators. In the other hand, because of generating the output model of the GSA 

method, the fitness function (or output) evaluations increases with the number of samples. The 

number of subintervals can also be affected to the SI values. As Zhai, Yang et al. (2014) 

underlines, the appropriate number of subintervals can be considered as   
 

 
. The scatterplots of 

Xi=1,2,3 and cost for N=100 samples are shown in Fig. 4. It can be noticed that: (i) x1 seems to be the 

most influential input; (ii) x2 and x3 seem to be the low influential inputs, because the distribution 

of samples against the first variable, x1, is denser compared to other variables. This is confirmed by 

the GSA method. If we apply the space-partition variance-based sensitivity analysis approach, we 

obtain the sensitivity indicators, SIs, as shown in the Fig. 5. It can be seen from this figure that the 

SI of the first variable is higher than other variables, i.e. the most influential/sensitive variable is 

the first variable.  

Fig. 6 shows the convergence rates of the upper and lower boundary of the search space and 

best ones in the optimization process. As previously mentioned, here the number of samples is 

considered as N=40 in the optimization process. It can be seen, with respect to the second and third 

variables, that the search space of the first variable is rapidly decreased in the early iterations 

because it is more sensitive to the output (i.e., objective function), Hence, despite the fewer 

samples, the proposed GSA approach could appropriately rank the variables based on these 

sensitivities. 
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Fig. 5 The obtained sensitivity indicator of variables for penalized cost function of the first example 

 

 
(a) 

 
(b) 

Fig. 6 The convergence history graphs of search space for variables: (a) X1; (b) X2; (c) X3 
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(c) 

Fig. 6 Continued 

 

 

Fig. 7 Schematic of the planar 17-bar truss problem 

 

 

The optimum variables found with different algorithms can also be used for comparing the SI 

of variables. As shown in Table 1, although the optimal objective functions found by different 

optimization algorithms have not significant difference, but the values of the optimum second and 

third variables have significant difference compared to the first variable. 

 

4.2 Planar 17-bar truss problem 
 

A 17-bar planar truss is schematized in Fig. 7. The single vertical downward load of 100 kips at 

node 9 is considered and there are 17 independent design variables. The elastic modulus is 30,000 

ksi and the material density is 0.268 lb/in
3
 for all elements. The members are subjected to the 

stress limits of 50 ksi both in tension and compression. Displacement limitations of ±2.0 in are 

imposed on all nodes in both directions (x and y), The allowable minimum cross-sectional area of 

all the elements is set to 0.1 in
2
.  
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Table 3 Comparison of the optimized designs for the 17-bar planar truss 

Element 

Group 

Optimal cross-sectional areas 

Khot and 

Berke (1984) 

Adeli and 

Kumar (1995) 

Kaveh and Ilchi (2014) 
Present work 

CBO ECBO 

A1 15.930 16.029 15.9674 15.9158 15.8916 

A2 0.100 0.107 0.1386 0.1001 0.10088 

A3 12.070 12.183 12.1735 12.0762 12.00129 

A4 0.100 0.110 0.1000 0.1000 0.100015 

A5 8.067 8.417 7.8524 8.0527 8.078015 

A6 5.562 5.715 5.5447 5.5611 5.571161 

A7 11.933 11.331 11.9648 11.9470 11.98603 

A8 0.100 0.105 0.1002 0.1000 0.100602 

A9 7.945 7.301 7.9385 7.9425 8.009118 

A10 0.100 0.115 0.1003 0.1000 0.100585 

A11 4.055 4.046 4.1146 4.0589 4.06476 

A12 0.100 0.101 0.1000 0.1000 0.100046 

A13 5.657 5.611 5.8134 5.6644 5.577003 

A14 4.000 4.046 4.0556 4.0057 4.004148 

A15 5.558 5.152 5.4973 5.5565 5.611166 

A16 0.100 0.107 0.1329 0.1000 0.104159 

A17 5.579 5.286 5.4043 5.5740 5.568715 

Best weight (lb) 2581.89 2594.42 2582.79 2581.89 2582.032 

Average weight (lb) N/A N/A 2631.07 2597.11 2585.62 

Standard deviation (lb) N/A N/A 49.45 22.43 9.248879 

 

 
Fig. 8 The obtained sensitivity indicator of variables for the penalized weight of the planar 17-bar 

truss problem 
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(a) 

 
(b) 

Fig. 9 Convergence curves obtained for the 17-bar truss problem for: (a) 0-500th; (b) 500-2000th 

number of analyses 

 

 

Table 3 presents the optimum designs obtained by Khot and Berke (1984), Adeli and Kumar 

(1995), standard CBO, ECBO, Kaveh and Ilchi Ghazaan (2014) and the proposed GSA algorithms.  

Although, the best design is obtained by the ECBO and the work of Khot and Berke (1984), the 

average weight and standard deviation of independent runs obtained by the GSAB are the lowest. 

The optimization process of the best run of the GSAB is completed in 12,255 analyses. Standard 

CBO and ECBO required 15,560 and 14,180 analyses to converge to the optimum. The SI values 

of variables are shown in Fig. 8. It can be seen from the Fig. 8 and Table 3 that the sensitivity of 
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members 1,3,5,7,9,11 and 13 are more than the remaining members, and the larger optimum 

designs obtained using the optimization algorithms have the high value of SIs. Convergence curves 

of the GSAB, ECBO and CBO are shown in Fig. 9. Although CBO and ECBO were considerably 

faster in the early optimization iterations, GSAB converged to a significantly better design without 

being trapped in local optima. 

 

4.3 A 72-bar spatial truss structure 
 

Schematic topology and element numbering of a 72-bar space truss is shown in Fig. 10. The 

elements are classified into 16 design groups according to Table 4. The material density is 0.1 

lb/in
3
 (2767.990 kg/m

3
) and the modulus of elasticity is taken as 10,000 ksi (68,950 MPa), The 

members are subjected to the stress limits of ±25 ksi (±172.375 MPa), The uppermost nodes are 

subjected to the displacement limits of ±0.25 in (±0.635 cm) in both x and y directions. The 

minimum permitted cross-sectional area of each member is taken as 0.10 in
2
 (0.6452 cm

2
), and the 

maximum cross-sectional area of each member is 4.00 in
2
 (25.81 cm

2
), The loading conditions are 

considered as: 

1. Loads 5, 5 and −5 kips in the x, y and z directions at node 17, respectively; 

2. A load equal to −5 kips in the z direction at nodes 17, 18, 19 and 20. 

Table 4 shows the optimum design variables using the GSAB algorithm, which is compared to 

results of the other algorithms. The best result of the GSAB approach is 379.7689, while this is 

385.76, 380.24, 381.91, 379.85, 380.458, 379.75 and 379.77 Ib for the GA Erbatur, Hasançebi et 

 

 

 

Fig. 10 Schematic of a 72-bar spatial truss 
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Table 4 Comparison of GSAB optimized designs with those of literature for the 72-bar spatial truss (in
2
) 

Element 

group 

Optimal cross-sectional areas (in
2
) 

Erbatur et al. 

(2014) 

GA 

Camp et 

al. (2004) 

ACO 

Perez et 

al. (2007) 

PSO 

Camp 

(2007) 

BB-BC 

Kaveh et al. 

(2013) 

RO 

Kaveh and 

Ilchi. 

(2014) 

CBO 

Kaveh and 

Ilchi. 

(2014) 

ECBO 

Present 

work 

1-4 1.755 1.948 1.7427 1.8577 1.8365 1.9170 1.8519 1.909083519 

5-12 0.505 0.508 0.5185 0.5059 0.5021 0.5031 0.5141 0.515793736 

13-16 0.105 0.101 0.1000 0.1000 0.1000 0.1000 0.1000 0.100097411 

17-18 0.155 0.102 0.1000 0.1000 0.1004 0.1001 0.1000 0.100154463 

19-22 1.155 1.303 1.3079 1.2476 1.2522 1.2721 1.2819 1.292073465 

23-30 0.585 0.511 0.5193 0.5269 0.5033 0.5050 0.5091 0.524173699 

31-34 0.100 0.101 0.1000 0.1000 0.1002 0.1000 0.1000 0.100059742 

35-36 0.100 0.100 0.1000 0.1012 0.1001 0.1000 0.1000 0.100103578 

37-40 0.460 0.561 0.5142 0.5209 0.5730 0.5184 0.5312 0.515818559 

41-48 0.530 0.492 0.5464 0.5172 0.5499 0.5362 0.5173 0.513756471 

49-52 0.120 0.1 0.1000 0.1004 0.1004 0.1000 0.1000 0.100010199 

53-54 0.165 0.107 0.1095 0.1005 0.1001 0.1000 0.1000 0.100509039 

55-58 0.155 0.156 0.1615 0.1565 0.1576 0.1569 0.1560 0.157384016 

59-66 0.535 0.550 0.5092 0.5507 0.5222 0.5374 0.5572 0.526496976 

67-70 0.480 0.390 0.4967 0.3922 0.4356 0.4062 0.4259 0.407510273 

71-72 0.520 0.592 0.5619 0.5922 0.5971 0.5741 0.5271 0.56965198 

Best Weight 

(Ib) 
385.76 380.24 381.91 379.85 380.458 379.75 379.77 379.7689 

Average 

Weight (Ib) 
N/A 383.16 N/A 382.08 382.553 380.03 380.39 380.3613 

Std dev N/A 3.66 N/A 1.912 1.221 0.278 0.8099 0.519822 

No. of 

analyses 
N/A 18,500 N/A 19,621 19,084 16,000 18,000 13,795 

 

 

al. (2014), ACO Camp and Bichon (2004), PSO Perez and Behdinan (2007), BB-BC Camp 

(2007), RO Kaveh, Ilchi Ghazaan et al. (2013), CBO and ECBO, Kaveh and Ilchi Ghazaan (2014) 

algorithms, respectively. Also, the number of analyses of the GSAB is 13795, while it is 18500, 

19621, 19084, 16000 and 18000 for the ACO, BB-BC, RO, CBO and ECBO algorithms, 

respectively. It is evident from Table 4 that although the statistical results of 20 independent runs 

for the CBO is less than the GSAB algorithm, the number of functions evaluation for the GSAB 

algorithm is less than that of the CBO. Fig. 11 shows the SI values of the variables for this 

example. Fig. 11 shows the maximum stress ratios in truss group members obtained using the 

GSAB. As can be seen from Figs. 11 and 12, and Table 4, the first design variable, i.e. the first 

story columns area, is the most sensitive variable because of the high amount of axial force in the 

first story columns. The design variables corresponding to the vertical braces area are also the 

sensitive variables, with respect to other truss group members, because these can affect the 

displacement constraints and can have high length in the shape of truss. Fig. 13 shows the 

convergence curves of the GSAB, ECBO and CBO obtained for this test case. 
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Fig. 11 The obtained sensitivity indicator of variables for the penalized weight of 72-bar spatial truss 

 

 

Fig. 12 The maximum stress ration in the group elements of the 72-bar truss structure 

 

 

4.4 A 120-bar truss dome  
 

The fourth case solved in this study is the weight minimization problem of the 120-bar truss 

dome shown in Fig. 14. This test case was investigated by Soh and Yang (1996) as a configuration 

optimization problem. It has been solved later as a sizing optimization problem by Kaveh and 

Talatahari (2010), Kaveh and Khayatazad (2012) and Kaveh and Mahdavi (2014), 

The allowable tensile and compressive stresses are set according to the AISC ASD (1989) 

code, as follows 
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(a) 

 
(b) 

Fig. 13 Convergence curves obtained in the 72-bar truss problem for: (a) 0-5000
th

; (b) 5000-20000
th
 

number of analyses 
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Fig. 14 Schematic of the spatial 120-bar dome truss with indication of design variables and main 

geometric dimensions 

 

 

where E is the modulus of elasticity, Fy is the yield stress of steel, Cc is the slenderness ratio (λi) 

dividing the elastic and inelastic buckling regions (
y

c F
EC

22 ),λi is the slenderness ratio  

(
i

i
i

r

KL
 ), K is the effective length factor, Li is the member length and ri is the radius of gyration. 

The modulus of elasticity is 30,450 ksi and the material density is 0.288 lb/in
3
. The yield stress 

of steel is taken as 58.0 ksi. On the other hand, the radius of gyration (ri) is expressed in terms of 

cross-sectional areas as 
b

ii aAr  (Saka 1990), Here, a and b are constants depending on the types of 

sections adopted for the members such as pipes, angles, and tees. In this example, pipe sections  
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Table 5 Comparison of the GSAB optimized designs with those of literature for the 120-bar dome problem 

Element 

group 

Optimal cross-sectional areas (in
2
) 

Kaveh et al. 

(2013) 

PSO 

Kaveh et al. 

(2013) 

PSOPC 

Kaveh et al. 

(20103) 

HPSACO 

Kaveh et al. 

(2013) 

RO 

Kaveh and 

Ilchi. 

(2014) CBO 

Present 

work 

1 12.802 3.040 3.095 3.030 3.0284 3.024214 

2 11.765 13.149 14.405 14.806 14.9543 14.8525 

3 5.654 5.646 5.020 5.440 5.4607 5.064194 

4 6.333 3.143 3.352 3.124 3.1214 3.134918 

5 6.963 8.759 8.631 8.021 8.0552 8.457656 

6 6.492 3.758 3.432 3.614 3.3735 3.283562 

7 4.988 2.502 2.499 2.487 2.4899 2.49657 

Best weight (Ib) 51986.2 33481.2 33248.9 33317.8 33286.3 33249.68 

Average 

weight (Ib) 
- - - - 33398.5 33253.32 

Std (Ib) - - - 354.333 67.09 4.112399 

 

 
Fig. 15 The convergence curves for the 120-bar dome truss 

 

 

(a=0.4993 and b=0.6777) are adopted for bars. All members of the dome are divided into seven 

groups, as shown in Fig. 14. The dome is considered to be subjected to vertical loads at all the 

unsupported joints. These are taken as −13.49 kips (60 kN) at node 1, −6.744 kips (30 kN) at 

nodes 2 through 14, and −2.248 kips (10 kN) at the remaining of the nodes. The minimum cross-

sectional area of elements is 0.775 in
2
 (cm

2
), In this example, the constraints are considered: stress 

constraints and displacement limitations of ±0.1969 in imposed on all nodes in all directions. The 

maximum cross-sectional area is also considered as 20.0 in
2
. 

Table 5 summarizes the results obtained by the present work and those of the previously  

30000

40000

50000

60000

70000

80000

90000

100000

110000

0 2000 4000 6000 8000 10000 12000 14000 16000

p
en

al
iz

ed
 o

b
je

ct
iv

e 
fu

n
ct

io
n

 

Number of strucstural analysis 

CBO

GSAB

1112



 

 

 

 

 

 

Optimal design of truss structures using a new optimization algorithm... 

 

 

 
 

(a) 3D view 

 
(b) Top view 

 
(c) Side view 

Fig. 16 Schematic of the spatial 582-bar tower 

 

 

reported researches. As it can be seen, the best results obtained using the GSAB is better than 

those of the other methods (except for the HPSACO), The standard deviations of results are also 

better than the RO and CBO algorithms. In this example, the GSAB needs 5,823 analyses to find 

the optimum result while this number is 10,000, 125,000, 19,800 and 16,000 for the HPSACO, 

PSOPC, RO and CBO algorithms as reported, respectively. Convergence curves of the GSAB, 

ECBO and CBO are shown in Fig. 15. 
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4.5 A 582-bar tower truss 
 

The 582-bar spatial truss structure, shown in Fig. 16, was studied with discrete variables by 

other researchers (Kaveh and Mahdavi 2014b, Hasançebi, Ç arbas et al. 2009), However, this 

structure recently have been used with continuous sizing variables by (Kaveh and Mahdavi 

2014c), The 582 structural members are categorized as 32 independent size variables. A single 

load case is considered consisting of lateral loads of 5.0 kN (1.12 kips) applied in both x- and y-

directions and a vertical load of −30 kN (−6.74 kips) applied in the z-direction at all nodes of the 

tower. The lower and upper bounds on size variables are taken as 3.1 in
2
 (20 cm

2
) and 155.0 in

2
 

(1000 cm
2
), respectively. 

The stress constraint is applied to this problem similar to the previous example. The maximum 

slenderness ratio is also limited to 300 for tension members, and it is recommended to be limited 

to 200 for compression members according to ASD-AISC (1989), The modulus of elasticity is 

29,000 ksi (203893.6 MPa) and the yield stress of steel is taken as 36 ksi (253.1 MPa), Other 

constraints are the limitations of nodal displacements which should be no more than 8.0 cm (3.15 

in.) in all directions. 

Table 6 lists the optimal values of the 32 size variables obtained by the CBO and present 

algorithm. Fig. 17 shows the convergence diagrams for both algorithms. The numbers of structural 

analyses are achieved as 20,000 and 17,127 using the CBO and the presented algorithm, 

respectively. It is evident that the GSAB is better than CBO in term of best weight of the results, 

numbers of structural analyses and convergence rate. 

 

 
Table 6 Optimum design cross-sections obtained for the 582-bar tower truss 

Element 

groups 

CBO (Kaveh 

and Mahdavi 2014b) 

Present 

Work Element 

groups 

CBO (Kaveh 

and Mahdavi 2014b) 

Present 

Work 

Area, cm
2
 Area, cm

2
 

1 20.5526 20.55701 17 155.6601 136.2476 

2 162.7709 164.7262 18 21.4951 24.73753 

3 24.8562 22.94746 19 25.1163 20.31951 

4 122.7462 149.5989 20 94.0228 102.9622 

5 21.6756 20.11998 21 20.8041 20.95159 

6 21.4751 21.31396 22 21.223 20.2722 

7 110.8568 104.9726 23 53.5946 67.30363 

8 20.9355 21.32158 24 20.628 20.01284 

9 23.1792 20.30167 25 21.5057 20.34263 

10 109.6085 124.8855 26 26.2735 22.69424 

11 21.2932 20.62465 27 20.6069 20.32811 

12 156.2254 161.9005 28 21.5076 20.85621 

13 159.3948 150.507 29 24.1394 22.46429 

14 107.3678 112.6909 30 20.2735 21.85471 

15 171.915 151.3205 31 21.1888 23.34649 

16 31.5471 29.25933 32 29.6669 21.70401 

Volume (m
3
)   16.1520 16.0877 
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Fig. 17 The convergence curves of the CBO and GSAB for 582-bar tower truss 

 

 

5. Conclusions 
 

In this paper, a new single-solution global sensitivity analysis based optimizer called GSAB is 

developed. Compared to other meta-heuristic algorithms, the GSAB has several distinct features. 

Firstly, the population/agents in GSAB are directly represented by the samples, which are used to 

find the sensitivity values of the design variables as well as the optimization search in sequence at 

each iteration. Hence, one can consider the proposed algorithm as a single-solution meta-heuristic 

category. Secondly, the search boundaries are considered and these are decreased based on the 

sensitivity values of the variables at each iteration. The sample, which is found as the best one, is 

also selected to push the search boundaries around this sample and it is selected as solution of the 

GSAB algorithm. Then, the samples that exceed the search boundaries are randomly regenerated 

in the boundaries. Unlike the common meta-heuristic algorithms where the agent of a population 

move to the new positions without considering any information about the sensitivity of variables, 

in this algorithm the search boundaries are decreased based on the sensitivity indices of the 

variables, and this accelerates the converge of the solution. 

The GSAB algorithm is tested over five benchmark optimization problems consisting of 

mathematical and truss structure optimization problems with different dimensions. The results are 

compared to those of some population based meta-heuristics. This comparison reveals that besides 

its simplicity, the proposed GSAB algorithm is also competitive, especially from the number of 

functions evaluation point of view, when compared to the performance of the some other 

algorithms.  
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