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Abstract.  In this article, the generalized coupled non-Fickian diffusion-thermoelasticity analysis is carried 

out using an analytical method. The transient behaviors of field variables, including mass concentration, 

temperature and displacement are studied in a strip, which is subjected to shock loading. The governing 

equations are derived using generalized coupled non-Fickian diffusion-thermoelasticity theory, which is 

based on Lord-Shulman theory of coupled thermoelasticity. The governing equations are transferred to the 

frequency domain using Laplace transform technique and then the field variables are obtained in analytical 

forms using the presented method. The field variables are eventually determined in time domain by 

employing the Talbot technique. The dynamic behaviors of mass concentration, temperature and 

displacement are studied in details. It is concluded that the presented analytical method has a high capability 

for simulating the wave propagation with finite speed in mass concentration field as well as for tracking 

thermoelastic waves. Furthermore, the obtained results are more realistic than that of others. 
 

Keywords:  non-Fickian diffusion; wave propagation; mass concentration; thermoelasticity; analytical 

method; coupled problems 

 
 
1. Introduction 
 

The coupled problems in engineering are very important from designing point of view. The 

interaction between various fields causes the coupled governing equations such as coupled 

thermoelasticity, thermo-electro-elasticity and etc. 

Biot (1956) developed the coupled theory of thermoelasticity, considering the second law of 
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thermodynamics to eliminate the paradox inherent in the classical uncoupled theory that elastic 

changes have no effect on the temperature. During the recent decades, many generalized 

thermoelastic theories were proposed to allow a finite velocity for the propagation of a thermal 

wave such as: Lord and Shulman (1967), Green and Lindsay (1972), Green and Naghdi (1993) and 

the inertial entropy by Kuang (2009). 

Some research works were carried out for uncoupled (Hosseini and Akhlaghi 2009) and 

coupled thermoelasticity analysis based on the non-classical theories using analytical (Hosseini 

and  Abolbashari 2012) and numerical (Hosseini 2009, Hosseini 2013, Hosseini and Shahabian 

2014)  methods. 

Lee and Chang (2003) presented a numerical method based on Laplace transforms and finite 

difference methods for axisymmetric quasi-static coupled thermoelasticity analysis in multilayered 

spheres. Yang, Qin et al. (2010) presented a theoretical model and the corresponding FE 

formulation for thermo-electro-chemo-mechanical coupled problems, developed by redefining 

linearly coupled constitutive relations and extending the traditional Gibb’s free energy to include 

chemical effects. 

Sharyiat (2012) carried out nonlinear generalized (with second sound effect) and classical 

thermoelasticity analyses for functionally graded thick cylinders subjected to various 

thermomechanical shocks at their inner and outer surfaces employing Hermitian elements. 

Recently, Sharyiat, Lavasani et al. (2010a, b) investigated some aspects of the vibration and wave 

propagation phenomena in thick hollow functionally graded cylinders under thermomechanical 

loads using a numerical method. 

Diffusion can be defined as the random walk, of an ensemble of particles, from regions of high 

concentration to regions of low concentration (Levine Ira 2009). The diffusion behavior of many 

materials cannot be adequately described by a concentration dependent form of Ficks law. 

Generally, this is the case which is said non-Fickian behavior. Against Fickian diffusion which in 

it the rate of diffusion is much less than relaxation, Non-Fickian diffusion occurs when the 

diffusion and relaxation rates are comparable. The coupling between the thermoelastic fields and 

concentration of diffusive gas takes place when a solid body is immersed in a gas. Using the 

variational principle and reciprocity theorem, Kumar and Kansal (2010) derived the governing 

equations for generalized thermoelastic diffusion analysis, which was based on the theory of Lord 

and Shulman with one relaxation time. Hosseini, Abolbashari et al. (2014) presented an analytical 

method for one dimensional analysis of coupled non-Fickian diffusion and mechanics.  

Sherief, Hamza et al. (2004) developed a theory of generalized thermo-elastic diffusion based 

on Lord-Shulman theory. In other work, Sherief and Saleh (2005) studied a thermoelastic half-

space with a permeating substance in contact with the bounding plane in the context of the theory 

of generalized thermoelastic diffusion with one relaxation time. Liu and Reissig (2014) studied the 

Cauchy problem for 1D models of thermodiffusion with consideration of hyperbolic-parabolic 

character of the system. Recently, Sue and Shen (2012) presented several variational principles for 

coupled temperature-diffusion-mechanics and their corresponding governing equations and 

boundary conditions. In another work (Sue and Shen 2013), they solved one dimensional problem 

of coupled non-Fickian diffusion and mechanics without considering temperature effects using an 

approximate analytical method. Deswal and Choudhary (2009) investigated the distribution of 

temperature, displacement components, stresses, concentration and chemical potential in a semi-

infinite medium having an impulsive mechanical load at the origin by using the joint Laplace and 

Fourier transforms. The application of meshless local Petrov-Galerkin (MLPG) method for two 

dimensional coupled non-Fickian diffusion-elasticity analysis was presented by Hosseini et al. 
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(2013). In their work, the profiles of molar concentration and displacements are illustrated in two 

orthogonal directions at various time instants. In another research (Hosseini, Abolbashari et al. 

2014), they employed this method for 2D coupled non-Fickian diffusion-thermoelasticity based on 

Green-Naghdi theory of coupled thermoelasticity. They studied the dynamic behaviors of molar 

concentrations, temperature and displacement fields.      

This work presents an effective analytical method to study the generalized coupled non-Fickian 

diffusion’-thermoelasticity in a domain subjected to shock loading. The molar concentration, 

temperature and displacements are obtained in series form using the presented analytical method. 

In this way, the wave fronts of mass concentration, displacement and temperature can be tracked at 

various time instants, which are propagated with finite speeds.  

 

 

2. Governing equations 
 

The constitutive equations for the coupled non-Fickian diffusion’-thermoelasticity can be 

written as follows 

      1 22ij ij ij kk c           (1a) 

     2 kkP bc a       (1b) 

where σij, εij,c, θ, P, a and b are the stress, strain, mass concentration, temperature, chemical 

potential, measure of thermodiffusion effect and measure of diffusive effect, respectively. Also, λ, 

μ  are the Lames constants and β1=(3λ+2μ)αt, β2=(3λ+2μ)αc. 

The generalized coupled diffusion-thermoelasticity governing equations for an isotropic 

homogeneous elastic strip can be presented as follows (Sherief, Hamza et al. 2004) 

           
2 2

1 22 2
(2 )

u c u

x xx t


    

   
   

  
 (2a) 

           
2 2 2 3 2

0 0 1 0 1 0 0 0 02 2 2 2E E

u u c c
k c c T T aT aT

t x t tx t x t t

  
      

      
     

       
 (2b) 

          
3 2 2 2

2 3 2 2 2
0

u c c c
D Da Db

tx x t x


 

    
    

   
 (2c) 

where u, x, ρ, t, k, cE, τ0, τ, T0 and D are the displacement, position, density, time, thermal 

conductivity, specific heat, thermal relaxation time, diffusion relaxation time, reference 

temperature and thermo diffusion constant, respectively.   

For convenience, the following non-dimensional variables are employed for analysis 

 

2 2 2 2
0 0 0 0 0 0 0

1 0 2
0

2

, , , , , , ,
2 2

2
, , ,

2

ij

ij

E

c
X c x t c t c c U c u C

T T cP
P c

k

 
       

   

  
 

   

   

 

      
 

 
   



             (3) 

Omitting the superscript “*”, Eq. (2) can be expressed in the following dimensionless forms 
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2 2

2 2

U C U

X XX t

   
  
  

 (4a) 

          
2 2 2 3 2

0 1 1 0 2 2 02 2 2 2

U U C C
b b b b

t X t tX t X t t

  
  

      
     
       

 (4b) 

         
3 2 2 2

3 4 53 2 2 2
0

U C C C
b b b

tX X t X




     
          

 (4c) 

where  

 

     2
1 0 1 0

1 2 3 4 52 2
2 1 2 2 2

2 2 2
, , , ,

2E E E

a k bT a T
b b b b b

c c D c

      

        

  
    


 

The above formulations can be used for generalized coupled non-Fickian diffusion-

thermoelasticity analysis for a strip. The following homogenous initial conditions are assumed for 

the problem. 

 
 ,

, 0, 0
U X t

U X t
t


 


 at 0t  (5a) 

 
 ,

, 0, 0
C X t

C X t
t


 


 at 0t  (5b) 

 
 ,

, 0, 0
X t

X t
t





 


 at 0t  (5c) 

It is assumed that the one boundary of strip is excited by suddenly increasing of mass 

concentration and temperature in the form of Heaviside unit step function of time. This may be 

written in mathematical form as 

  0, tX  at 0X  (6a) 

   tHctXC 1,   at 0X  (6b) 

   tHtX 1,    at 0X  (6c) 

  0, tXU  at 5.1X  (6d) 

  0, tXC  at 5.1X  (6e) 

  0, tX  at 5.1X  (6f) 

where H(t) is the Heaviside unit step function.                           

The application of Laplace transformation on Eqs. (4a), (4b) and (4c) with respect to time, 

yields 
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     

 
2

2

2

, , ,
,

U X s X s C X s
s U X s

X XX

  
  

 
 (7) 

           
 

 
 2

2 2 2
0 1 0 2 02

, ,
( ) , ( ) ( ) ( , )

X s U X s
s s X s b s s b s s C X s

XX


   

 
     


 (8) 

              
   

   
 3 2 2

2
3 4 53 2 2

, , ,
, 0

U X s X s C X s
b b s s C X s b

X X X




  
    

  
 (9) 

where the terms  ,U X s ,  ,C X s  and  ,X s  are displacement, molar concentration and 

temperature in Laplace domain. 

Also, the boundary conditions may be written in Laplace domain as 

  0, sX  at 0X  (10a) 

 
s

c
sXC 1,   at 0X  (10b) 

 
s

sX 1,


   at 0X  (10c) 

  0, sXU  at 5.1X  (10d) 

  0, sXC  at 5.1X  (10e) 

  0, sX  at 5.1X  (10f) 

To solve the coupled system of PDEs (7)-(9), an analytical method is proposed, which is 

explained in the next section. 

 

 

3. Analytical solution 
 

The following series are assumed as solution of coupled PDEs (7)-(9), which are analytical at 

(X−1). 

          
0

, 1
n

n

n

U X s A s X




   (11) 

           n

n

n XsBsXC 1,

0






 (12) 

         n

n

n XsDsX 1,

0






  (13) 
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Where An(s), Bn(s) and Cn(s) are unknown coefficients. 

By substituting Eqs. (11)-(13) into Eqs. (7)-(9), the following equations can be derived. 

     

2 1 1

2 1 1

2

0

( ) ( 1)( 1) ( ) ( 1) ( ) ( 1)

( )( 1) 0

n n n
n n n

n n n

n
n

n

A s n n X B s n X D s n X

s A s X

  
  

  





     

  

  



 (14) 

    
     2 1 2 2
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2

2

( ) ( 1) ( )( 1) ( )( 1)

( ) ( 1)( 1) 0

n n n
n n n
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n
n

n
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D s n n X
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

  






       

   

  



 (15) 
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 
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2

5

2
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n

n

n
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
  

 
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




        
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  



 
(16) 

Eqs. (14)-(16) may be rewritten in the new forms as 

           2
2 1 1

0

[ 1 2 ( ) 1 ( ) 1 ( ) ( )] 1 0
n

n n n n
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n n A s n B s n D s s A s X


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
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n
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n

n

n

n
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
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






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 
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



 (18) 
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0

5 2
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n

n n n

n

n

n

n

n n n A s b s s B s b n n D s X

b n n B s X




 









         
 

      





 (19) 

To find the unknown coefficients, the following recurrence relations can be derived as follows 

   )(
)2(

1
)(

)2(

1
)(

)2)(1(
)( 11

2

2 sD
n

sB
n

sA
nn

s
sA nnnn 








  (20) 
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

 

       
     

        

 
 

   

 (21) 
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   
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2

0
2

02
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2
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nn
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 (22) 

where 

 
1

1
,

1

1

5

3
2

5

1








b

b
y

b
y  

It can be seen in Eqs. (20)-(22) that all coefficients An(s), Bn(s) and Dn(s) can be expressed in 

terms of A0(s), A1(s), B0(s), B1(s), D0(s) and D1(s) when n>1 .The  terms A0(s), A1(s), B0(s), B1(s), 

D0(s) and D1(s) should be determined using boundary conditions. Therefore, the solutions (11)-

(13) can be rewritten in new forms as 

   
  

 

, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 0 2 1 3 0 4 1 5 0
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
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 (25) 

The coefficients ( )n

ig s , ( )n

iK s  and ( )n

iL s may be calculated using the following equations: 

(i=1,2,…,6) 
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and also 
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as well as 
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                   (31) 

Eqs. (23)-(25) are the analytical solutions for displacement, molar concentration and 

temperature fields in Laplace domain. To determine the solutions in time domain, the present work 

uses the Talbot algorithm (Cohen 2007), which is based on deforming the contour in the 

Bromwich inversion integral to reduce numerical error. This formulation yields the relations in 

time domain as follows 
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                                                    (32) 

where  
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Table 1 Material constants of the problem 
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Fig. 1 Schematic of the boundary conditions for the strip 
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                              (33) 

 
 
4. Numerical results and discussion 
 

The material constants of the problem are taken as (Sherief and Saleh 2005) and are given in 

Table 1 in SI units. Using the presented material specifications in Table 1, the following 

coefficients can be calculated as: 

9794.36,5439.0,4846.5,0921.0,0168.0 54321  bbbbb  
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Fig. 2 Distribution of non-dimensional mass concentration along X direction 

 

 

Fig. 3 Distribution of non-dimensional displacement along X direction 

 

 

To show the wave propagation of field variables including mass concentration, temperature, 

displacement and stress, it is assumed that the strip is made of copper with suddenly excitations on 

one side (see Fig. 1). It should be noted that a unit of non-dimensional time corresponds to 6.5×10
-12

 

s, while a unit of non-dimensional length corresponds to 2.7×10
-8

 m. 

Using the presented analytical method, the field variables are obtained in the strip. The 

distributions of field variables are shown in Figs. 2 to 5 at various time instants. The distributions 

of mass concentration in various non-dimensional times along the X direction are shown in Fig. 2. 

It can be observed that the wave fronts of mass concentration are propagated with finite velocity 

through X direction. Also, as shown in this figure, the diffusion distance gradually increases when 

the diffusion time is increased. The distributions of displacement, temperature and stress along 

the X direction are illustrated in Figs. 3-5 at various time instants, respectively. Obviously, as the 

diffusion distance increases, the displacement is gradually approaching to zero. It is also seen that 

the assumed mechanical boundary conditions are satisfied at each side of domain. It means that the 

presented method has a high convergence rate for satisfying the boundary conditions. In Figs. 3-5, 

the wave fronts are propagated with finite velocity similar to mass concentration fields. Also, it 

can be concluded that the elasticity field is influenced by excitations in mass concentration and 

temperature fields. It is caused by considering the coupling effects in the employed generalized  
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Fig. 4 Distribution of non-dimensional temperature along X direction 

 

 

Fig. 5 Distribution of non-dimensional stress along X direction 

 

 

coupled diffusion-thermoelasticity theory, which is based on the interaction between three fields of 

mass concentration, temperature and displacement fields. As it can be observed in Figs. 2-5, there 

are not any disturbances in the vicinity of wave fronts or other situations in diagrams. The reason 

may be suggested as the superiority of the convergence rate and high accuracy of the presented 

analytical method. 
The variation of temperature, mass concentration and displacement in time domain are 

respectively presented in Figs. 6-8 for different positions. The transient and steady state behaviors 

can be seen in these figures. From time histories of displacement, temperature and mass 

concentration, it is clearly concluded that the presented analytical method can be successfully 

employed to solve the coupled system of PDEs such as the presented problem. The effect of the 

diffusion relaxation time  on the velocity of wave propagation in displacement and mass 

concentration fields can be observed in Figs. 9 and 10, respectively. When the relaxation time is 

decreased, the wave propagation velocities are decreased in both displacement and concentration 

fields.   

The results obtained from the presented method are verified using the known results as a 

benchmark solution. The following boundary conditions are assumed which are the same as 

reported in (Sherief and Saleh 2005). 
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Fig. 6 Time histories of non-dimensional temperature at three different positions 

 

 

Fig. 7 The dynamic behaviors of non-dimensional mass concentration at three different positions in time 

domain 

 

 

  0, tX  at 0X  (34a) 

   tHPtXP 1,   at 0X  (34b) 

   tHtX 1,    at 0X  (34c) 

  0, tX  at 5.1X  (34d) 

  0, tXP  at 5.1X  (34e) 

  0, tX  at 5.1X  (34f) 

where the terms P1 and θ1 are taken as P1=1 and θ1=1.   

The propagation of mass concentration and temperature along the X direction are compared 

with those obtained by (Sherief. and Saleh 2005), which was presented for this material in Figs. 11 

and 12. It is evident that the presented results in this article are realistic. Also, the distributions of  
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Fig. 8 Time histories of non-dimensional displacement at three positions 

 

 

Fig. 9 The effects of relaxation times on non-dimensional displacement field 

 

 

Fig. 10 The effects of relaxation times on non-dimensional mass concentration field 

 

 

stresses along the X direction are illustrated in Fig. 13 at various time instants. It can be observed 

in this figure that the wave fronts of stresses propagate with finite speed. 
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Fig. 11 The comparison of distribution of mass concentration along X direction between obtained results 

and published data 

 

 

Fig. 12 The comparison of distribution of temperature along X direction between obtained results and 

published data 

 

 

Fig. 13 Non-dimensional stress wave propagation along X direction 
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5. Conclusions 
 

In this paper, an analytical method is proposed for generalized coupled non-Fickian diffusion-

thermoelasticity analysis in a strip based on the Lord-Shulman theory of coupled thermoelasticity. 

The employed theory consists of both thermal and diffusion relaxation times. The derived 

governing equations are transferred to Laplace domain to find the solutions and then the obtained 

results are transferred back to time domain employing Talbot technique.  

The main results of the presented research can be addressed as follows: 

• The field variables including displacement, temperature and mass diffusion are obtained in 

series forms. 

• The transient behaviors of field variables are studied in details. Also, the influences of 

variations in fields variables on each other are discussed. 

• The wave propagation of field variables with finite speed is observed using the presented 

analytical method. 

• The presented results can provide useful information for researchers experimentally work on 

wave propagation. The study of thermo-diffusion effect may be used to improve the conditions 

of processes like oil extractions. 

This analytical method can be applied to two or three-dimensional problems of coupled 

diffusion thermoelasticity with various boundary conditions. 

It can be concluded that the presented method has a high capability for solution of coupled 

system of PDEs such as coupled non-Fickian diffusion-thermoelasticity. 
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