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Abstract. In this work a new 3-unknown non-polynomial shear deformation theory for the buckling and
vibration analyses of functionally graded material (FGM) sandwich plates is presented. The present theory
accounts for non-linear in plane displacement and constant transverse displacement through the plate
thickness, complies with plate surface boundary conditions, and in this manner a shear correction factor is
not required. The main advantage of this theory is that, in addition to including the shear deformation effect,
the displacement field is modelled with only 3 unknowns as the case of the classical plate theory (CPT) and
which is even less than the first order shear deformation theory (FSDT). The plate properties are assumed to
vary according to a power law distribution of the volume fraction of the constituents. Equations of motion
are derived from the Hamilton’s principle. Analytical solutions of natural frequency and critical buckling
load for functionally graded sandwich plates are obtained using the Navier solution. The results obtained for
plate with various thickness ratios using the present non-polynomial plate theory are not only substantially
more accurate than those obtained using the classical plate theory, but are almost comparable to those
obtained using higher order theories with more number of unknown functions.

Keywords: sandwich plate; functionally graded material; vibration; buckling; a non- polynomial 3-
unknown theory

1. Introduction

The conventional sandwich structures are generally fabricated from three homogeneous layers,
two face sheets adhesively bonded to the core. However, the sudden change in material properties
across the interface between different materials can result in large interlaminar stresses. To
overcome these adverse effects, a new class of advanced inhomogeneous composite materials, that
composes of two or more phases with different material properties and continuously varying
composition distribution, has been developed which is referred to as functionally graded materials
(FGMs). These materials are made up of mixture of ceramics and metals that are characterized by
the smooth and continuous variation in the properties from one surface to another (Koizumi 1993,
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Reddy 2000, Ould Larbi, Kaci et al. 2013, Ait Atmane, Tounsi et al. 2015, Kar and Panda 2015,
Pradhan and Chakraverty 2015, Sallai, Hadji et al. 2015, Bennai, Ait Atmane et al. 2015, Ebrahimi
and Dashti 2015, Bounouara, Benrahou et al. 2016). Such materials were introduced as to take
advantage of the desired material properties of each constituent material without interface
problems. The sandwich plate faces are typically made from a mixture of two materials. While the
core of this sandwich plate is fully homogeneous material.

In recent years, there is a rapid increase in the use of functionally graded sandwich structures in
aerospace, marine and civil engineering due to high strength-to-weight ratio. With the wide
application of these structures, more accurate theories are required to predict their bending,
vibration and buckling response. Li, lu et al. (2008) presented a three-dimensional solution for free
vibration of multi-layer FGM system-symmetric and unsymmetric FGM sandwich plates using the
Ritz method. Three-dimensional finite element simulations for analyzing low velocity impact
behavior of sandwich panels with a functionally graded core were conducted by Etemadi, Khatibi
et al. (2009). Anderson (2003) presented an analytical three-dimensional elasticity solution
method for a sandwich composite with a functionally graded core subjected to transverse loading
by a rigid spherical indentor. Natarajan and Ganapathi (2012) investigated the bending and the free
flexural vibration behavior of sandwich FGM plates using QUAD-8 shear flexible element
developed based on higher order structural theory. The governing equations obtained are solved
for static analysis considering two types of sandwich FGM plates. Xiang, Kang et al. (2013)
analyzed the free vibration of FG sandwich plates using a nth-order shear deformation theory and a
meshless method, while Sobhy (2013) investigated the buckling and free vibration of FG sandwich
plates using various HSDTSs. Yaghoobi and Yaghoobi (2013) presented analytical solutions for the
buckling of symmetric sandwich plates with FGM face sheets resting on an elastic foundation
based on the first-order shear deformation plate theory and subjected to mechanical, thermal and
also thermo-mechanical loads. The third order shear deformation theory (TSDT) by Reddy (1984)
and Baseri, Jafari et al. (2016) provided better results compared to CPT and FSDT but researchers
have obtained more accurate results by adopting various non-polynomial shear deformation
theories. In non-polynomial shear deformation theories, the in-plane displacements are the
function of thickness coordinate. The function may be trigonometric, exponential or hyperbolic.
Touratier (1991) recommended sinusoidal function, Bouderba, Houari et al. (2013), Tounsi,
Houari et al. (2013), Bachir Bouiadjra, Adda Bedia et al. (2013), Meradjah, Kaci et al. (2015), Al-
Basyouni, Tounsi et al. (2015) and Ahouel, Houari et al. (2016) suggested four variable theory
with same function. Larbi Chaht, Kaci et al. (2015) and Hamidi, Houari et al. (2015) also
recommended sinusoidal function but they considered transverse deflection due to bending as well
as due to shear and thickness stretching. Soldatos (1992), Akvaci (2014) and Mahi, Adda Bedia et
al. (2015) have suggested hyperbolic shear strain function for the analysis. Saldatos (1992)
employed sine hyperbolic function; whereas, Akvaci (2014) and Mahi, Adda Bedia et al. (2015)
suggested tangential hyperbolic shear strain function. A new hyperbolic functions are also
suggested by Belabed, Houari et al. (2014), Hebali, Tounsi et al. (2014), Bousahla, Houari et al.
(2014), Bourada, Kaci et al. (2015), Belkorissat, Houari et al. (2015) and Bennoun, Houari et al.
(2016). Recently, Akavci (2016) presented a new hyperbolic shear and normal deformation plate
theory for the static, free vibration and buckling analysis of the simply supported functionally
graded sandwich plates on elastic foundation. Chikh, Bakora et al. (2016) presented an analytical
formulation based on both hyperbolic shear deformation theory and stress function, to study the
nonlinear post-buckling response of symmetric FG plates supported by elastic foundations and
subjected to in-plane compressive, thermal and thermo-mechanical loads. Abdelbari, Fekrar et al.
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Fig. 1 Geometry and coordinates of rectangular FG sandwich plate

(2016) proposed a simple hyperbolic shear deformation theory for analysis of FG plates resting on
elastic foundation. El-Hassar, Benyoucef et al. (2016) presented an exact analytical solution based
on hyperbolic shear deformation theory for thermal stability of solar FG rectangular plates
subjected to uniform, linear and non-linear temperature rises across the thickness direction is
developed. To reduce computational cost, higher-order shear deformation theories (HSDTSs) with
four unknowns were recently developed for FG plates (Abdelaziz, Ait Atmane et al. 2011, Houari,
Benyoucef et al. 2011, El Meiche, Tounsi et al. 2011, Benachour, Daouadji et al. 2011, Hadji, Ait
Atmane et al. 2011, Bourada, Tounsi et al. 2012, Kettaf, Houari et al. 2013, Zidi, Tounsi et al.
2014, Nedri, El Meiche et al. 2014, Draiche, Tounsi et al. 2014, Ait Amar Meziane, Abdelaziz et
al. 2014, Attia, Tounsi et al. 2015, Bouchafa, Bachir Bouiadjra et al. 2015, Ait Yahia, Ait Atmane
et al. 2015, Nguyen, Thai et al. 2015, Tebboune, Benrahou et al. 2015, Benselama, El Meiche et
al. 2015, Hadji, Hassaine Daouadji et al. 2015, Bellifa, Benrahou et al. 2016, Bouderba, Houari et
al. 2016, Boukhari, Ait Atmane et al. 2016).

In this work, a new 3-unknown non-polynomial shear deformation theory is presented for
buckling and vibration responses of FG sandwich plates. The principal feature of this theory is
that, in addition to including the shear deformation effect, the displacement field is modeled with
only 3 unknowns as the case of the CPT, which is even less than the FSDT and do not need shear
correction factor. Numerical examples are presented to verify the accuracy of the present theory in
predicting the buckling and free vibration responses of FG sandwich plates.

2. Theoretical formulation
A sandwich plate composed of three layers is considered in this work as shown in Fig. 1. Two

FG face sheets are made from a mixture of a metal and a ceramic, while a core is made of an
isotropic homogeneous material. The material properties of FG face sheets are assumed to vary
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continuously through the plate thickness by a power law distribution as (Majumdar and Das 2016)
PO (2)=P, +(P,~P,)V® (1)

where P is the effective material property of FGM of layer n like Young’s modulus E, Poisson’s
ratio v, and mass density p. P, and P, are the properties of the top and bottom faces of layer 1,
respectively, and vice versa for layer 3 depending on the volume fraction V™, (n=1,2,3) defined by

p
Ve =(%] for ze[hy,h]

hl_ 0
v® =1 for ze[h,,h,] @)
p
v<3>=[ﬂj for ze[h,,h,]
hz_h3

where p is the power law index (0<p<+o0), which dictates the material variation profile through the
thickness.

2.1 Three-unknown non-polynomial shear deformations theory

The objective of this work is to develop a simple 3-unknown non-polynomial shear
deformation theory in which in-plane displacement is expanded as a non-polynomial variation
through the thickness. The advantages of the present theory is that the number of variables
involved in this theory is same as that in the classical plate theory (CPT), and the stress-free
boundary conditions on the top and bottom surfaces of the plate can be guaranteed without use of
shear correction factors .

2.1.1 Kinematics

The displacement field satisfying the conditions of transverse shear stresses (and hence strains)
vanishing at a point (x, y, £h/2) on the outer (top) and inner (bottom) surfaces of the plate, is given
as follows

ow, o’w,
u(x,y,z,t) = u,(x, y,t)—za f(z)_ax3
ow o*w
1sut:01!t__0_f —30 (3)
v(xyZ)V(Xy)Z8y (Z)ay

w(X,y,2,t) = W, (X, y,t)

where Uy, Vo, and wy are three unknown displacement functions of midplane of the plate. f(z) is a
shape function representing the distribution of the transverse shear strains and shear stresses
through the thickness of the plate and is given as

(3o oo

f(z)=-2 , (4)

YA 1Y
cosh| — |cosh| =
h 2
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The shape function in Eq. (4) assures an accurate distribution of shear deformation within the
plate thickness and allows to transverse shear stresses vary as parabolic across the thickness as
satisfying shear stress free surface conditions without using shear correction factors. In addition,
this model is suitable for different FGM sandwich plates and easy to implement. The numerical
examples show that the present theory shows good agreement with that of the results of other shear
deformation theories and the 3D linear theory of elasticity.

The nonzero strains associated with the displacement field in Eq. (3) are

&y 6‘2 K, n, 0
Y vz Y vz
e, p=1¢&) t+z9k, e+ F(2)1m, ¢, {yy }z g(z){y‘(’) } (5)
0 Xz Xz
yxy 7/xy kxy Xy
where
au, 2w, 9w,
0 ox x> ox? 0w,
&y X 2 % 4 0 -
ol _ Vg _ ) 0w _) oW, 7y oy°
&y (= & ' y [~ 8y2 Ay (= 6y2 ' o [~ a%w '
0 Y xa _ 0
o) % o B )l dtwe | ) 0% (viwg) o
ay X X0y oxoy
(6)
and
o*w, o%w,
7)=f'(z), Viw, = —° 0 7
9(2) = 1'(2). Viwp = — ¥ (7
2.1.2 Constitutive relations
The linear constitutive relations of a FG sandwich plate can be written as
o™ [Cu Co 0 0 07"[&]"
o, C, C,, O 0 0 &y
r,¢ =0 0 C, 0 O Yy (8)
T, 0 0 0 C, O ¥
Ty | 0 0 0 0 Cql 7w

where (o

X!

Oy

T

yz!
respectively. The stiffness coefficients, C

Xz

C,

1=C22—

ij

_ E(2)
1-v?

can be expressed as

C12 =V C11

Ty)and (&, €y, ¥y Vs Vi) are the stress and strain components,

(%)
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E(2)

2+v)’ o0

Cu=Co =Cq =G(2) =

2.1.3 Governing equations
Using Hamilton’s energy principle derives the equation of motion of the FG sandwich plate

(SU-6V -6T)dt=0 (10)

O Ly,

where oU is the variation of strain energy, oT is the variation of kinetic energy of the FG sandwich
plate, and 6V is the variation of work of external forces. The variation of strain energy of the plate
is done by

ouU :J[O'Xé‘gx +0,06, 47,07, +7,07, +rX257/XZ]dV
\
=[N &2 + NS &l + NS 70 + M, Sk, + M Sk, + M, 5K, (11)
A

+S,57,+8,01,+S,57, +Q,8 7%, +Q,5 7% |dA=0

where A is the top surface and the stress resultants N, M, S and Q are defined by

(N;,M,,S;) i.flzf(o-)(”)dz (i=xy,xy)and Q, = Zj(r)(”’g(z)dz

n:lhnl nlh

(i=xzyz) (12)

where h, and h;; are the top and bottom z-coordinates of the nth layer.
The variation of kinetic energy of the plate can be expressed in the form

5K —j[ua‘u VSV + WS W] p(z)dV

_.[ o[Up U, + Vo8V, + Vi, OV, |

0otV

ll(uo DSW, 8w05, g 00, +%5V0j

0% '0

o%ow, 0°w (13)
( " Sly+Vy ———=+ 305\7())
oy oy
avv 05 Wy _ oWy 05y %, %5 W, %W, 05 W,
+1, +K 3  t— 3
OX ay oy ox”  0OX oy’ oy
5 (axmoaawo+a iy 05 W, | W, 0°5 Wy 0%y 05 Wiy J}dA

ox  ox® ox® o 8y oy’ 5)/ oy

where dot-superscript convention indicates the differentiation with respect to the time variable t;
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p(2) is the mass density; and (lo, Iy, J1, 12, J2, K;) are mass inertias defined as

(15,1, 3,,1,,3,,K,) Zjlz f,22,2 f,12)p!"(z)dz (14)

nlh

The variation of work done by in-plane load ( Nf : NS) can be expressed as

SV = jNOa‘N%W NO W OOW 4 (15)
OX  OX Yoy oy

Substituting the expressions for 6U, oK, and 6V from Egs. (11), (13) and (15) into Eg. (10) and
integrating by parts, and collecting the coefficients of duo, dvo and dwy, the following equations of
motion are obtained

N, oW, . oMy
v v -1
oN.  oN i
svy: S Dy Moy O
ox oy oy oy
2 2 4 4 4
5W0:8MX+26 o, OM, d's, 'S, o', d's, 16)

2 + 4 3 4
oX 6x6y oy? OX 8x oy 6y ax oy
3 83 z ..
_anxz_ QyZ Noavzv Noa |0"0 |1 %_{_%
OX oy® OX ox oy

3. 3. 2.t 4. 4. 6,0 Byoe
+J18u30+6v30 _|26V\2/O+6w -2, 8VZ+6VZ° —Kzavzo+avz°
OX oy OX oy? OX oy OX oy
By substituting Eq. (5) into Eqg. (8) and the subsequent results into Eq. (12), the stress resultants
are obtained as

N} [A B B*]fs
M¢=| B D D°RKki Q=A%y, (17)
s| [B° D H*|ly
in which
N={N,,N,,N,J', M={M_,M M [, s={s.s,.s,} (183)
e={edegrn s k=tkaky ko f\ n=tnam, g ) (180)

Ay A, O B, B, 0 D, D, O
=|A, A, 0}, B=|B, B, 0|, D=D, D, O

) : (18c)
0 0 A 0 0 Bg 0 0 Dg
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B, B, 0 D D O Hy Hy, 0
B°=/B, B),, 0] D°=|D;, D;, O |, H*=H}, H,;, 0 | (18d)
0 0 Bg 0 0 Dg 0 0 Hg
t .Y 0
QZ{QXZ,Qyz}t1 7={7§’z,732}, A :[ 4 } (18d)
0 A
and stiffness components are given as
Aﬁl Bll Dll Blsl Dlsl Hlsl 1
A, B, D, B, D H; Z j CP(Lz,2%, f(2),2 f(2), 2(2) v(“)() dz, (192)
AGG BGG D66 BGSG D656 H656 " 1h _;
(A22’ Byyi Dy, 8252' D;2’ H;2): (An’ By, Dus, Blsl7 D181' H151)’ (19Db)
j clo@ld (19)
n= 1h o

By substituting Eq. (17) into Eg. (16), the equations of motion can be expressed in terms of
displacements (u, Vo and wo) as

o%u 0%v o*w, o*w
Au 0 A66 (A12 + Aes) & — B11 30 - (Blz + 2866)—02
OXoy OX Oxoy
(20a)
S 85W0 s ns \OW, o O°W, oW, BRWA
- Bee 8X38y2 BlZ 66/ 4 Bn GXS Io 0 I1E ‘]1?7
o%v 0%V, 83w o*w
Azzay_zo"'Ase P 2 (A1 Aee/a 6y 30 (812+2866) Z;y
(20b)
. 0w, s oo\ O0W, R oW, oW,
_8668X28y3 BlZ 66/8X4ay Bzz ay Io 0 I1E‘~]1 ay3 )
o°u o%u v o o'w,
Bll ; +(812+2866)6X +(Blz+2866)a 26°y+822 aye? 11 6X40
o'w, o'w, , ou . oo\ o N R
2(D12 + 2D66)6 8; D22 6y —+ Bll 8X 0 (Blz BGG)W + (Blz + Bee)m
5 5 5 6 S\
+ stz d Vso + Bge d k! Bgs d % 2D1$18 V\el —2(Df2 + 2Dese)a—
oy ox*oy? ox*oy? OX ox*oy*
. s\ O°w, . 0w . O°w, s .\ O°w
2(D12 2D66)M 2D22 ay60 H11 aX 0 Z(le + H66)8X4—a;4
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. Ow . Ow . O'w s 66 . O°w o*w o*w
Hse —5 66 ~2 06 _H22 S+ A44 Ass : NO 2 NO IoW
oy % axoy oy° oy° OX "oy
.. 3.es 3 2.0 2. e
+1, %+% +J, 6u30+6v30 -1, a—\l\zlo+a—\l\zl0 (20c)
oX oy OX oy OX oy

4o 6.oe 6.5
23 (68\/\:0 . aayvgoj_ K{aavgo N aayvgoj
X

3. Analytical solutions

The above equations of motion are analytically solved for bending and free vibration problems
of a simply supported rectangular plate. Based on Navier solution procedure, the displacements are
assumed as follows

U(x y,t)] - cos(A x)sin(u y)e'"
v, (X, ¥, 1) ZZ V__sin( A x)cos(uy)e'" (21)
w,(x,y, )] "W sin( A x)sin(uz y)e'!

where i =v-1, A=mzx/a, u=nz/b, (Um, Van Wnn) are the unknown maximum displacement
coefficients, and w is the angular frequency.

Assuming that there is a given ratio between the in-plane compressive loads (Nf , NS) such
that Ny =—N, and N =—y Ng; 7 =NJ/N;

Substituting Eg. (21) into Eq. (20), the analytical solutions can be obtained from

all a12 a13 mll O m13 O

2
a, a, ay|—ow| 0 m, my,||=<0 (22)
al3 a23 a33 m13 m23 m33 O

where
a4, = _(Anﬂz + Aeeluz)
a :_/I,U(Alz + Aes)
15 = A[Bu A + (B, +2Bgg) u° — B A —BLu* — B 1’ — Bl
8,y = —(Age A2 + A1) 23)
A, = u[Byu’ + (B, + 2Bgg) A2 — B’ —BLAY — B A 1® — BLA']
83, = —Dyy A" = 2(Dy, +2Dge) A p1” — Dyppa® +2(DA° + Dj,°)
+ 2 + 22 pt KDy, + 2D5) — Hi A — Hipu® — 220 (HS, + HE,)
—(ﬂe,uz +ﬂ,2y6)H§6 ~A A - A+ No(ﬂf +y yz)
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m;, =m,, :_Io
my, = A(1, + J,42)
Mys Z,U(Il + Jlfuz)’
M., =—(I0 + Iz(/l2 +y2)+ 2J2(ﬂ4 +y4)+ Kz(ﬂf +y6))

4. Numerical results and discussion

In this section, the free vibration and the buckling analysis of simply supported FG sandwich
plates using the new formulation is presented. The main goal of the present work is to prove that it
is possible to gain accuracy similar to other shear deformation theories by choosing the
displacement field modelled with only 3 unknowns as the case of the classical plate theory (CPT).
The FG plate is taken to be made of aluminum and alumina with the following material properties:

Ceramic (P;: Alumina, Al,O3): E.=380 GPa; v=0.3; p.=3800 kg/m3.

Metal (P,: Aluminium, Al): E;,=70 GPa; v=0.3; p,=2707 kg/m°.

For simplicity, the non-dimensional natural frequency and critical buckling parameters are
defined as

2 2
2= 20" Py . N= _Na” (24)
h VE, 100h’E,
where po=1 kg/m®, E;=1 GPa.
The following four layer configurations are used for multilayered FG sandwich plates:
1. 1-0-1 configuration in which is made of two layers of equal thickness without a core.
2. 1-1-1 configuration in which thickness of the core is same as the thickness of face sheets.
3. 1-2-1 configuration in which thickness of the core is twice the thickness of face sheets.
4. 2-1-2 configuration in which the core of the plate is half the face thickness.
5. 2-2-1 configuration in which the core thickness equals the lower face thickness while it is
twice the upper face thickness.
6. 2-1-1 configuration in which the core thickness equals the upper face thickness while it is
twice the lower face thickness.

4.1 Results for free vibration analysis

The natural frequencies of the systems are computed using Eq. (22) after setting Nf and N;’
equal to zero. The non-dimensonalized fundamental frequencies of FG plates are presented here to
estimate the accuracy of the presented new 3-unknown non-polynomial shear deformation theory.

First, for the verification purpose, the results computed using the new 3-unknown non-
polynomial shear deformation theory are compared with other theories existing in the literature
such as the three-dimensional linear theory of elasticity by Li, lu et al. (2008) as well as the
different theories presented by El Meiche, Tounsi et al. (2011) mainly the higher-order shear
deformation theories (HSDTSs) such as: parabolic shear deformation plate theory (PSDPT),
sinusoidal shear deformation plate theory (SSDPT) and hyperbolic shear deformation plate theory
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Table 1 Comparisons of natural fundamental frequency parameters @ of simply supported square power-
law FG plates with other theories (h/b=0.1)

P Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1
SSDPT @ 1.82452 1.82452  1.82452  1.82452  1.82452  1.82452

PSDPT @ 1.82445 1.82445  1.82445  1.82445  1.82445  1.82445

0 HSDPT @ 1.82449 1.82449  1.82449  1.82449  1.82449  1.82449
Elasticity ® 1.82682 1.82682  1.82682  1.82682  1.82682  1.82682

Present 1.83141 1.83141  1.83141 183141  1.83141 1.83141

SSDPT @ 1.44436 1.48418 151258 151927 155202  1.57450

PSDPT @ 1.44424 1.48408 151253 151922 155199 157451

0.5 HSDPT @ 1.44419 1.48405 150636 151922 154714  1.57458
Elasticity ® 1.44614 1.48608 150841 152131  1.54926  1.57668

Present 1.44487 1.48468 150716 151990  1.54809  1.57560

SSDPT @ 1.24335 1.30023  1.34894  1.35339  1.40792  1.43931

PSDPT @ 1.24320 1.30011  1.34888  1.35333  1.40789  1.43934

1 HSDPT @ 1.24310 1.30004  1.33328  1.35331  1.39559  1.43940
Elasticity ® 1.24470 1.30181  1.33511  1.35523  1.39763  1.44137

Present 1.24413 1.30095  1.33392  1.35387  1.39599  1.43957

SSDPT @ 0.94630 0.98207  1.07445  1.04481  1.14741  1.17399

PSDPT @ 0.94598 0.98184  1.07432  1.04466  1.14731  1.17397

5 HSDPT © 0.94574 0.98166  1.03033  1.04455  1.10875  1.17397
Elasticity ® 0.94476 0.98103  1.02942  1.04532  1.10983  1.17567

Present 0.94801 0.98741  1.03442  1.05031  1.11271  1.17710

SSDPT @ 0.92875 0.94332  1.04558  0.99519  1.04154  1.13460

PSDPT @ 0.92839 0.94297  1.03862  0.99551  1.10533  1.12314

10 HSDPT @ 0.92811 0.94275  0.99184  0.99536  1.06081  1.12311
Elasticity ® 0.92727 0.94078  0.98929  0.99523  1.06104  1.12466

Present 0.92946 0.94851  0.99592  1.00222  1.06566  1.12746

@ E| Meiche, Tounsi et al. (2011)
®)Lj, lu et al. (2008)

(HSDPT).

Table 1 shows a good agreement by comparisons of FG plates of five different volume fraction
indices p=0,0.5,1,5,10 with other theories. Hence, the present 3-unknown model (with only three
unknown variables) provides comparable results to those obtained with higher order models with
more unknowns (SSDPT, PSDPT and HSDPT). Compared to the three-dimensional linear theory
of elasticity (Li, lu et al. 2008), the present theory gives also accurate results.

The variation of the non-dimensional fundamental frequencies of a FG sandwich plates versus
the side-to-thickness ratio is illustrated in Fig. 2 for different power law index p using the present
theory. It can be observed from Fig. 2 that the fundamental frequencies are reduced with
increasing the power law index p. The results are the maximum for the ceramic plates and the
minimum for the metal plates.
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Fig. 2 Fundamental frequency (@ ) as a function of side-to-thickness ratio (b/h) of symmetric and non-
symmetric square FG sandwich plates for various values of p. (a) The (1-2-1) FG sandwich plate and (b)
the (2-2-1) FG sandwich plate

4.2 Results for buckling analysis
The critical buckling loads of the system are predicted using Eq. (22) after setting » equal to

zero. This section aims to verify the accuracy of the present 3-unknown non-polynomial shear
deformation theory in predicting the critical buckling loads of FG sandwich plates.
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Tables 2 and 3 show the critical buckling loads of different types of FG sandwich plates by
employing various plate theories. In these two examples, the values of the power law index are
taken equal to p=0,0.5,1,5,10. It can be observed from Tables 2 and 3 that the results of the present
theory are in good agreement with those of other shear deformation theories. Hence, the present
model (with only three unknown functions) provides comparable results to those computed using
higher order models with more unknowns. In general, the fully ceramic plates give the largest
critical buckling loads. The uniaxial buckling load may be twice the biaxial one and this
irrespective of the considered value of p and the type of the FG plate.

Figs. 3 and 4 present the critical buckling loads of the symmetric (1-2-1) and non-symmetric
(2-2-1) types of square FG sandwich plates versus the side-to-thickness ratio using the present new
3-unknown non-polynomial shear deformation theory. The results are the maximum for the
ceramic plates and the minimum for the metal plates.

5. Conclusions

A new 3-unknown non-polynomial shear deformation theory has been proposed for the

Table 2 Comparison of nondimensional critical buckling load of square FG sandwich plates subjected to
uniaxial compressive load (y=0, h/b=0.1)

p Theory N
1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1
PSDPT @ 13.00495 13.00495 13.00495  13.00495  13.00495 13.00495
0 SSDPT @ 13.00606 13.00606 13.00606  13.00606  13.00606 13.00606
HSDPT @ 13.00552 13.00552 13.00552  13.00552  13.00552 13.00552
Present 13.11249 13.11249 13.11249  13.11249  13.11249 13.11249
PSDPT @ 7.36437 7.04084  8.22470 8.43645 8.80997  9.21681
05 SSDPT @ 7.36568 7.94195  8.22538 8.43712 8.81037  9.21670
' HSDPT @ 7.36380 7.94046  8.22471 8.43647 8.81029  9.21757
Present 7.36793 7.94497  8.23121 8.44250 8.81972  9.22921
PSDPT @ 5.16713 5.84006  6.19394 6.46474 6.94944  7.50656
L SSDPT @ 5.16846 5.84119  6.19461 6.46539 6.94980  7.50629
HSDPT @ 5.16629 5.83941  6.19371 6.46450 6.94952  7.50719
Present 5.17036 5.84351  6.19506 6.46630 6.94966  7.50650
PSDPT @ 2.65821 3.04257  3.40351 3.57956 411209  4.73469
. SSDPT @ 2.66006 3.04406  3.40449 3.58063 411288  4.73488
HSDPT @ 2.65679 3.04141  3.40280 3.57874 411157  4.73463
Present 2.66517 3.07268  3.42428 3.61386 413535  4.75567
PSDPT @ 2.48727 2.74632  3.09190 3.19471 3.70752  4.27991
10 SSDPT @ 2.48928 2.74844  3.13443 3.19456 3.14574  4.38175
HSDPT @ 2.48574 2.74498  3.09111 3.19373 3.70686  4.27964
Present 2.48889 277423  3.11115 3.23351 3.73515  4.30855

@ El Meiche, Tounsi et al. (2011)
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Table 3 Comparison of nondimensional critical buckling load of square FG sandwich plates subjected to
biaxial compressive load (y=1, h/b=0.1)

p Theory N
1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1
PSDPT @ 6.50248 6.50248 6.50248 650248  6.50248  6.50248
0 SSDPT @ 6.50303 6.50303 6.50303  6.50303  6.50303  6.50303
HSDPT @ 6.50276 6.50276  6.50276  6.50276  6.50276  6.50276
Present 6,55624 6,55624 655624 655624  6,55624  6,55624
PSDPT @ 3.68219 3.97042 411235  4.21823  4.40499  4.60841
05 SSDPT @ 3.68284 3.97097 411269  4.21856  4.40519  4.60835
' HSDPT @ 3.68190 3.97023 4.11236  4.21823  4.40514  4.60878
Present 3.68397 3.97248 411560  4.22125  4.40986  4.61461
PSDPT @ 2.58357 2.92003 3.09697  3.23237  3.47472  3.75328
1 SSDPT @ 2.58423 2.92060 3.09731  3.23270  3.47490 3.75314
HSDPT @ 2.58315 291970 3.09686  3.23225  3.47476  3.75359
Present 2.58518 292175 3.09753  3.23315  3.47483  3.75325
PSDPT @ 1.32910 152129 1.70176  1.78978  2.05605 2.36734
c SSDPT @ 1.33003 152203 1.70224  1.79032  2.05644  2.36744
HSDPT @ 1.32839 152071 170140  1.78937  2.05578 2.36731
Present 1.33258 153634 1.71214  1.80693  2.06768 2.37784
PSDPT @ 1.24363 1.37316 154595 159736  1.85376  2.13995
10 SSDPT @ 1.24475 1.37422 156721 159728 157287  2.19087
HSDPT @ 1.24287 1.37249 154556 159687  1.85343  2.13982
Present 1.24445 1.38712 155557  1.61675  1.86757 2.15428

@ EI Meiche, Tounsi et al. (2011)
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Fig. 3 Nondimensional critical buckling load (N ) as a function of side-to-thickness ratio (b/h) of (1-2-1)
FG sandwich plates for various values of p. (a) Plate subjected to uniaxial compressive load (y=0) and (b)
Plate subjected to biaxial compressive load (y=1)
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buckling and vibration response of FG sandwich plates. The innovation of this present theory is
that, in addition to considering the shear deformation effect, the displacement field is expressed
with only three unknowns as the case of the CPT and which is even less than the FSDT.
Verification studies demonstrate that the developed theory is not only accurate but also simple in
predicting the buckling and free vibration responses of FG sandwich plates.
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