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Abstract.  In this paper, we investigate the free vibration of axially loaded non-uniform Rayleigh cantilever 

beams. The Rayleigh beams account for the rotary inertia effect which is ignored in Euler-Bernoulli beam 

theory. Using an inverse problem approach we show, that for certain polynomial variations of the mass per 

unit length and the flexural stiffness, there exists a fundamental closed form solution to the fourth order 

governing differential equation for Rayleigh beams. The derived property variation can serve as test 

functions for numerical methods. For the rotating beam case, the results have been compared with those 

derived using the Euler-Bernoulli beam theory. 
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1. Introduction 
 

Elastic beams are used as a mathematical model for a wide variety of engineering structures 

like bridges, buildings, rotor blades, pillars, propeller blades, turbine blades etc. For long and 

slender beams, the Euler-Bernoulli beam theory is used as the basic model, which ignores the 

effects of rotary inertia and shear deformation (Abedinnasab, Zohoor et al. 2012, Bağdatlı and 

Uslu 2015, Baghani, Mohammadi et al. 2014, Liu, Yin et al. 2013, Maiz, Bambill et al. 2007, 

Mao, 2015, Sarkar and Ganguli 2013, 2014b, 2014c, Shahba, Attarnejad et al. 2011, Zahrai, 

Mortezagholi et al. 2016). On the other hand, the short and thick beams are typically modeled 

using the Timoshenko beam theory, which takes into account both the effects of rotary inertia and 

shear deformation (Aydin 2013, Bambill, Rossit et al. 2013, Calim, 2016, Datta and Ganguli 1990, 

Ebrahimi and Jafari 2016, Ke, Yang et al. 2009, Lou, Dai et al. 2006, Ma'en and Butcher 2012, 

Sarkar and Ganguli 2014a, Shahba, Attarnejad et al. 2011, Tang, Wu et al. 2014, Yesilce 2015). A 

relatively less known but simpler theory was developed by Lord Rayleigh before the Timoshenko 

beam theory came into existence. It includes the rotary inertia effect but does not take into account 

the shear deformation effect (Banerjee and Jackson 2013, Li, Tang et al. 2013, Xi, Li et al. 2013). 

Hence, application wise it is simpler than the Timoshenko beam theory as it leads to a single fourth 

order governing differential equation in a single variable as opposed to the coupled differential 
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equations in two variables for the latter case. The Rayleigh beam theory also predicts the natural 

frequencies and mode shapes more accurately than the Euler-Bernoulli beam theory, without going 

into the mathematical complexities of the Timoshenko beam theory. This work is motivated by the 

following observation. For varying axial loads (for example, gravity-loaded beam and rotating 

beam) the fourth order differential equation does not have any closed-form solution even for the 

case of uniform beam. Thus, it appears instructive to study axially loaded beam via Rayleigh 

theory. Researchers resort to various numerical or approximate methods when studying vibration 

problems related to Rayleigh beam theory (Chang, Lin et al. 2010, Pai, Qian et al. 2013, 

Stojanović and Kozić 2012). 

Following previous works appear to be relevant. (Xi, Li et al. 2013) studied the free vibration 

of standing and hanging gravity-loaded Rayleigh cantilever beams. The authors reduced the 

problem to an integral equation and by seeking a non-trivial solution of the integral equation, a 

characteristic equation of free bending vibration of a gravity-loaded cantilever was derived 

approximately. Consequently, the natural frequencies and mode shapes were calculated. Using this 

method, (Li, Tang et al. 2013) also studied the transverse vibration of a Rayleigh cantilever beam 

with arbitrarily distributed axial loading and carrying a concentrated mass at the free end. 

(Banerjee and Jackson 2013) investigated the free vibration of rotating tapered Rayleigh beam 

using the dynamic stiffness method of solution. The authors illustrated the natural frequencies and 

mode shapes of some example beams, having cantilevered boundary condition, using the 

developed dynamic stiffness matrix and applying the Wittrick-Williams algorithm. (Auciello and 

Lippiello 2013) studied the vibration analysis of rotating non-uniform tapered Rayleigh beams 

using the “Cell Discretization Method” (CDM). Applying the dynamic variational approach, the 

equation of motion is derived by means of the Lagrange formulation for the multiple degree of 

freedom systems (MDOF). Recently, (Tang, Li et al. 2015) determined the natural frequencies for 

flapwise bending vibration of rotating tapered Rayleigh cantilever beams, using the integral 

equation method. 

The literature on axially loaded Rayleigh beams clearly shows a need for closed form solutions 

which can be used to check and guide numerical approaches. A forward solution approach to 

solving the governing differential equation for non-uniform Rayleigh beams does not yield a 

closed-form solution, to the best of the authors’ knowledge. However, a semi-inverse problem 

approach of assuming a solution and then looking for the corresponding structure can yield a 

closed form solution. In this paper, we have extended Elishakoff's method (Elishakoff 2004, 

Elishakoff and Guede 2004, Sarkar 2012) for the case of an axially loaded non-uniform Rayleigh 

cantilever beam. We have shown that for certain mass per unit length distributions and flexural 

stiffness variations there exists a fundamental closed form solution of the governing differential 

equation. The obtained results can serve as benchmark solutions for various numerical methods 

and also provide valuable insights into the design of such beams if they are required to vibrate at 

or away from a pre-specified frequency range. 

 

 

2. Mathematical formulation 
 

We consider a non-uniform Rayleigh beam which is acted upon by a variable axial load     . 
Considering harmonic vibration, the dynamics of this beam is governed by the fourth order 

differential equation given by (Banerjee and Jackson 2013, Li, Tang et al. 2013, Xi, Li et al. 2013) 
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Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams 

Table 1 Commonly encountered axial loading      and their corresponding expressions for the frequency 

parameter 𝜅 in Rayleigh beam theory 

Axial loading type Expression for 𝑻 𝒙  Expression for 𝜿 

No axial load      =  0 𝜅 =  𝜔2 

Uniform axial load      =  𝑃 𝜅 =  𝜔2 

Gravity-loaded      = ∫ 𝜌𝐴   𝑔
𝐿

𝑥

𝑑  𝜅 =  𝜔2 

Centrifugally-loaded      =  ∫ 𝜌𝐴   𝛺2 
𝐿

𝑥

𝑑  𝜅 =  𝜔2 + 𝛺2 

 

 

𝑑2

𝑑 2
[𝐸𝐼   

𝑑2𝜙   

𝑑 2
] −

𝑑

𝑑 
[    

𝑑𝜙   

𝑑 
] − 𝜌𝐴   𝜔2𝜙   +

𝑑

𝑑 
[𝜌𝐼   𝜅

𝑑𝜙   

𝑑 
] = 0       1  

where 𝐸 is the elastic modulus, 𝜌 is the material density, 𝐼    is the area moment of inertia, 𝐴    
is the cross-sectional area, 𝜙    is the mode shape, 𝜔 is the frequency, 𝐿 is the length of the beam 

and 𝜅 is a frequency parameter depending on the type of loading. The expressions for different 

types of commonly encountered axial loads      and their corresponding expressions for 𝜅 are 

given in Table 1, where 𝑃 is the uniform axial load, 𝑔 is the acceleration due to gravity and Ω is 

the uniform rotation speed for the rotating beam. The first three terms on the LHS of Eq. (1) are 

also present in the Euler-Bernoulli beam equation (Gunda and Ganguli 2008). The fourth term is 

new for the Rayleigh beam and models the rotary inertia effect. 

Eq. (1) does not have any closed-form solutions for non-uniform beams. For the gravity-loaded 

and centrifugally loaded case, Eq. (1) does not yield a closed-form solution even for a uniform 

beam. Therefore, we take a semi-inverse approach to solve Eq. (1). We assume the cross-sectional 

area variation 𝐴    and the area moment of inertia 𝐼    as simple polynomial functions given by 

𝐴   =   +    +  2 
2                                                           2  

𝐼   =   +    +  2 
2 +    

 +    
                                               3  

Note that the mass density 𝜌 and elastic modulus 𝐸 are assumed as constants. We investigate 

the class of special problems where the mode shape 𝜙    will be represented by a simple 

polynomial satisfying all the necessary boundary conditions. The boundary conditions for a non-

uniform Rayleigh cantilever beam, for different types of axial loading (Banerjee and Jackson 2013, 

Li, Tang et al. 2013, Xi, Li et al. 2013), are given in Table 2, where 𝛼 = 𝜌/𝐸. The assumed mode 

shape 𝜙    is sought as a fourth order polynomial function given by 

𝜙   = 𝑐 + 𝑐  + 𝑐2 
2 + 𝑐  

 + 𝑐  
                                              4  

where 𝑐𝑖’s are arbitrary constants which can be determined using the boundary conditions, given in 

Table 2, along with the condition of normalization given by 𝜙 𝐿 = 1. The expressions for the 

constants 𝑐𝑖 ’s for the uniform axially loaded beam and the gravity-loaded beam are given in 

Appendix A, Eq. (A.1), and for the rotating beam is given in Appendix A, Eq. (A.2). Since the 

boundary conditions for the beam under uniform axial load and gravity load are the same, hence 

their corresponding expressions for the constants 𝑐𝑖’s are also the same. Once the expressions for 

the constants 𝑐𝑖’s are determined for the different types of axial loading we can determine the  
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Table 2 Boundary conditions for a non-uniform Rayleigh cantilever beam for different types of axial loading 

Axial loading type 
Displacement at 

𝒙 = 𝟎 

Rotation at 

𝒙 = 𝟎 

Moment at 

𝒙 = 𝑳 
Shear at x = L 

No axial load 𝜙   = 0 𝜙′   = 0 𝜙′′   = 0 𝜙′′′   + 𝛼𝜔2𝜙′   = 0 

Uniform axial load 𝜙   = 0 𝜙′   = 0 𝜙′′   = 0 𝜙′′′   + 𝛼𝜔2𝜙′   = 0 

Gravity-loaded 𝜙   = 0 𝜙′   = 0 𝜙′′   = 0 𝜙′′′   + 𝛼𝜔2𝜙′   = 0 

Centrifugally-loaded 𝜙   = 0 𝜙′   = 0 𝜙′′   = 0 𝜙′′′   + 𝛼 Ω2 + 𝜔2 𝜙′   = 0 

 

 

assumed mode shape 𝜙   , using Eq. (4). 

Now, if we substitute the polynomial expressions for the 𝐴    and 𝐼    (given by Eqs. (2) and 

(3)), along with the assumed mode shape 𝜙    (given by Eq. (4)), into the governing differential 

equation (given by Eq. (1)), we will get a polynomial equation in   of order six. If this polynomial 

equation has to be satisfied for all values of   (0 ≤  ≤ 𝐿) then the coefficient of the various 

powers of   must be set to zero, thus leading to seven linear equations in eight variables given by 

[ ]{ } = { }                                                                           5  

where   is a 7x8 matrix,  =  {  ,   ,  2,   ,   ,  2,   ,   }
𝑇  and   is 7x1 constant vector. The 

expressions for the elements of matrix A for the beam under uniform axial load, gravity load and 

centrifugal load are given in Appendix A, Eqs. (A.3), (A.4) and (A.5), respectively. For the 

Rayleigh beam under an uniform axial load 𝑃 ,   =  {2𝑃𝑐2, 6𝑃𝑐 , 12𝑃𝑐 , 0, 0, 0, 0}
𝑇 . For the 

gravity-loaded and centrifugally loaded beam  = 0 . Eq. (5) can be readily solved using the 

symbolic manipulation software MATHEMATICA. Thus, we will get the expressions for the 

constants  𝑖’s and  𝑖’s in terms of one of the unknown constant, specifically  2. If the total mass 

of the beam is given by 𝑀, then the constant  2 can be easily determined using the relation 

∫ 𝜌𝐴   
𝐿

 

𝑑 = 𝑀                                                                    6  

The final expressions for the variation of cross-sectional area 𝐴    and area moment of inertia 

𝐼    can be determined using Eqs. (2) and (3). From here, we can also get the mass per unit length 

𝑚   = 𝜌𝐴    and stiffness 𝐸𝐼    distributions. Thus, we have used the inverse problem 

approach to find the beam given a solution, which in turn leads to the closed-form solution. 

Thus, if an axially loaded Rayleigh beam has a cross-section area 𝐴    and area moment of 

inertia 𝐼    variations given by Eqs. (2) and (3), then the beam will vibrate with the pre-selected 

fundamental frequency 𝜔, and mode shape given by Eq. (4), provided the expressions for the 

constants  𝑖’s and  𝑖’s are solved using Eq. (5). If such a beam exists it would be interesting to 

calculate its dimensions for practical applications. For this we consider a non-uniform Rayleigh 

cantilever beam with rectangular cross-section, whose height and breadth variations are given by 

ℎ    and     , respectively. We already know 𝐴   =     ℎ    and 𝐼   =     ℎ    /12 . 

Knowing the variations of 𝐴    and 𝐼   , the height ℎ    and breadth      can be easily 

calculated as 

ℎ   = √
12 𝐼   

𝐴   
,     = √

𝐴    

12 𝐼   
                                                      7  
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Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams 

 
Fig. 1 The assumed mode shape 𝜙    for a non-uniform Rayleigh cantilever, under uniform axial 

load 𝑃 =  500 N, for different values of the assumed fundamental frequency 𝜔 

 

 

The results for the derived cross-section and area moment of inertia variations for different 

types of axial loading are given in the following section. 

 

 

3. Results for different types of axial loading 
 

As an example we take a non-uniform Rayleigh cantilever beam having length 𝐿 = 5  m, 

material density 𝜌 = 7860  kg/m
3
, elastic modulus 𝐸 =  2x10   Pa and having a total mass 

𝑀 = 100 kg. Using the procedure described in Section 2, we have derived the mass 𝑚   =
𝜌𝐴    and stiffness distribution 𝐸𝐼    for non-uniform Raleigh cantilever beam, having different 

types of axial loading, for a given assumed mode shape 𝜙    and fundamental frequency 𝜔. The 

results are given as follows: 

 

3.1 Uniform axial load 
 

Fig. 1 shows the assumed mode shape for a non-uniform Rayleigh cantilever beam, under a 

uniform axial load 𝑃 = 500 N, for different values of the assumed fundamental frequency 𝜔. Fig. 

2 shows the mass and stiffness variations corresponding to the assumed mode shape shown in Fig. 

1. The height and breadth variations for a corresponding rectangular cross-section beam are shown 

in Fig. 3. Thus, if a non-uniform Rayleigh cantilever beam under uniform axial load 𝑃 = 500 N is 

designed according to the mass and stiffness distributions in Fig. 2, then the assumed mode shape 

𝜙    and fundamental frequency 𝜔, shown in Fig. 1, will serve as exact closed-form solutions to 

the fourth order governing differential equation. The derived functions can thus be used for 

validation of numerical methods developed for the free vibration analysis of Rayleigh beams. For 

archival purpose, we give the polynomials expressions for the assumed mode shape 𝜙   , mass 

𝑚    and stiffness 𝐸𝐼    variations, for a non-uniform Rayleigh cantilever beam under a uniform 

axial load 𝑃 = 500 N, having assumed fundamental frequency 𝜔 = 140 rad/s, as follows 
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(a) (b) 

Fig. 2 Property variations for a non-uniform Rayleigh cantilever, under uniform axial load 𝑃 = 500 N, for 

different values of the assumed fundamental frequency 𝜔: (a) Mass variation, (b) stiffness variation 

 

  
(a) For 𝜔 = 100 rad/s (b) For 𝜔 = 120 rad/s 

  
(c) For 𝜔 = 140 rad/s (d) For 𝜔 = 160 rad/s 

Fig. 3 Height and breadth variations for a Rayleigh cantilever beam, under an uniform axial load 𝑃 = 500 

N, corresponding to the mass and stiffness variations shown in Fig. 2 

 

 

 𝜙   =  0.0798286 − 0.0106095 + 0.000528764 2  2   

𝑚   = 20.0203 − 0.0121087 + 0.00119767 2 

𝐸𝐼   = 1.78422x107 + 2.20679x106 + 164160 2 − 21937.2  + 1088.4           8  
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Fig. 4 The assumed mode shape 𝜙    for a non-uniform gravity-loaded Rayleigh cantilever, for 

different values of the assumed fundamental frequency 𝜔 

 

  

(a) (b) 

Fig. 5 Property variations for a non-uniform gravity-loaded Rayleigh cantilever, for different values of the 

assumed fundamental frequency 𝜔: (a) Mass variation, (b) stiffness variation 

 

 

3.2 Gravity-loaded beam 
 

Fig. 4 shows the assumed mode shapes of a non-uniform gravity-loaded Rayleigh cantilever 

beam, under acceleration due to gravity 𝑔 = 9.8  m/s
2
, for different values of the assumed 

fundamental frequency 𝜔. Fig. 5 shows the mass and stiffness variations corresponding to the 

assumed mode shapes shown in Fig. 4. The height and breadth variations for a corresponding 

rectangular cross-section beam are shown in Fig. 6. Hence, if a non-uniform gravity-loaded 

Rayleigh cantilever beam is designed according to the mass and stiffness variations shown in Fig. 

5, then the assumed mode shape 𝜙    and fundamental frequency 𝜔, given in Fig. 4, will serve as 

exact closed-form solutions to the fourth order governing differential equation. Once again, for 

archival purpose, we give the polynomials expressions for the assumed mode shape 𝜙   , mass 

𝑚    and stiffness 𝐸𝐼    variations, for a non-uniform gravity-loaded Rayleigh cantilever beam 

under acceleration due to gravity 𝑔 = 9.8 m/s
2
, having assumed fundamental frequency 𝜔 = 160 

rad/s, as follows 
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(a) For 𝜔 = 100 rad/s (b) For 𝜔 = 140 rad/s 

  
(c) For 𝜔 = 160 rad/s (d) For 𝜔 = 180 rad/s 

Fig. 6 Height and breadth variations for a gravity-loaded Rayleigh cantilever beam, corresponding to the 

mass and stiffness variations shown in Fig. 5 

 

 

𝜙   =  0.0797761 − 0.010592 + 0.000527363 2  2 

𝑚   = 0.00156413 12803.7 − 10.1491  +  2  

𝐸𝐼   = 2.33596x107 + 2.89381x106 + 214874 2 − 28731  + 1421.42           9  

 

3.3 Rotating beam 
 

Fig. 7 shows the assumed mode shape of a non-uniform rotating Rayleigh cantilever beam, for 

different values of the uniform rotating speed 𝛺 , having an assumed fundamental frequency 

𝜔 = 140 rad/s. Fig. 8 shows the mass and stiffness variations corresponding to the assumed mode 

shapes shown in Fig. 7. The height and breadth variations for a corresponding rectangular cross-

section beam are shown in Fig. 9. The mass and stiffness variation shown in Fig. 8 for 𝛺 = 0 RPM 

corresponds to a non-rotating non-uniform Rayleigh cantilever beam. Thus, if a non-uniform 

Rayleigh cantilever beam is designed according to the mass and stiffness variations shown in Fig. 

8, then the assumed mode shapes 𝜙   , shown in Fig. 7, and assumed fundamental frequency 

𝜔 = 140 rad/s will serve as exact closed-form solutions to the fourth order governing differential 

equation. For archival purpose, we give the polynomials expressions for the assumed mode shape 

𝜙   , mass 𝑚    and stiffness 𝐸𝐼    variations, for a non-uniform rotating Rayleigh cantilever 

beam under a uniform rotating speed 𝛺 = 320 RPM, having assumed fundamental frequency 

𝜔 = 140 rad/s, as follows 
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Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams 

 
Fig. 7 The assumed mode shape 𝜙    for a non-uniform rotating Rayleigh cantilever, for different 

values of the uniform rotating speed 𝛺, having an assumed fundamental frequency 𝜔 = 140 rad/s 

 

  
(a) (b) 

Fig. 8 Property variations for a non-uniform rotating Rayleigh cantilever, for different values of the 

uniform rotating speed 𝛺, having an assumed fundamental frequency 𝜔 = 140 rad/s: (a) Mass variation, 

(b) stiffness variation 

 

 

𝜙   =  0.0798188 − 0.0106063 + 0.000528502 2  2 

𝑚   = 20.0406 − 0.0192461 + 0.000905123 2 

𝐸𝐼   = 1.68145x107 + 1.79854x106 + 182400 2 − 16958.9  + 465.963       10  
 

 

4. Derived property variations used as test functions for h-FEM 
   

The finite element method (FEM) is one of the most popular methods used for the vibration 

analysis of beams. Among the various methods used for the finite element method, we will use the 

h-version finite element method, where we use the Hermite cubic polynomials as the shape 

functions. In this work, we have used the inverse method to analytically derive the flexural 

stiffness 𝐸𝐼    and mass per unit 𝑚    variations, using the governing differential equations of a 

axially loaded Rayleigh cantilever beam, by assuming a fundamental mode shape 𝜙    and  

463



 

 

 

 

 

 

Korak Sarkar, Ranjan Ganguli and Isaac Elishakoff 

  
(a) For 𝛺 = 0 RPM (b) For 𝛺 = 240 RPM 

  
(c) For 𝛺 = 280 RPM (d) For 𝛺 = 320 RPM 

Fig. 9 Height and breadth variations for a rotating Rayleigh cantilever beam, corresponding to the mass 

and stiffness variations shown in Fig. 8 

 
Table 3 Comparison of the assumed fundamental frequencies and the ones derived numerically using the h-

FEM 

Axial loading type Load value 
Assumed fundamental 

frequency (rad/s) 

h-FEM fundamental 

frequency (rad/s) 

Uniform axial load 𝑃 = 500 N 

100 

120 

140 

160 

100.026 

120.022 

140.018 

160.016 

Gravity-loaded 𝑔 = 9.8 m/s
2 

100 

140 

160 

180 

100.00 

140.00 

160.00 

180.00 

Centrifugally-loaded 

Ω=0 RPM 

Ω = 240 RPM 

Ω = 280 RPM 

Ω = 320 RPM 

140 

140 

140 

140 

140.00 

140.001 

140.002 

140.004 

 

 

frequency 𝜔. So theoretically, if we were to put the derived mass and stiffness variations into a 

numerical code like the finite element method, we would get back the assumed fundamental mode 

shape and frequency numerically. We used the derived mass and stiffness variations shown in Figs. 

2, 5 and 8, and put them into the h-FEM code. We used 200 uniform elements to discretize the 

beam, and the results obtained for the different axial loading types are shown in Table 3. Hence,  
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(a) (b) 

Fig. 10 Property variations for a non-uniform rotating Euler-Bernoulli cantilever beam, for different 

values of the uniform rotating speed 𝛺, having an assumed fundamental frequency 𝜔 = 140 rad/s: (a) 

Mass  variation, (b) stiffness variation 

 

 

showing the usefulness of the derived property variations as test functions for different numerical 

methods which are routinely developed by researchers to study the free vibration of Rayleigh 

beams. 

 

 

5. Comparison with Euler-Bernoulli beam theory 
 

As a comparison, we can use the same beam properties, boundary condition, assumed 

frequency and uniform rotation speed to derive the mass and stiffness variations of the rotating 

beam using the Euler-Bernoulli beam theory (EBT). A detailed account of the study can found in 

the work by (Sarkar and Ganguli 2014b). The derived mass and stiffness variations for a rotating 

cantilever Euler-Bernoulli beam are shown in Fig. 10. As expected, the mass variation turns out to 

be constant, because the stiffness variation was assumed to be a fourth order polynomial. This is 

because for the inverse problem derivation using EBT, the difference in the polynomial order 

between the stiffness and mass variations should be four (Sarkar and Ganguli 2014b). For a more 

comparative angle, we have shown the height and breadth variations for the rectangular cross-

section rotating cantilever Rayleigh and Euler-Bernoulli beam, having assumed fundamental 

frequency 𝜔 = 140 rad/s and uniform rotation speed of 𝛺 = 320 RPM, in Fig. 11. From Fig. 11, 

we can see that the difference in the dimensions of the rectangular cross-section beams derived 

using the Rayleigh and Euler-Bernoulli beam are very similar. This can be attributed to the fact 

that in our example we took a long and slender beam, which is very well modeled by the EBT. 

Hence, using a higher order beam theory, namely the Rayleigh beam theory (RBT), the results 

does not differ significantly for this particular example. 

But, for short and thick beams, the RBT predicts the frequencies and mode shapes more 

accurately as compared to the EBT, especially for high frequency vibration. In order to meet the 

above mentioned criteria, we have considered another numerical example with the following 

values for the various parameters: length 𝐿 = 1m, assumed frequency 𝜔 = 2000 rad/s, uniform 

rotation speed 𝛺 = 2000 RPM and total mass 𝑀𝑡𝑜𝑡 = 1000 kg. Using these values, we derived 

the mass and stiffness variations using both RBT and EBT. Fig. 12 shows the corresponding height  
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(a) (b) 

Fig. 11 Comparing the dimensions of a rectangular cross-section rotating cantilever Rayleigh and Euler-

Bernoulli beam, for 𝐿 = 5m, 𝜔 = 140 rad/s, 𝛺 = 320 RPM and 𝑀𝑡𝑜𝑡 = 100 kg: (a) Height variation, (b) 

breadth variation 

 

  

(a) (b) 

Fig. 12 Comparing the dimensions of a rectangular cross-section rotating cantilever Rayleigh and Euler-

Bernoulli beam, for 𝐿 = 1m, 𝜔 = 1000 rad/s, 𝛺 = 2000 RPM and 𝑀𝑡𝑜𝑡 = 1000 kg: (a) Height variation, 

(b) breadth variation 

 

 
and breadth variations for a rectangular cross-section cantilever Rayleigh and Euler-Bernoulli 

beam, having assumed fundamental frequency 𝜔 = 2000  rad/s and uniform rotation speed 

𝛺 = 2000 RPM. From Fig. 12, we observe that there is a significant difference (around 10∼20 

mm) between the dimensions of the rotating beams derived using RBT and EBT. Since, the height 

and breadth variations in Fig. 12 are of the same order, we can deduce that the area moment of 

inertia variation 𝐼    (=     ℎ    /12) will be less for the Euler-Bernoulli beam as compared to 

the Rayleigh beam, whereas the cross-section variation 𝐴    (=     ℎ   ) is comparable. Hence, 

the stiffness variation 𝐸𝐼    is higher for the rotating Rayleigh beam as compared the Euler-

Bernoulli beam, although both of them have the same assumed fundamental frequency 𝜔. This is a 

classic example of the fact that for short and thick beams and high frequency vibration, the EBT 

over predicts the frequency. 

466



 

 

 

 

 

 

Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams 

4. Conclusions 
 

In this paper, we have shown that there exists a certain class of non-uniform Rayleigh 

cantilever beam, under uniform, gravity-loaded and centrifugal type of axial loading, which has a 

closed form polynomial solution to its governing differential equation. We assume a certain mode 

shape function 𝜙   , which satisfies all the given boundary conditions, from which we derived the 

mass distribution 𝑚    and flexural stiffness 𝐸𝐼    of the beam. These derived properties are 

simple polynomial functions which depend on the fundamental frequency 𝜔, length of the beam 𝐿, 

the material density 𝜌, elastic modulus 𝐸 and the type of axial loading. So essentially, given a 

certain fundamental frequency 𝜔, we can tailor the properties of the non-uniform Rayleigh beam. 

This might be useful for some practical design applications where the fundamental frequency 

might be required to assume a desired value. But most importantly, these closed-form solutions 

serve as benchmark solutions for the validation of numerical or approximate methods used for 

non-uniform Rayleigh beam vibration analysis under different types of axial loading. For the case 

of the rotating cantilever beam, the results derived using Rayleigh theory were also compared with 

those derived using the Euler-Bernoulli beam theory. 

Reasonable question arises why not to deal with Timoshenko beams, rather than with the 

Rayleigh beams. In fact, it is well known that the Timoshenko beam theory incorporates the rotary 

inertia and shear deformation, and thus is more accurate than the Rayleigh beam theory. It was felt, 

that the closed-form solutions within the Rayleigh theory provide improvements over the Euler-

Bernoulli theory without getting into the complicated coupled governing differential equation of a 

Timoshenko beam, as well as some guide into the behaviour of the Timoshenko beams. Indeed, the 

same consideration apparently led authors of references (Banerjee and Jackson 2013, Chang, Lin 

et al. 2010, Li, Tang et al. 2013, Pai, Qian et al. 2013, Stojanović and Kozić 2012, Xi, Li et al. 

2013) to study the Rayleigh beams. Closest analogue to the Rayleigh beam appears to be an Euler-

Bernoulli beam with tip mass of considerable size so that its rotary inertia has a significant effect. 

Study of beams with a concentrated mass is underway and will be reported elsewhere. 
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Appendix. A. Expressions for the constants 𝒄𝒊’s, matrices  ’s and vectors  ’s 
 

The expressions for the constants 𝑐𝑖’s in the Eq. (4), for the Rayleigh beam under uniform axial 

load and gravity load is given by 

𝑐 = 0, 𝑐 = 0, 𝑐2 =
6 𝛼𝐿2𝜔2 − 6 

𝐿2 𝛼𝐿2𝜔2 − 18 
, 𝑐 = −

8 𝛼𝐿2𝜔2 − 3 

𝐿  𝛼𝐿2𝜔2 − 18 
, 𝑐 =

3 𝛼𝐿2𝜔2 − 2 

𝐿  𝛼𝐿2𝜔2 − 18 
     𝐴. 1  

The expressions for the constants 𝑐𝑖’s in the Eq. (4), for the Rayleigh beam under centrifugal 

load is given by  

𝑐 = 0, 𝑐 = 0, 𝑐2 =
6 𝛼𝐿2 𝜔2 + 𝛺2 − 6 

𝐿2 𝛼𝐿2 𝜔2 + 𝛺2 − 18 
, 𝑐 = −

8 𝛼𝐿2 𝜔2 + 𝛺2 − 3 

𝐿  𝛼𝐿2 𝜔2 + 𝛺2 − 18 
, 

𝑐 =
3 𝛼𝐿2 𝜔2 + 𝛺2 − 2 

𝐿  𝛼𝐿2 𝜔2 + 𝛺2 − 18 
                                                       𝐴. 2  

The expression for the matrix   for the Rayleigh beam under uniform axial loading, gravity 

loading and centrifugal loading are given by 
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