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Abstract.  Structure-dependent integration methods seem promising for structural dynamics applications 

since they can integrate unconditional stability and explicit formulation together, which can enable the 

integration methods to save many computational efforts when compared to an implicit method. A newly 

developed structure-dependent integration method can inherit such numerical properties. However, an 

unusual overshooting behavior might be experienced as it is used to compute a forced vibration response. The 

root cause of this inaccuracy is thoroughly explored herein. In addition, a scheme is proposed to modify this 

family method to overcome this unusual overshooting behavior. In fact, two improved formulations are 

proposed by adjusting the difference equations. As a result, it is verified that the two improved formulations 

of the integration methods can effectively overcome the difficulty arising from the inaccurate integration of 

the steady-state response of a high frequency mode. 
 

Keywords:  overshoot; forced vibration response; local truncation error; high frequency modes; 

structure-dependent integration method 
 
 

1. Introduction 

 
A new family of structure-dependent integration methods has been successfully developed for 

structural dynamics (Chang 2014a). In general, the formulation of this family method is drastically 

different from the previously published structure-dependent integration methods (Chang 2002, 

2007, 2009, 2010, 2014b, 2015, Gui et al. 2004, Kolay and Ricles 2004). In fact, both the two 

difference equations are structure dependent for the new family method. Whereas, for the 

previously published methods only the difference equation for displacement increment is structure 

dependent. It has been shown that the new family method can have favorable numerical 

properties, such as the explicit formulation, unconditional stability, no overshooting in the early 

free vibration response and second order accuracy. Notice that an explicit formulation implies that 

there is no nonlinear iterations per time step. Hence, many computational efforts can be saved 

when compared to implicit methods (Newmark 1959, Hilber et al. 1977, Wood et al. 1981, Chung 
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and Hulbert 1993, Zhou and Tamma 2006, Krenk 2008, Rezaiee-Pajand and Sarafrazi 2010, Bathe 

and Noh 2012, Gao, et al. 2012, Hadianfard 2012, Alamatian 2013). The unconditional stability of 

an integration method implies that the step size can be selected based on accuracy consideration 

only and there is no constraint on step size. As a result, the integration of the unconditional 

stability and explicit formulation together makes the new family method very computationally 

efficient.  

In 1972, Goudreau and Taylor found an overshoot in the Wilson-θ method. This overshoot 

occurs in the early free vibration response and it will be diminished after a certain time. The cause 

of this overshoot has been well explored by Hilber and Hughes (1978). It was concluded that the 

long-term behavior of the displacement response is dominated by the spectral properties of the 

amplification matrix while the short-term potential for overshoot is determined by all the entries 

of the amplification matrix. Another unusual overshooting behavior in displacement response may 

also experience in a pseudodynamic test due to a displacement control error occurred in each time 

step (Shing and Mahin 1987, Shing and Manivannan 1990, Chang 2002, Bonelli and Bursi 2004). 

In the near recent, Bathe and Noh (2012) showed that an overshoot may occur in either velocity or 

acceleration response for high frequency modes for using the Newmark family method while the 

method developed by them can eliminate this unusual overshoot although both methods exhibit no 

overshoot in displacement response. Although the new family method seems to be very promising 

in earthquake engineering and structural dynamics applications, an unusual overshooting behavior 

in the displacement response is unexpectedly found in the step-by-step solution of a system 

subject to an external force. Apparently, this overshooting behavior is different from the 

above-mentioned overshooting behaviors. Consequently, an exploration of this overshooting 

behavior for the new family method is needed. 

In general, the basic analysis of an integration method based on a free vibration response is 

able to obtain the numerical properties. However, the effect from dynamic loading to response is 

generally neglected in this analysis although an accurate representation of the dynamic loading 

has been studied (Chang 2006). Hence, the use of a forced vibration response rather than a free 

vibration response to conduct the basic analysis of an integration method seems preferable. 

Among the many numerical properties of an integration method, it seems that only the local 

truncation error derived from a forced vibration response can provide the information regarding 

the accuracy of numerical solution affected by an applied external force. Consequently, in this 

study, the local truncation error of the new family method will be derived from a forced vibration 

response and it will be applied to explain the cause of the unusual overshooting behavior. In 

addition, an improved formulation of the new family method is proposed to overcome the adverse 

overshooting behavior. All the analytical results will be thoroughly confirmed by numerical 

examples.  

 

 

2. Integration method 
 

In general, the formulation of the recently published structure-dependent integration method 

(Chang 2014a) can be expressed 

1111   iiii fkdcvma  
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where m, c and k are the mass, viscous damping coefficient and stiffness, respectively; and di+1, 

vi+1, ai+1 and fi+1 correspond to the displacement, velocity, acceleration and external force at the 

end of the (i+1)-th time step. In addition, the structure-dependent coefficient ψ is found to be 

   
22

0 0 0 0

1

1 2

m

m t c t k
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                 (2) 

where β and γ are free parameters to control the numerical properties; ξ is a viscous damping ratio 

and  0 0
t   ; mk /

00
  is the natural frequency of the system determined from the 

initial stiffness of k0. The use of 
0 0

/ ( )k m t    and 
0 0

2c m  to replace ξ and Ω0 by c0, 

k0 and Δt is very important to improve computational efficiency since it avoids the need to 

conduct an eigen-analysis, which is very time consuming for a matrix of a large order. Apparently, 

both the two difference equations are explicit and are structure dependent. This family method 

will be referred as Chang family method (CFM) herein for brevity. Notice that it has been shown 

in the reference (Chang 2014a) that CFM generally displays no overshooting behavior in the early 

free vibration response, such as that found in the Wilson-θ method. In this study, the overshooting 

behavior of CFM in the forced vibration response is addressed.  

 

 

3. Local truncation error 
 

A local truncation error for an integration method is often defined as the error committed in 

each time step by replacing the differential equation with its corresponding difference equation 

(Belytschko and Hughes 1983). In this study, the local truncation error for CFM is derived from a 

forced vibration response rather than a free vibration response. 

As a result, the approximating difference equation for CFM with the presence of a dynamic 

loading can be obtained from Eq. (1) after eliminating velocities and accelerations and is 

 
2

2
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i i i i
d d d t f
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              (3) 

where 
2

0 0
1 2D       . Thus, after replacing the differential equation with its 

corresponding difference equation, the local truncation error for CFM is found to be 

 
     

2

0 0 0

2

2 21 1
2 1

i
E u t t u t u t t f

D D mDt

       
           

    
       (4) 

Assuming that u(t) and f(t) are continuously differentiable up to any required order, u(t+Δt) 

and u(t−Δt) can be expanded into finite Taylor series at t. As a result, Eq. (4) becomes 
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It is manifested from this equation that for γ=1/2 CFM generally has an order of accuracy 2 for 

either a zero or nonzero external force. This analytical result indicates that CFM will generally 

give an accurate solution for a forced vibration response. Hence, the cause of the unusual 

overshooting behavior obtained from CFM for a system subject to an external force must be 

further investigated.  

 

 

4. An inaccurate forced vibration response 
 

It is apparent that the local truncation error derived from a forced vibration response cannot be 

directly applied to explain why an inaccurate forced vibration response might be obtained by 

using CFM since it is second order accurate for a nonzero external force. Consequently, an actual 

example is applied to demonstrate that an inaccurate forced vibration response might be achieved 

if CFM is used to calculate the response. An intensive study of this example and a further 

exploration of the local truncation error might reveal the root cause of the inaccurate forced 

vibration response. 

A linear elastic 2-degree of freedom system subject to a given external force is considered in 

this numerical example. The equation of motion for the 2-DOF system can be simply written as 

1 1 1 2 2 1 1

2 2 2 2 2

0 sin( )

0 0

m u k k k u k t

m u k k u
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         
               (6) 

where m1, m2, k1, k2 and   can be arbitrarily specified to simulate a system. As a result, the two 

natural frequencies ω1 and ω2 as well as their corresponding modal shapes ϕ1 and ϕ2 can be 

determined. The two modal shapes can be explicitly expressed as 

1 2

1 1
,

a b
 

   
    
   

                          (7) 

As a result, the analytical solution to Eq. (4) can be theoretically found to be 
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 (8) 

where 
1 1

/   , 
2 2

/   , 
1 1 1

TK   K  and 
2 2 2

TK   K , where K  represents the 

stiffness matrix in Eq. (4). In Eq. (8), each response contribution to u1 or u2 is independent of the 

external force. This is because that each term on the right hand side of Eq. (8) is linearly 

proportional to k1. 

In Eq. (7), a will become very large and b tends to zero if the two modes are widely separated. 

In this case, the applied external force vector is very similar to the second modal shape. This 

implies that the steady-state response of the second mode might be largely excited and will 
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Table 1 Comparisons of response contributions for three different systems 
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em 
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
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
 

S-1 0.949 3.332 1.010 0.099 −3.13×10-2 6.60×10-1 1.40×10-1 −8.37×10-1 −3.16×10-1 6.67×10-1 −1.38×10-1 8.29×10-2 

S-2 1 102 104 −10-4 −3.33×10-5 6.67×10-5 1 −2.00×10-2 −3.33×10-1 6.67×10-1 −1.00×10-4 2.00×10-6 

S-3 1 103 106 −10-6 −3.33×10-7 6.67×10-7 1 −2.00×10-3 −3.33×10-1 6.67×10-1 −1.00×10-6 2.00×10-9 
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significantly contribute to u1. This case seems appropriate to study the accuracy of the integration 

of the steady-state response of a high frequency mode. In addition, this case can be considered as 

a model problem to represent the stiff and flexible parts of a much more complex system. In order 

to have different combinations of the two vibration modes for three systems, structural properties 

are specified to simulate the three systems. In fact, the following three systems are considered: 

S-1  
1 2

1m m  , 
1

1
10k  , 

2
1k   and 2   

S-2  
1 2

1m m  , 
4

1
10k  , 

2
1k   and 2   

S-3  
1 2

1m m  , 
6

1
10k  , 

2
1k   and 2   

In order to gain inside into each response contribution to the total displacement response of the 

three different systems, each modal response contribution factor is summarized in Table 1.  

The separation of the two modes can be evaluated by the ratio of ω2/ω1. The ratio of ω2/ω1 for 

S-1, S-2 and S-3 are found to be 3.51, 10
2
 and 10

3
 correspondingly. It is clearly that a large ratio 

of ω2/ω1 implies that the two modes are widely separated. In addition, the value of a is increased 

with the increase of ω2/ω1 and it approaches the value of (ω2/ω1)
2
 for S-2 and S-3. On the other 

hand, the absolute value of b decreases from a relatively small value 0.099 to zero with the 

increase of ω2/ω1. In fact, for S-2 and S-3, the b value is almost zero. Hence, the load pattern 
T

1
[ sin( ), 0]k t , which is given in Eq. (6) becomes the same as the second modal shape ϕ2=[1,0]

T
 

for S-2 and S-3. This implies that the steady-state response of the second mode will be largely 

excited by this load pattern for a large ratio of ω2/ω1, such as S-2 and S-3. This can be confirmed 

by the modal response contribution factors as shown in Table 1, where u1 is totally dominated by 

the steady-state response of the second mode for S-2 and S-3. Since the response contribution 

from the second mode to u2 is very small, thus, u2 is still dominated by the modal response of the 

first mode for both S-2 and S-3. Notice that the second modal shape for S-1 is ϕ2=[1, −0.099]
T
, 

which is different from the load pattern 
T

1
[ sin( ), 0]k t . Hence, it is anticipated that both the 

two modes of S-1 will be considerably excited. This can be manifested from the second row of 
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Table 1, where each modal response contribution factor for S-1 have roughly the same order of 

magnitude due to a relatively small value of ω2/ω1. Hence, both the transient and steady-state 

responses of the two modes will considerably contribute to u1 and u2. 

In the following numerical illustrations, CFM will be applied to solve Eq. (6). Since a second 

order accuracy can be achieved for γ=1/2, thus it is adopted. Meanwhile, the cases of β=1/4 and 

1/2 are also considered. For brevity, CFM1 denotes the member of β=1/4 and γ=1/2 of CFM while 

the member of β=1/2 and γ=1/2 is denoted by CFM2. Notice that CFM2 can have an improved 

stability property for instantaneous stiffness hardening systems when compared to CFM1 (Chang 

2014a). A time step of Δt=0.1 sec is used to conduct time integration. This time step results in 

/ 0.032t T  . This implies that the variation of the applied external force can be very accurately 

represented (Chang 2006). This time step also leads to Δt/T1=0.015 and Δt/T2=0.053 for S-1, 

where 2 /T   , T1=2π/ω1 and T2=2π/ω2. Thus, the two modes of S-1 can be reliably 

integrated. Similarly, Δt/T1=0.016 is found for both S-2 and S-3. Whereas, Δt/T2=1.59 is found for 

S-2 and Δt/T2=15.92 is found for S3. These values indicate that the first mode can be accurately 

integrated for S-2 and S-3 while a significant period distortion will be found in the second mode.  

All the calculated results are shown in Fig. 1. In order to have a closer examination of the 

overshooting behavior of u1, only the interval of 15 to 20 sec are plotted in Figs. 1(c) to 1(f). 

Notice that the displacement responses of u2 are not shown in this figure since the results obtained 

from CFM1 and CFM2 are always coincided with the exact solution. It is seen in Figs. 1(a) and 

1(b) that both CFM1 and CFM2 provide very accurate solutions of u1 for S-1. This is mainly 

because that both modes of S-1 can be very accurately integrated. On the other hand, an 

overshooting behavior is found in the displacement response u1 for both S-2 and S-3 for either 

CFM1 or CFM2. Notice that an inaccurate result of u1 implies that the steady-state response of the 

second mode is not reliably integrated since u1 is entirely dominated by it, which is manifested 

from Table 1. This numerical example reveals that CFM might experience the difficulty arising 

from an inaccurate integration of the steady-state response of a high frequency mode. In addition, 

the overshooting behavior will become more significant with the increase of the natural 

frequency. This can be manifested from Fig. 1 and Table 1.  

 

 

5. A deep investigation of local truncation error 
 

Although the local truncation error of CFM as shown in Eq. (5) reveals that CFM can generally 

have a second order accuracy if γ=1/2 is adopted for either a zero or nonzero external force. 

However, the illustrated example clearly shows that both CFM1 and CFM2 give an inaccurate 

result of u1 for S-2 and S-3, which is entirely dominated by the steady-state response of the second 

high frequency mode. On the other hand, both methods can provide an accurate solution of u1 for 

S-1, where the two low frequency modes considerably contribute to the total response. This 

strongly indicates that an inaccurate solution of the steady-state response might be experienced as 

the second mode is a relatively high frequency mode when compared to the first mode. Hence, a 

deep study of the local truncation error is needed for exploring the root cause of this inaccuracy. 

Since a viscous damping ratio is generally small for real structure and γ=1/2 is needed to have 

a second order accuracy, the local truncation error in Eq. (5) is generally dominated by the two 

terms of    21
12 0 0

/ /
i i

u f k D     and 2

0 0
/ ( )

i
f k D . This implies that the dominant terms of 
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Fig. 1 Displacement response of u1 to a linear elastic 2-DOF system for CFM1 and CFM2 

 

 
the local truncation error are quadratically proportional to the natural frequency ω0 for either a 

free vibration response or a forced vibration response. Notice that the first term will reduce to be 

  21
12 0

/
i

u D    for a free vibration response. At first glance, it seems that the local truncation 

error derived from a forced vibration response is still unable to explain the cause of the difficulty 

arising from the inaccurate integration of the steady-state response of a high frequency mode. 

However, after a deep study of the term    21
12 0 0

/ /
i i

u f k D    , it is found that it can be 

transformed into a new form through the governing equation of motion 
2 2

0 0 0
( ) 2 ( ) ( / )

i i i i
t u t u f k u      . In this equation, the only term on the right hand side is 

quadratically proportional to ω0. Whereas, on the left hand side of this equation, the term 

0
2 ( )

i
t u   is linearly proportional to ω0 and the term 

2( )
i

t u  is independent of ω0. Hence, 

the equation of motion can be considered as a transformation equation to reduce the order of the 

dependence on ω0 for a local truncation error. As a result, after conducting the second derivative 

of the equation of motion, one can have 

2 2

0 0

0

1
( ) 2 ( ) ( )

i i i i
t u t u f u

k
                            (9) 

Next, substituting this equation into Eq. (5), it becomes 
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36 12 2 2
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0

2 1 1
( ) 2 ( )
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E t u u t u t u f O t

D D D D k
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 
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 (10) 

This equation indicates that for γ=1/2 and zero viscous damping the dominant term of the local 

truncation error will be quadratically proportional to ω0 for a high frequency mode. Consequently, 

it seems that the presence of the term 2

0 0
/ ( )

i
f k D  in the local truncation error is the root cause 

to an inaccurate integration of the steady-state response of a high frequency mode. It also 

indicates that there will be no such a problem for a low frequency mode in the forced vibration 

response. On the other hand, Eq. (10) reveals that no error term is quadratically proportional to ω0 

for a free vibration response and thus there will be no difficulty in the integration of the transient 

response of a high frequency mode. 

 

 

6. Improved formulation to eliminate adverse term 

 

It is manifested from Eq. (10) that the local truncation error for CFM can be reduced from the 

case of quadratically proportional to ω0 to the case of linearly proportional to ω0 if the term 
2

0 0
/ ( )

i
f k D  is removed. Apparently, this term can be eliminated if an extra term 

2

0 0
/ ( )

i
f k D   is introduced into the local truncation error. It is natural to consider the 

possibility of modifying the general formulation of CFM so that an improved integration method 

can be achieved.  

In order to automatically cancel out the adverse term of 2

0 0
/ ( )

i
f k D  in the local truncation 

error, an additional term is intentionally introduced into each original formulation of the 

difference equation. As a result, the two difference equations become 

   

 

2

1 1

1 1

i i i i i

i i i i

d d t v t a

v v t a

 

 

 

 

     

   

                      (11) 

where ϕi+1 and θi+1 will be appropriately determined. As a result, the local truncation error for the 

modified integration method is found to be 

 

 
 

1 1 1
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0 0 0 0

0
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2 1 1
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 
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                        

             (12) 

Based on this equations, ϕi+1 and θi+1 can be appropriately selected.  

It is clear that the simple way to determine ϕi+1 and θi+1 is to apply Eq. (12) to remove the 

adverse term 2

0 0
/ ( )

i
f k D . As a result, two combinations of ϕi+1 and θi+1 can be chosen to satisfy 

the requirement. The first combination of ϕi+1 and θi+1 can be determined by assuming that θi+1=0 

for simplicity. As a result, they are found to be 
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   
   

   

2

2 1

1 1 2 1

0 0

1
, 0

i i

i i i i

t f f
t f f

D m m t c t k


 

 



  

 
    

   
          (13) 

On the other hand, the second combination of ϕi+1 and θi+1 can be determined after assuming 

that θi+1=ϕi+1. Consequently, ϕi+1 and θi+1 are found to be 
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      (14) 

For brevity, the modified integration method with ϕi+1 and θi+1 defined in Eq. (13) is referred as 

MAA while that with ϕi+1 and θi+1 defined in Eq. (14) is referred as MAB. In general, ϕi+1 and θi+1 

are basically different from the structure-dependent coefficient ψ since their numerators are 

functions of the external force increment although their denominators are the same as that of ψ. It 

is clear that ϕi+1 for MAA will involve the external force data for the current time step and the 

previous one step while both ϕi+1 and θi+1 for MAB involves that for the current time step and the 

previous two steps. Hence, MAA is simpler than for MAB. Notice that only the difference 

equation for displacement increment is modified by ϕi+1 for MAA while both the two difference 

equations are adjusted for MAB by ϕi+1 and θi+1. 

It is apparent that ϕi+1 and θi+1 will become zero for a free vibration case. Thus, the addition of 

ϕi+1 in the difference equation for displacement increment and that of θi+1 in the difference 

equation for velocity increment will not alter the basic numerical properties of CFM, such as the 

stability, numerical dissipation, relative period error and overshooting. Hence, there is no need to 

assess these basic numerical properties again. The only change of the numerical properties for 

either MAA or MAB is the local truncation error due to the modification of the difference 

equation for displacement increment and/or velocity increment when compared to CFM. As a 

result, after this modification of CFM, it is anticipated that the modified methods MAA and MAB 

can effectively overcome the unusual overshooting. 

It might be of interest to consider the special case of the dynamic loading if it is a function of 

displacement. In the derivation of the local truncation error as shown in Eq. (4), it is required that 

f(t) is assumed to be continuously differentiable up to the required order. Hence, the second-order 

accuracy can be achieved if f(t) is continuously differentiable up to the second order. 

 

 

7. Implementation for MAA 
 

It is of need to conduct the numerical experiments to verify that the two modified integration 

methods can overcome the difficulty caused by the inaccurate solution of the steady-state response 

of a high frequency mode. For this purpose, the implementation details of MAA for a multiple 

degree of freedom system is sketched next.  

In general, for a multiple degree of freedom system, the formulation of MAA can be simply 

expressed as 
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(15) 

It is clear that Ψ and Φi+1 are the coefficient matrices for a multiple degree of freedom system in 

correspondence to the scalar coefficients of ψ and ϕi+1 for a single degree of freedom system. As a 

result, Ψ and Φi+1 are found to be 

   

1

21

1 1i i i
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

 
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Ψ D M

Φ D f f

                         (16) 

where    
2

0 0
t t     D M C K . Notice that K0 is an initial stiffness matrix. In general, the 

stiffness matrix K in the first line of Eq. (15) is generally different from K0 for a nonlinear 

system. Similarly, C0 is an initial viscous damping matrix and C may be different from C0 for a 

nonlinear system. In practice, C=C0 might be adopted for a complete integration procedure.  

After conducting the time integration for the i-th time step, the displacement vector di+1 at the 

end of the (i+1)-th time step can be computed by using the second line of Eq. (15) and is 

numerically equivalent to 

     
2

1 1i i i i i i
t t 

 
            D d d v a f f                 (17) 

Next, the velocity vector can be calculated by using the third line of Eq. (15) and is equivalent 

to solve the following equations 

   1i i i
t


  D v v M a                           (18) 

Finally, the acceleration vector can be determined by using the equation of motion and is 

1 1 1i i i i   
  

1
Ma f Cv r                           (19) 

where ri+1 is often used to replace Kdi+1 for a nonlinear system. In general, the Gauss elimination 

method, which usually consists of a triangulation and a substitution for each time step, can be 

used to solve Eqs. (17), (18) and (19). Notice that the triangulation of D and M is required to be 

conducted only once since they will remain invariant for a whole integration procedure. In 

addition, there is no need to triangulate M if it is a diagonal matrix.  

Notice that a distinct starting procedure might be needed for MAB since Φi+1 and θi+1 are 

functions of the current step data and the two previous step data. It is apparent that MAA can be 

simply adopted to start the computing procedure. 

 

 

8. Numerical confirmations 

 

 The obtained analytical results strongly indicate that the modified integration methods MAA 

and MAB can overcome the difficulty arising from the inaccurate integration of the steady-state 

response of a high frequency mode. This is because that their local truncation errors can be 

reduced from quadratically proportional to natural frequency to linearly proportional to natural 
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Fig. 2 Displacement response of u1 to a linear elastic 2-DOF system for MAA1 and MAA2 

 

 
frequency or even to independent of natural frequency. Hence, it is of interest to confirm the 

performance of the two modified integration methods by numerical example. For this purpose, the 

illustrated problem, as shown in Eq. (6), is solved by MAA and MAB again and the numerical 

results are plotted in Figs. 2 and 3 respectively. For brevity, MAA1 is used to represent the 

member of MAA with β=1/4 and γ=1/2 while the member of β=1/2 and γ=1/2 for MAA is 

represented by MAA2. Similarly, MAB1 and MAB2 are named accordingly.  

 In Fig. 2, the numerical results, either calculated by MAA1 or MAA2, are almost coincided 

together with the exact solutions for all the three system. Notice that the time step of Δt=0.1 sec is 

also adopted to conduct all the computations. Almost the same phenomenon is also found in Fig. 

3, where MAB1 and MAB2 are employed to carry out the time integration with Δt=0.1 sec. These 

results attest to that the difficulty caused by the inaccurate integration of the steady-state response 

of a high frequency mode can be entirely eliminated by the modified integration methods. This 

implies that the modification of the difference equation based on the local truncation error derived 

from a forced vibration response can lead to an improved formulation of CFM. As a result, MAA 

and MAB are the two improved formulations of CFM and they can effectively overcome the 

difficulty arising from the inaccurate integration of the steady-state response of a high frequency 

mode. 
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Fig. 3 Displacement response of u1 to a linear elastic 2-DOF system for MAB1 and MAB2 

 

 

9. Conclusions 

 

In this investigation, an unusual overshooting behavior is found in the step-by-step solution of 

a system subject to an external force if the newly developed structure-dependent integration 

method is applied. It is analytically shown that this family method will lead to an inaccurate 

integration of the steady-state response of a high frequency mode. In order to overcome the 

difficulty, an improved scheme is proposed to adjust the difference equations based on the local 

truncation error derived from a forced vibration response. As a result, two improved formulations 

of the newly developed family method are proposed. This scheme is to simply introduce an extra 

term, which is a function of the external force increment, into the difference equation for 

displacement increment and/or for velocity increment. The two improved formulations of the 

integration methods are verified by a numerical example and the results reveal that they can 

effectively overcome the difficulty caused by the inaccurate integration of the steady-state 

response of a high frequency mode. 
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