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Abstract.  In this work a new 3-unknown non-polynomial shear deformation theory for the buckling and 

vibration analyses of functionally graded material (FGM) sandwich plates is presented. The present theory 

accounts for non-linear in plane displacement and constant transverse displacement through the plate 

thickness, complies with plate surface boundary conditions, and in this manner a shear correction factor is 

not required. The main advantage of this theory is that, in addition to including the shear deformation effect, 

the displacement field is modelled with only 3 unknowns as the case of the classical plate theory (CPT) and 

which is even less than the first order shear deformation theory (FSDT). The plate properties are assumed to 

vary according to a power law distribution of the volume fraction of the constituents. Equations of motion 

are derived from the Hamilton’s principle. Analytical solutions of natural frequency and critical buckling 

load for functionally graded sandwich plates are obtained using the Navier solution. The results obtained for 

plate with various thickness ratios using the present non-polynomial plate theory are not only substantially 

more accurate than those obtained using the classical plate theory, but are almost comparable to those 

obtained using higher order theories with more number of unknown functions. 
 

Keywords:  sandwich plate; functionally graded material; vibration; buckling; a non- polynomial 3-

unknown theory 

 
 
1. Introduction 
 

The conventional sandwich structures are generally fabricated from three homogeneous layers, 

two face sheets adhesively bonded to the core. However, the sudden change in material properties 

across the interface between different materials can result in large interlaminar stresses. To 

overcome these adverse effects, a new class of advanced inhomogeneous composite materials, that 

composes of two or more phases with different material properties and continuously varying 

composition distribution, has been developed which is referred to as functionally graded materials 

(FGMs). These materials are made up of mixture of ceramics and metals that are characterized by 

the smooth and continuous variation in the properties from one surface to another (Koizumi 1993, 
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Reddy 2000, Ould Larbi, Kaci et al. 2013, Ait Atmane, Tounsi et al. 2015, Kar and Panda 2015, 

Pradhan and Chakraverty 2015, Sallai, Hadji et al. 2015, Bennai, Ait Atmane et al. 2015, Ebrahimi 

and Dashti 2015, Bounouara, Benrahou et al. 2016). Such materials were introduced as to take 

advantage of the desired material properties of each constituent material without interface 

problems. The sandwich plate faces are typically made from a mixture of two materials. While the 

core of this sandwich plate is fully homogeneous material. 

In recent years, there is a rapid increase in the use of functionally graded sandwich structures in 

aerospace, marine and civil engineering due to high strength-to-weight ratio. With the wide 

application of these structures, more accurate theories are required to predict their bending, 

vibration and buckling response. Li, Iu et al. (2008) presented a three-dimensional solution for free 

vibration of multi-layer FGM system-symmetric and unsymmetric FGM sandwich plates using the 

Ritz method. Three-dimensional finite element simulations for analyzing low velocity impact 

behavior of sandwich panels with a functionally graded core were conducted by Etemadi, Khatibi 

et al. (2009). Anderson (2003) presented an analytical three-dimensional elasticity solution 

method for a sandwich composite with a functionally graded core subjected to transverse loading 

by a rigid spherical indentor. Natarajan and Ganapathi (2012) investigated the bending and the free 

flexural vibration behavior of sandwich FGM plates using QUAD-8 shear flexible element 

developed based on higher order structural theory. The governing equations obtained are solved 

for static analysis considering two types of sandwich FGM plates. Xiang, Kang et al. (2013) 

analyzed the free vibration of FG sandwich plates using a nth-order shear deformation theory and a 

meshless method, while Sobhy (2013) investigated the buckling and free vibration of FG sandwich 

plates using various HSDTs. Yaghoobi and Yaghoobi (2013) presented analytical solutions for the 

buckling of symmetric sandwich plates with FGM face sheets resting on an elastic foundation 

based on the first-order shear deformation plate theory and subjected to mechanical, thermal and 

also thermo-mechanical loads. The third order shear deformation theory (TSDT) by Reddy (1984) 

and Baseri, Jafari et al. (2016) provided better results compared to CPT and FSDT but researchers 

have obtained more accurate results by adopting various non-polynomial shear deformation 

theories. In non-polynomial shear deformation theories, the in-plane displacements are the 

function of thickness coordinate. The function may be trigonometric, exponential or hyperbolic. 

Touratier (1991) recommended sinusoidal function, Bouderba, Houari et al. (2013), Tounsi, 

Houari et al. (2013), Bachir Bouiadjra, Adda Bedia et al. (2013), Meradjah, Kaci et al. (2015), Al-

Basyouni, Tounsi et al. (2015) and Ahouel, Houari et al. (2016) suggested four variable theory 

with same function. Larbi Chaht, Kaci et al. (2015) and Hamidi, Houari et al. (2015) also 

recommended sinusoidal function but they considered transverse deflection due to bending as well 

as due to shear and thickness stretching. Soldatos (1992), Akvaci (2014) and Mahi, Adda Bedia et 

al. (2015) have suggested hyperbolic shear strain function for the analysis. Saldatos (1992) 

employed sine hyperbolic function; whereas, Akvaci (2014) and Mahi, Adda Bedia et al. (2015) 

suggested tangential hyperbolic shear strain function. A new hyperbolic functions are also 

suggested by Belabed, Houari et al. (2014), Hebali, Tounsi et al. (2014), Bousahla, Houari et al. 

(2014), Bourada, Kaci et al. (2015), Belkorissat, Houari et al. (2015) and Bennoun, Houari et al. 

(2016). Recently, Akavci (2016) presented a new hyperbolic shear and normal deformation plate 

theory for the static, free vibration and buckling analysis of the simply supported functionally 

graded sandwich plates on elastic foundation. Chikh, Bakora et al. (2016) presented an analytical 

formulation based on both hyperbolic shear deformation theory and stress function, to study the 

nonlinear post-buckling response of symmetric FG plates supported by elastic foundations and 

subjected to in-plane compressive, thermal and thermo-mechanical loads. Abdelbari, Fekrar et al.  
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Fig. 1 Geometry and coordinates of rectangular FG sandwich plate 

 

 

(2016) proposed a simple hyperbolic shear deformation theory for analysis of FG plates resting on 

elastic foundation. El-Hassar, Benyoucef et al. (2016) presented an exact analytical solution based 

on hyperbolic shear deformation theory for thermal stability of solar FG rectangular plates 

subjected to uniform, linear and non-linear temperature rises across the thickness direction is 

developed. To reduce computational cost, higher-order shear deformation theories (HSDTs) with 

four unknowns were recently developed for FG plates (Abdelaziz, Ait Atmane et al. 2011, Houari, 

Benyoucef et al. 2011, El Meiche, Tounsi et al. 2011, Benachour, Daouadji et al. 2011, Hadji, Ait 

Atmane et al. 2011, Bourada, Tounsi et al. 2012, Kettaf, Houari et al. 2013, Zidi, Tounsi et al. 

2014, Nedri, El Meiche et al. 2014, Draiche, Tounsi et al. 2014, Ait Amar Meziane, Abdelaziz et 

al. 2014, Attia, Tounsi et al. 2015, Bouchafa, Bachir Bouiadjra et al. 2015, Ait Yahia, Ait Atmane 

et al. 2015, Nguyen, Thai et al. 2015, Tebboune, Benrahou et al. 2015, Benselama, El Meiche et 

al. 2015, Hadji, Hassaine Daouadji et al. 2015, Bellifa, Benrahou et al. 2016, Bouderba, Houari et 

al. 2016, Boukhari, Ait Atmane et al. 2016). 

In this work, a new 3-unknown non-polynomial shear deformation theory is presented for 

buckling and vibration responses of FG sandwich plates. The principal feature of this theory is 

that, in addition to including the shear deformation effect, the displacement field is modeled with 

only 3 unknowns as the case of the CPT, which is even less than the FSDT and do not need shear 

correction factor. Numerical examples are presented to verify the accuracy of the present theory in 

predicting the buckling and free vibration responses of FG sandwich plates. 

 

 

2. Theoretical formulation 
 

A sandwich plate composed of three layers is considered in this work as shown in Fig. 1. Two 

FG face sheets are made from a mixture of a metal and a ceramic, while a core is made of an 

isotropic homogeneous material. The material properties of FG face sheets are assumed to vary 
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continuously through the plate thickness by a power law distribution as (Majumdar and Das 2016) 

  )(

212

)(  )( nn VPPPzP                                                    (1) 

where P
(n)

 is the effective material property of FGM of layer n like Young’s modulus E, Poisson’s 

ratio v, and mass density ρ. P1 and P2 are the properties of the top and bottom faces of layer 1, 

respectively, and vice versa for layer 3 depending on the volume fraction V
(n)
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where p is the power law index (0≤p≤+∞), which dictates the material variation profile through the 

thickness.  

 

2.1 Three-unknown non-polynomial shear deformations theory 
 

The objective of this work is to develop a simple 3-unknown non-polynomial shear 

deformation theory in which in-plane displacement is expanded as a non-polynomial variation 

through the thickness. The advantages of the present theory is that the number of variables 

involved in this theory is same as that in the classical plate theory (CPT), and the stress-free 

boundary conditions on the top and bottom surfaces of the plate can be guaranteed without use of 

shear correction factors .  

 

2.1.1 Kinematics 
The displacement field satisfying the conditions of transverse shear stresses (and hence strains) 

vanishing at a point (x, y, ±h/2) on the outer (top) and inner (bottom) surfaces of the plate, is given 

as follows 
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where u0, v0, and w0 are three unknown displacement functions of midplane of the plate. f(z) is a 

shape function representing the distribution of the transverse shear strains and shear stresses 

through the thickness of the plate and is given as 
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The shape function in Eq. (4) assures an accurate distribution of shear deformation within the 

plate thickness and allows to transverse shear stresses vary as parabolic across the thickness as 

satisfying shear stress free surface conditions without using shear correction factors. In addition, 

this model is suitable for different FGM sandwich plates and easy to implement. The numerical 

examples show that the present theory shows good agreement with that of the results of other shear 

deformation theories and the 3D linear theory of elasticity.  

The nonzero strains associated with the displacement field in Eq. (3) are 
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2.1.2 Constitutive relations 
The linear constitutive relations of a FG sandwich plate can be written as 
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where ( x , y , yz , xz , xy ) and ( x , y , yz , xz , xy ) are the stress and strain components, 

respectively. The stiffness coefficients, ijC , can be expressed as 
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2.1.3 Governing equations 
Using Hamilton’s energy principle derives the equation of motion of the FG sandwich plate 
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where δU is the variation of strain energy, δT is the variation of kinetic energy of the FG sandwich 

plate, and δV is the variation of work of external forces. The variation of strain energy of the plate 

is done by 
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where A is the top surface and the stress resultants N, M, S and Q are defined by 
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where hn and hn-1 are the top and bottom z-coordinates of the nth layer.  

The variation of kinetic energy of the plate can be expressed in the form 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; 
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ρ(z) is the mass density; and (I0, I1, J1, I2, J2, K2) are mass inertias defined as  
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Substituting the expressions for δU, δK, and δV from Eqs. (11), (13) and (15) into Eq. (10) and 

integrating by parts, and collecting the coefficients of δu0, δv0 and δw0, the following equations of 

motion are obtained 
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By substituting Eq. (5) into Eq. (8) and the subsequent results into Eq. (12), the stress resultants 

are obtained as 
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and stiffness components are given as 
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By substituting Eq. (17) into Eq. (16), the equations of motion can be expressed in terms of 

displacements (u0, v0 and w0) as 
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3. Analytical solutions 
 

The above equations of motion are analytically solved for bending and free vibration problems 

of a simply supported rectangular plate. Based on Navier solution procedure, the displacements are 

assumed as follows 








 
































1 1    

   

   

0

0

0

 ) sin() sin(

 ) cos() sin(

 ) sin() cos(

),,(

),,(

),,(

m n ti

mn

ti

mn

ti

mn

eyxW

eyxV

eyxU

tyxw

tyxv

tyxu













                                (21) 

where 1i , am /  , bn /  , (Umn, Vmn, Wmn) are the unknown maximum displacement  

coefficients, and ω is the angular frequency.  
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Substituting Eq. (21) into Eq. (20), the analytical solutions can be obtained from 
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4. Numerical results and discussion 
 

In this section, the free vibration and the buckling analysis of simply supported FG sandwich 

plates using the new formulation is presented. The main goal of the present work is to prove that it 

is possible to gain accuracy similar to other shear deformation theories by choosing the 

displacement field modelled with only 3 unknowns as the case of the classical plate theory (CPT). 

The FG plate is taken to be made of aluminum and alumina with the following material properties: 

Ceramic (P1: Alumina, Al2O3): Ec=380 GPa; v=0.3; ρc=3800 kg/m
3
. 

Metal (P2: Aluminium, Al): Em=70  GPa; v=0.3; ρm=2707 kg/m
3
. 

For simplicity, the non-dimensional natural frequency and critical buckling parameters are 

defined as 

0

0

2 

Eh

b 
  ,   

0

2

2

100 Eh

Na
N                                                (24) 

where ρ0=1 kg/m
3
, E0=1 GPa.  

The following four layer configurations are used for multilayered FG sandwich plates: 

1. 1-0-1 configuration in which is made of two layers of equal thickness without a core. 

2. 1-1-1 configuration in which thickness of the core is same as the thickness of face sheets. 

3. 1-2-1 configuration in which thickness of the core is twice the thickness of face sheets. 

4. 2-1-2 configuration in which the core of the plate is half the face thickness. 

5. 2-2-1 configuration in which the core thickness equals the lower face thickness while it is 

twice the upper face thickness. 

6. 2-1-1 configuration in which the core thickness equals the upper face thickness while it is 

twice the lower face thickness. 

 

4.1 Results for free vibration analysis 
 

The natural frequencies of the systems are computed using Eq. (22) after setting 
0

xN  and 
0

yN   

equal to zero. The non-dimensonalized fundamental frequencies of FG plates are presented here to 

estimate the accuracy of the presented new 3-unknown non-polynomial shear deformation theory.  

First, for the verification purpose, the results computed using the new 3-unknown non-

polynomial shear deformation theory are compared with other theories existing in the literature 

such as the three-dimensional linear theory of elasticity by Li, Iu et al. (2008) as well as the 

different theories presented by El Meiche, Tounsi et al. (2011) mainly the higher-order shear 

deformation theories (HSDTs) such as: parabolic shear deformation plate theory (PSDPT), 

sinusoidal shear deformation plate theory (SSDPT) and hyperbolic shear deformation plate theory  
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Table 1 Comparisons of natural fundamental frequency parameters   of simply supported square power-

law FG plates with other theories (h/b=0.1) 

p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

0 

SSDPT 
(a)

 1.82452 1.82452 1.82452 1.82452 1.82452 1.82452 

PSDPT 
(a)

 1.82445 1.82445 1.82445 1.82445 1.82445 1.82445 

HSDPT 
(a)

 1.82449 1.82449 1.82449 1.82449 1.82449 1.82449 

Elasticity 
(b)

 1.82682 1.82682 1.82682 1.82682 1.82682 1.82682 

Present 1.83141 1.83141 1.83141 1.83141 1.83141 1.83141 

0.5 

SSDPT 
(a)

 1.44436 1.48418 1.51258 1.51927 1.55202 1.57450 

PSDPT 
(a)

 1.44424 1.48408 1.51253 1.51922 1.55199 1.57451 

HSDPT 
(a)

 1.44419 1.48405 1.50636 1.51922 1.54714 1.57458 

Elasticity 
(b)

 1.44614 1.48608 1.50841 1.52131 1.54926 1.57668 

Present 1.44487 1.48468 1.50716 1.51990 1.54809 1.57560 

1 

SSDPT 
(a)

 1.24335 1.30023 1.34894 1.35339 1.40792 1.43931 

PSDPT 
(a)

 1.24320 1.30011 1.34888 1.35333 1.40789 1.43934 

HSDPT 
(a)

 1.24310 1.30004 1.33328 1.35331 1.39559 1.43940 

Elasticity 
(b)

 1.24470 1.30181 1.33511 1.35523 1.39763 1.44137 

Present 1.24413 1.30095 1.33392 1.35387 1.39599 1.43957 

5 

SSDPT 
(a)

 0.94630 0.98207 1.07445 1.04481 1.14741 1.17399 

PSDPT 
(a)

 0.94598 0.98184 1.07432 1.04466 1.14731 1.17397 

HSDPT 
(a)

 0.94574 0.98166 1.03033 1.04455 1.10875 1.17397 

Elasticity 
(b)

 0.94476 0.98103 1.02942 1.04532 1.10983 1.17567 

Present 0.94801 0.98741 1.03442 1.05031 1.11271 1.17710 

10 

SSDPT 
(a)

 0.92875 0.94332 1.04558 0.99519 1.04154 1.13460 

PSDPT 
(a)

 0.92839 0.94297 1.03862 0.99551 1.10533 1.12314 

HSDPT 
(a)

 0.92811 0.94275 0.99184 0.99536 1.06081 1.12311 

Elasticity 
(b)

 0.92727 0.94078 0.98929 0.99523 1.06104 1.12466 

Present 0.92946 0.94851 0.99592 1.00222 1.06566 1.12746 
(a)

 El Meiche, Tounsi et al. (2011)  
(b)

 Li, Iu et al. (2008)  
 

 

(HSDPT).  

Table 1 shows a good agreement by comparisons of FG plates of five different volume fraction 

indices p=0,0.5,1,5,10 with other theories. Hence, the present 3-unknown model (with only three 

unknown variables) provides comparable results to those obtained with higher order models with 

more unknowns (SSDPT, PSDPT and HSDPT). Compared to the three-dimensional linear theory 

of elasticity (Li, Iu et al. 2008), the present theory gives also accurate results. 

The variation of the non-dimensional fundamental frequencies of a FG sandwich plates versus 

the side-to-thickness ratio is illustrated in Fig. 2 for different power law index p using the present 

theory. It can be observed from Fig. 2 that the fundamental frequencies are reduced with 

increasing the power law index p. The results are the maximum for the ceramic plates and the 

minimum for the metal plates. 
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Fig. 2 Fundamental frequency ( ) as a function of side-to-thickness ratio (b/h) of symmetric and non-

symmetric square FG sandwich plates for various values of p. (a) The (1-2-1) FG sandwich plate and (b) 

the (2-2-1) FG sandwich plate 

 

 

4.2 Results for buckling analysis 
 

The critical buckling loads of the system are predicted using Eq. (22) after setting ω equal to 

zero. This section aims to verify the accuracy of the present 3-unknown non-polynomial shear 

deformation theory in predicting the critical buckling loads of FG sandwich plates. 
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Tables 2 and 3 show the critical buckling loads of different types of FG sandwich plates by 

employing various plate theories. In these two examples, the values of the power law index are 

taken equal to p=0,0.5,1,5,10. It can be observed from Tables 2 and 3 that the results of the present 

theory are in good agreement with those of other shear deformation theories. Hence, the present 

model (with only three unknown functions) provides comparable results to those computed using 

higher order models with more unknowns. In general, the fully ceramic plates give the largest 

critical buckling loads. The uniaxial buckling load may be twice the biaxial one and this 

irrespective of the considered value of p and the type of the FG plate. 

Figs. 3 and 4 present the critical buckling loads of the symmetric (1-2-1) and non-symmetric 

(2-2-1) types of square FG sandwich plates versus the side-to-thickness ratio using the present new 

3-unknown non-polynomial shear deformation theory. The results are the maximum for the 

ceramic plates and the minimum for the metal plates.  

 

 

5. Conclusions 
 

A new 3-unknown non-polynomial shear deformation theory has been proposed for the 

 

 
Table 2 Comparison of nondimensional critical buckling load of square FG sandwich plates subjected to 

uniaxial compressive load (γ=0, h/b=0.1)  

p Theory 
N  

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

0 

PSDPT 
(a)

 13.00495 13.00495 13.00495 13.00495 13.00495 13.00495 

SSDPT 
(a)

 13.00606 13.00606 13.00606 13.00606 13.00606 13.00606 

HSDPT 
(a)

 13.00552 13.00552 13.00552 13.00552 13.00552 13.00552 

Present 13.11249 13.11249 13.11249 13.11249 13.11249 13.11249 

0.5 

PSDPT 
(a)

 7.36437 7.94084 8.22470 8.43645 8.80997 9.21681 

SSDPT 
(a)

 7.36568 7.94195 8.22538 8.43712 8.81037 9.21670 

HSDPT 
(a)

 7.36380 7.94046 8.22471 8.43647 8.81029 9.21757 

Present 7.36793 7.94497 8.23121 8.44250 8.81972 9.22921 

1 

PSDPT 
(a)

 5.16713 5.84006 6.19394 6.46474 6.94944 7.50656 

SSDPT 
(a)

 5.16846 5.84119 6.19461 6.46539 6.94980 7.50629 

HSDPT 
(a)

 5.16629 5.83941 6.19371 6.46450 6.94952 7.50719 

Present 5.17036 5.84351 6.19506 6.46630 6.94966 7.50650 

5 

PSDPT 
(a)

 2.65821 3.04257 3.40351 3.57956 4.11209 4.73469 

SSDPT 
(a)

 2.66006 3.04406 3.40449 3.58063 4.11288 4.73488 

HSDPT 
(a)

 2.65679 3.04141 3.40280 3.57874 4.11157 4.73463 

Present 2.66517 3.07268 3.42428 3.61386 4.13535 4.75567 

10 

PSDPT 
(a)

 2.48727 2.74632 3.09190 3.19471 3.70752 4.27991 

SSDPT 
(a)

 2.48928 2.74844 3.13443 3.19456 3.14574 4.38175 

HSDPT 
(a)

 2.48574 2.74498 3.09111 3.19373 3.70686 4.27964 

Present 2.48889 2.77423 3.11115 3.23351 3.73515 4.30855 
(a)

 El Meiche, Tounsi et al. (2011) 
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Table 3 Comparison of nondimensional critical buckling load of square FG sandwich plates subjected to 

biaxial compressive load (γ=1, h/b=0.1) 

p Theory 
N  

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

0 

PSDPT 
(a)

 6.50248 6.50248 6.50248 6.50248 6.50248 6.50248 

SSDPT 
(a)

 6.50303 6.50303 6.50303 6.50303 6.50303 6.50303 

HSDPT 
(a)

 6.50276 6.50276 6.50276 6.50276 6.50276 6.50276 

Present 6,55624 6,55624 6,55624 6,55624 6,55624 6,55624 

0.5 

PSDPT 
(a)

 3.68219 3.97042 4.11235 4.21823 4.40499 4.60841 

SSDPT 
(a)

 3.68284 3.97097 4.11269 4.21856 4.40519 4.60835 

HSDPT 
(a)

 3.68190 3.97023 4.11236 4.21823 4.40514 4.60878 

Present 3.68397 3.97248 4.11560 4.22125 4.40986 4.61461 

1 

PSDPT 
(a)

 2.58357 2.92003 3.09697 3.23237 3.47472 3.75328 

SSDPT 
(a)

 2.58423 2.92060 3.09731 3.23270 3.47490 3.75314 

HSDPT 
(a)

 2.58315 2.91970 3.09686 3.23225 3.47476 3.75359 

Present 2.58518 2.92175 3.09753 3.23315 3.47483 3.75325 

5 

PSDPT 
(a)

 1.32910 1.52129 1.70176 1.78978 2.05605 2.36734 

SSDPT 
(a)

 1.33003 1.52203 1.70224 1.79032 2.05644 2.36744 

HSDPT 
(a)

 1.32839 1.52071 1.70140 1.78937 2.05578 2.36731 

Present 1.33258 1.53634 1.71214 1.80693 2.06768 2.37784 

10 

PSDPT 
(a)

 1.24363 1.37316 1.54595 1.59736 1.85376 2.13995 

SSDPT 
(a)

 1.24475 1.37422 1.56721 1.59728 1.57287 2.19087 

HSDPT 
(a)

 1.24287 1.37249 1.54556 1.59687 1.85343 2.13982 

Present 1.24445 1.38712 1.55557 1.61675 1.86757 2.15428 
(a)

 El Meiche, Tounsi et al. (2011) 
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Fig. 3 Nondimensional critical buckling load ( N ) as a function of side-to-thickness ratio (b/h) of (1-2-1) 

FG sandwich plates for various values of p. (a) Plate subjected to uniaxial compressive load (γ=0) and (b) 

Plate subjected to biaxial compressive load (γ=1) 

560



 

 

 

 

 

 

A new 3-unknowns non-polynomial plate theory for buckling and vibration ... 

 

4 6 8 10 12 14 16 18 20

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

6,5

7,0

N
o
n
d
im

en
si

o
n
al

 c
ri

ti
ca

l 
b
u
ck

li
n
g
 l

o
ad

b/h

Metal

5

2

1

Ceramic

p=0,5

(b)

 

Fig. 3 Continued 
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Fig. 4 Nondimensional critical buckling load ( N ) as a function of side-to-thickness ratio (b/h) of (2-2-1) 

FG sandwich plates for various values of p. (a) Plate subjected to uniaxial compressive load (γ=0) and (b) 

Plate subjected to biaxial compressive load (γ=1) 
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buckling and vibration response of FG sandwich plates. The innovation of this present theory is 

that, in addition to considering the shear deformation effect, the displacement field is expressed 

with only three unknowns as the case of the CPT and which is even less than the FSDT. 

Verification studies demonstrate that the developed theory is not only accurate but also simple in 

predicting the buckling and free vibration responses of FG sandwich plates.  
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