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Abstract.  In this paper, an analytical method for the Post-buckling response of cylindrical shells with spiral 

stiffeners surrounded by an elastic medium subjected to external pressure is presented. The proposed model 

is based on two parameters elastic foundation Winkler and Pasternak. The material properties of the shell 

and stiffeners are assumed to be continuously graded in the thickness direction. According to the Von 

Karman nonlinear equations and the classical plate theory of shells, strain-displacement relations are 

obtained. The smeared stiffeners technique and Galerkin method is used to solve the nonlinear problem. To 

valid the formulations, comparisons are made with the available solutions for nonlinear static buckling of 

stiffened homogeneous and un-stiffened FGM cylindrical shells. The obtained results show the elastic 

foundation Winkler on the response of buckling is more effective than the elastic foundation Pasternak. Also 

the ceramic shells buckling strength higher than the metal shells and minimum critical buckling load is 

occurred, when both of the stiffeners have angle of thirty degrees. 
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1. Introduction 
 

The eccentrically stiffened FGM cylindrical shells have more application in modern 

Engineering. 

In many application, the shell under pressure and may be buckling. Therefore, research on 

nonlinear stability of these structures has been of interest to scientists. In fact, used to stiffeners 

with low weight to support the structures for bearing Load. Study on nonlinear behavior of these 

structures is important of the practical. 

Van der Neut (1947) showed the importance of stiffeners in the buckling of isotropic 

cylindrical shell under axial load. A careful analysis of post-buckling behavior of eccentrically 

stiffened FGM thin circular cylindrical shells is surrounded by an elastic foundation and external 

pressure was presented by Shaterzadeh and Foroutan (2015). Dung and Nga (2013) studied the 

Post-buckling of eccentrically stiffened FGM cylindrical shells with elastic foundation under 

uniform external pressure. Shen, Zhou et al. (1993) studied the Buckling and post-buckling 

behavior of complete and incomplete eccentrically stiffened cylindrical shell under external 

pressure and axial compression by using boundary layer theory. The mechanical buckling of 
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cylindrical shells with functional elastic Pasternak was presented by Bagherizadeh, Kiani et al. 

(2011). Li and Shen (2008) analyzed the three-dimensional post-buckling of composite cylindrical 

shell under external and axial pressure in the thermal environment. Sadeghifar, Bagheri et al. 

(2011) studied the buckling of laminated cylindrical shell with non-uniform stringer stiffeners 

based on Love’s first order theory. Jiang, Wang et al. (2008) studied the buckling of eccentrically 

stiffened circular cylindrical panels under uniform axial compression by second order differential 

element method. Bich, Nam et al. (2011) analyzed the Nonlinear buckling of eccentrically 

stiffened functionally graded plates and shallow shells. Post-buckling of shear deformable FGM 

cylindrical shells surrounded by an elastic medium was presented by Shen (2009). Boroujerdy, Naj 

et al. (2014) studied the buckling of heated temperature dependent FGM cylindrical shell 

surrounded by elastic medium. Post-buckling of internal pressure loaded FGM cylindrical shells 

surrounded by an elastic medium was analyzed by Shen, Yang et al. (2010). Bagherizadeh, Kiani 

et al. (2012) analyzed the thermal buckling of functionally graded cylindrical shells on elastic 

foundation. Fan, Chen et al. (2015) studied the buckling of axial compressed cylindrical shells 

with stepwise variable thickness. Buckling analysis of filament wound composite cylindrical shell 

for considering the filament undulation and crossover presented by Guo, Han et al. (2015). 

A review of studies shows that the studies on the analytical solution post-buckling of FGM 

cylindrical shells with spiral stiffeners with elastic foundation have not been done. In this paper, 

the Post-buckling analysis of FGM cylindrical shells with spiral stiffeners with elastic foundation 

under uniform external pressure studied. Suppose that stiffened FGM thin circular cylindrical shell 

is simply supported and subjected to uniformly distributed pressure. The material properties of the 

shell and stiffeners are assumed to be continuously graded in the thickness direction. The nonlinear 

equations using the classical plate theory, smeared stiffeners technique and Galerkin method, is 

obtained. The aim of the study is the finding the best arrangement of stiffeners for achieving the 

maximum of strength of buckling. 

 

 

2. Formulation 
 

2.1 FGM power law properties 
 
In this paper, the structure is made of functionally graded materials that varying continuously 

through the thickness direction of shell. The inside and outside surfaces are ceramic and metal, 

respectively. Also the stiffeners attached to inside of the shell skin. The volume-fraction to be 

given by a power law (Shen 2003) 
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                                                             (1) 

which h is the thickness of shell, k≥0 is the volume-fraction index, z is the thickness coordinate, 

footnotes c and m shows ceramic and metal respectively.  

Effective properties (Preff) of FGM shells by linear combination law is as follows (Sofiyev 

2011) 

       Pr Pr Preff m m c cz V z z V z                                                       (2) 
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Fig. 1 Configuration of stiffened cylindrical shell surrounded with foundation 

 

 

According to the mentioned law, The Young’s modulus of the shell and stiffeners can be 

expressed in the following form 
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which Em, Ec are the Young’s modulus of the metal and ceramic, respectively, Es 
is the Young’s 

modulus of stiffeners, k2≥0
 
 is the volume-fraction of stiffeners. 

FGM cylindrical thin shell is assumed with length L, radius R, which is surrounded by an 

elastic foundation. Material properties of stiffeners are assumed FGM (Fig. 1). Original 

coordinates, x,y,z are in the axial, circumferential, and inward radial directions respectively. 

The strains across the shell thickness at a distance z from the mid-surface are represented by 

0 0 0, ,x x x y y y xy xy xyz z z                                                            (4) 

where 0 0,x y   are normal strains, 0

xy is the shear strain at the mid-surface, , ,x y xy    are the change 

of curvatures and twist of shell.  

 

2.2 Displacement-strain-stress relations 
 

According to the von Karman nonlinear strain-displacement relations (Brush and Almroth 
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1975) the strain components at the mid-surface of cylindrical shells as 
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                                   (5) 

where u=u(x,y), v=v(x,y), w=w(x,y) are displacements along x,y,z axes, respectively. 
According to Eq. (5), compatibility equation be expressed in the following form 

22 0 2 02 0 2 2 2 2

2 2 2 2 2

1y xyx w w w w

x y R x yy x x x y

         
      

        
                                     (6) 

The stress-strain relationship for FGM cylindrical shells can be written as follows 
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                                                                   (7) 

the Poisson’s ratio (v) is assumed to be constant, ,sh sh

x y   normal stress in x,y coordinates, 

respectively, sh

xy
 
is shear stress on the un-stiffened shell. 

By rotation of the strain tensor, the stress-strain relations of the spiral stiffeners are obtained. 

With the transformation of strains from the xy -axis to the 1 2  -axis and 1 2  -axis (Fig. 2), Eqs. 

 

 

 
Fig. 2 Rectangular coordinates rotation 
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Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation 

 
Fig. 3 View a rhombic stiffener grid 

 

 

 (8) and (9) can be made (Yen 1979).
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According to the uniaxial Hooke’s law 
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where d is the width of stiffeners, p′, p′′ are stiffener loads in the 1 2  -axis and 1 2  -axis, 

respectively and θ, β are the angle of the stiffeners. 

According to Fig. 3, the length of the stiffener grid is 
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where s is the stiffener spacing. 

The stress-strain relations for FGM spiral stiffeners a 
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similarly 
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where 
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 ,s s

x y  is the normal stress of stiffeners.
 
 ,s

xy s
h

 
are shear stress and thickness of the stiffeners, 

respectively. S  is length of the stiffener grid, ,   are the spiral angle of stiffeners. To consider  

the effect of stiffeners on the shell used the smeared stiffeners technique. By integrating the stress-

strain equations and calculating the resultant forces and moments for stiffened FGM cylindrical 

shells will be (Najafizadeh et al. 2009, Shen 1998) 
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Bij are components of the extensional, bending and coupling stiffeners of FGM cylindrical shell. 

Nx, Ny, Nxy are in-plane normal force and shearing force intensities, respectively. Mx, My, Mxy are 

bending moment and twisting moment intensities, respectively. 
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where
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Sort by Eq. (16) in terms of the strain as follows 
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Substituting Eq. (20) in Eq. (17) can be written
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where 
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Non-linear equations thin circular cylindrical shell based on the classical shell theory follow as 

(Darabi, Darvizeh et al. 2008, Sofiyev and Schnack 2004, Ghiasian, Kiani et al. 2013) 

2 22 2 2 2 2 2

02 2 2 2 2 2

0

0

1
2 2 0

xyx

xy y

xy yx

x xy y y w s

NN

x y

N N

x y

M MM w w w w w
N N N N q k w k

x y x y Rx y x y x y


 

 

 
 

 

        
           

           
(24) 

In Eq. (24) kw is Winkler foundation modulus, ks is shear stiffness layer based on Pasternak, q0 
is 

external pressure. 

According to the first two of Eq. (24), a stress function F may be defined as  
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substituting Eq. (20) in to Eq. (6) and Eq. (22) in to the third of Eq. (24) and according to the Eq. 

(5) and (25) 
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Eqs. (26) and (27) are a non-linear equation system in terms of two unknown parameter F and w. 

 

 

3. Buckling analysis 
 

Suppose the stiffened FGM cylindrical shell is simply supported. The deflection of cylindrical 
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shells consider the three-term as follows (Huang and Han 2010, Volmir 1972)
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in which f0 is pre-buckling uniform unknown amplitude, f1 is linear unknown amplitude, f2 is 

nonlinear unknown amplitude, sin sin
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, m, n are linear buckling shape, 

nonlinear buckling shape, the number of half wave and full wave in the axial and circumferential 

direction, respectively. It should be noted that Eq. (28) does not satisfy the condition of problem. 

Volmir has stated that cylindrical shells are generally insensitive to this condition (Volmir 1967). 

Substituting Eq. (28) in Eq. (26) and solving it, obtained the equation for the unknown function 

F as follows
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0 y is the average circumferential stress and the coefficients Fi 
as follows
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Substituting Eq. (28) and (29) in to Eq. (27) and by applying the Galerkin method in the ranges 

0≤x≤L and 0≤y≤2πR  
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In addition, cylindrical shell must be satisfy the circumferential close conditions as 
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Using Eqs. (20), (25), (28) and (29), can be written 

 
 

2

* 2

11 0 2 0 1

1 1
2 2 0

4
y

n
A h f f f

R R


 
     

 
                                             (36)

 
According to Eq. (33) 
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Substituting  Eq. (33) into Eqs. (36) and (37), we have 
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     Substituting  Eq. (32) into Eqs. (33) and (39) as follows 
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Substituting  Eq. (32) into Eq.(37) and Eq.(37) into Eqs. (36) and (38), we have  
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Table 1 The critical buckling loads (q) for cylindrical shell under external pressure  

 Present Baruch and Singer Reddy and Stames Shen 

Un-stiffened 103.327 (4)
*
 102 93.5 100.7 

Stringer stiffened (θ=0°, β=0°) 104.494 (4) 103 94.7 102.2 

Ring stiffened (θ=90°, β=90°) 379.694 (3) 370 357.5 368.3 

Orthogonal stiffened (θ=0°, β=90°) 387.192 (3) 377 365 374.1 

*The numbers in the parenthesis denote the buckling modes (n). 

 

 

Fig. 4 Post-buckling curve of un-stiffened FGM shells 
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If f=Wmax 
then according to Eq. (28) it is obvious that the maximal deflection of the shells is 

          0 1 2f f f f    (51)
 

It should be noted the exact solutions despite all benefits include restrictions such as the kind of 

boundary conditions and geometric shape of structure. 

 

  

4. Numerical results 
 

     In this section, the stiffened and un-stiffened FGM cylindrical shells by an elastic foundation 
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Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation 

are considered with R=60.643 mm, L=387.35 mm. The combination of materials consists of 

Aluminum Em=70 GPa and Zirconia Ec=380 GPa. The Poisson’s ratio is chosen to be 0.3. The 

height of stiffeners is 0.076 mm and width is 1.27 mm. Each of the stiffener system includes 15 

stiffeners distributed regular.  

In order to verify the formulation, in Table 1 the critical buckling loads (q) for stiffened and un-

stiffened cylindrical shell under external pressure to compared with the results given by Baruch 

and Singer (1963), Reddy and Stames (1993), Shen (2009). In Fig. 4 post-buckling curve of un-

stiffened FGM cylindrical shell compared with the results of the analysis Huang and Han (2010). 

As can be seen, good agreement is obtained in this comparison. 

Fig. 5 shows the effects of stiffeners with various angles on the curve of post-buckling of 

cylindrical shells. In previous works, only stringer and ring stiffeners are investigated that buckling 

load of stringer stiffeners is lower than ring stiffeners and this subject in the present work is 

confirmed. According to Fig. 5 for the mid-states have been chosen the stiffeners with various 

angle that can be observed the effects of them on the post-buckling behavior. As can be seen of 

Fig. 5 maximum buckling load related to the shell with ring stiffeners and minimum of the 

buckling load when the angle of both series stiffeners together is 30°. 

 

 

  

(a) β=0° (b) β=15° 

  

(c) β=30° (d) β=45° 

Fig. 5 Post-buckling curves of cylindrical shells with various angle of stiffeners 
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(e) β=60° (f) β=90° 

Fig. 5 Continued 

 

 
Fig. 6 The effect of elastic foundation Winkler and Pasternak on stiffened FGM cylindrical shells 

 

 

The obtained results from Fig. 6. show that when the buckling load-bearing capacity of shell 

increased 6.6 percent, the Pasternak index is about 1000 times increases, but the buckling load-

bearing capacity of shell increased 29.4 percent, when the Winkler index is about 10 times 

increases. This results show the effect of elastic foundation Winkler on the response of buckling is 

more than the elastic foundation Pasternak. 
According to Fig. 7 can be achieved interesting results. Ceramic and metal shells have the 

highest and lowest resistance to buckling, respectively. The use of steel/ceramic stiffeners leads to 

increase/decrease the load-bearing capacity of shell than the FGM stiffeners. Therefore, the 

ceramic cylindrical shell with steel spiral stiffeners is the best choice. 

In Fig. 8 the curve of maximum radial deflection along circumferential and along of the 
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Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation 

stiffened FGM cylindrical shells for different parts of the length  and m=1 is showed. In Fig. 8 

maximum deflection for x=200 (the middle of the cylinder), It can be seen. Mode number of 

buckling is 7 that is clearly identified in Fig. 8. 

 

 

 
Fig. 7 The effect of material on the load-bearing capacity of shell 

 

 

Fig. 8 Maximum radial deflection along circumferential of the cylindrical shells 
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5. Conclusions 
 

The exact analytical method for FGM cylindrical shells with spiral stiffeners with elastic 

foundation under uniform external pressure is presented. The proposed model is based on Winkler 

and Pasternak elastic foundation parameters. According to the Von Karman nonlinear equations 

and the classical plate theory (CPT) of shells, strain displacement relations are obtained. The 

smeared stiffeners technique and Galerkin method, used for solving nonlinear problem. With 

considering three terms approximation for the deflection shape, the relation for non-linear buckling 

obtained. 

Some conclusions are obtained from this study 

• When both of the stiffeners have angle of 30° critical buckling load is minimum. 

• The effect of elastic foundation Winkler on the response of buckling is more than the elastic 

foundation Pasternak. 

• Ceramic shells have the greatest resistance to buckling load and metal shells have the lowest 

resistance to buckling load. 

• The ceramic cylindrical shells with steel stiffeners is the best choice. 

• Maximum deflection is arisen the middle of length of cylindrical. 
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