Structural Engineering and Mechanics, Vol. 6, No. 8 (1998) 955-969 955

DOI: http://dx.doi.org/10.12989/sem.1998.6.8.955

Soft computing with neural networks for
engineering applications: Fundamental issues and
adaptive approaches

Jamshid Ghaboussit

Department of Civil Engineering, University of lllinois at Urbana-Champaign,
Urbana, Illinois 61801, U.S.A.

13

Xiping Wut

Offshore Division Exxon Production Research Co., Offshore Division,
P.O. Box 2189 Houston, Texas 77252-2189, U.S.A.

Abstract. Engineering problems are inherently imprecision tolerant. Biologically inspired soft
computing methods are emerging as ideal tools for constructing intelligent engineering systems which
employ approximate reasoning and exhibit imprecision tolerance. They also offer built-in mechanisms
for dealing with uncertainty. The fundamental issues associated with engineering applications of the
emerging soft computing methods are discussed, with emphasis on neural networks. A formalism for
neural network representation is presented and recent developments on adaptive modeling of neural
networks, specifically nested adaptive neural networks for constitutive modeling are discussed.

Key words: neural networks; soft computing, computational mechanics; constitutive models.

1. Introduction

Soft computing methods, including neural networks, genetic algorithms, fuzzy set theory,
probabilistic reasoning, and integrated systems, are biologically inspired computing tools.
Neural networks are inspired by the internal structure and operation of the brain; genetic
algorithms are inspired by the evolutionary process and adaptation in nature; and, fuzzy logic
is inspired by the natural language and linguistic approaches to problem solving. Development
of soft computing methods has reached the level that they offer new opportunities in
engineering applications. Recently, considerable success has been achieved in the application of
these methods to diverse fields of engineering problems. In the field of mechanics, for example,
neural networks and other computational intelligence tools have been used in constitutive
modeling of concrete, composites and geomaterials (Ghaboussi, Garrett and Wu 1990, Wu
1991, Ghaboussi 1992, Wu and Ghaboussi 1992, 1993, Ghaboussi et al. 1994, 1997, Penumadu

¥ Professor
1 Senior Research Engineer (Formerly, visiting Assistant Professor, Department of Civil Engineering,
University of Illinois at Urbana-Champaign, Urbana, Illinois)

956 Jamshid Ghaboussi and Xiping Wu

et al. 1994, Ellis et al. 1995, Ghaboussi and Sidarta 1998, Sidarta and Ghaboussi 1998,
Ghaboussi et al. 1998), structural analysis and design (Vanluchene and Sun 1990), strain
softening material models in reinforced concrete (Kaklauskus, Ghaboussi and Wu 1998),
structural damage assessment (Wu, Ghaboussi and Garrett 1992, Elkordy et al. 1993,
Ghaboussi and Banan 1994, Ghaboussi, Banan and Florom 1994, Chou and Ghaboussi 1997,
1998, Chou, Ghaboussi and Clark 1998), structural control (Chen et al. 1995, Ghaboussi and
Joghataie, 1995, Nikzad and Ghaboussi 1997, Bani-Hani and Ghaboussi 1998, Kim and
Ghaboussi 1998).

In spite of the success of soft computing methods in solving some challenging problems in
engineering, because of their unique computational characteristics, there are some fundamental
issues which need to be addressed. These include the issues of universality and uniqueness of
the solution, imprecision tolerance and imprecise reasoning, adaptivity, redundancy and
robustness, etc. A clear understanding of these issues is essential in exploiting the full
potential of soft computing methods for engineering problem solving. Most of the discussion
that follows is offered without rigorous proofs, which are not currently available.

2. Computational intelligence in engineering

The field of engineering deals with designing entities, building, manufacturing and
maintaining them throughout their useful lives. All engineering practices are based on the
scientific principles, which distinguishes the engineering profession from other trades which
also design and build new objects. However, there are fundamental differences between
engineering and scientific methodologies. Scientists often isolate a single phenomena or a
single problem to study. In contrast, engineering takes place in the real world and it must deal
with all aspects of the problem simultaneously, often in situations that lack sufficient data and,
whatever data may be available is often noise contaminated and contains scatter. Necessity
may dictate the use of approximate methods which may yield sufficient accuracy but may not
be universally applicable. Precision in engineering methodology is relative and most
engineering problems are imprecision tolerant to various degrees. This is a fundamental point.
Imprecision tolerance leads to methodologies which lack universality and functional uniqueness,
which in turn leads to more relaxed standards of proof. In reality, precision, universality and
functional uniqueness, which are the attributes of the mathematically based methods, are less
important in engineering methodology, than added tractability and robustness. Tractability is
needed to add capabilities beyond those of the existing mathematically based methods and
robustness is needed to deal with uncertainty and lack of sufficient information. Historically,
engineering methodology has been based on mathematics and in recent decades the same
methodology has been carried into the domain of computation, leading to such fields as
computational mechanics. We refer to this form of engineering computing on the current serial
computers as hard computing. On the other hand, soft computing methods are a class of
biologically inspired methods which share the attributes of the biological problem solving
methodology, such as imprecision tolerance, non-universality and functional non-uniqueness.

2.1. Hard computing methods

Nearly all the scientific and technical computing done on the current generation of

Soft computing with neural networks for engineering applications 957

computers, from PCs to supercomputers, has to be considered as hard computing. The main
characteristic of hard computing methods is that they are highly dependent on precision.
Although hardware requires that the scientific and technical computations be performed in
finite mathematics, the computational precision is often far greater than what is needed in the
real life problem solving. Consider the boundary value problems or initial value problems in
mechanics. The computational models for the boundary value problems are models such as
finite element method and finite difference method. In order to perform a finite element
analysis of a boundary value problem we need information on the geometry of the problem,
the constitutive properties of the constituent materials, boundary conditions and the external
actions such as the loads and thermal fields. These input parameters are not often known
precisely, especially the constitutive properties of materials.

The hard computing methods often solve an idealized precise problem deterministically.
Using the current hard computing methods usually involves three steps. First, the problem is
idealized to develop the precise input data. Next, the hard computing analysis is performed
within the machine precision on a sequential or parallel computer. Finally, the output to the
idealized problem is obtained with much higher precision than required. This form of hard
computing method is often used in evaluation of behavior and design of physical systems
which are associated with certain level of uncertainty. Engineering judgement is used in an ad
hoc manner to utilize the results of the hard computing analyses.

The consequence of the mathematically based precision in the hard computing methods is
that there is no built-in procedure for dealing with uncertainty, lack of sufficient information,
and scatter and noise in the data. All the input data must be provided and, where there is a
gap, estimates must be made to provide “reasonable precise values” of the input data. Also, all
the noise and scatter must be removed before providing the input data to the hard computing
methods. Inherently, there are no internal mechanisms for dealing with the uncertainty, scatter
and noise. Consequently, the hard computing methods generally lack robustness.

Hard computing methods are more suitable for direct or forward analysis and are often
used for problems posed as direct. It is very difficult to solve the inverse problems with the
current state of the hard computing methods. As will be discussed in a later section, there are
many inverse problems that are either not solved currently, or a simplified version of these
problems are posed and solved as direct problems.

2.2. Biologically inspired soft computing methods

Biological systems have evolved very effective and robust methods of dealing with
uncertainty, lack of sufficient information, scatter and background noise. Consider the brain of
human beings. It is a biological computer and it is far slower than the current computers. The
signals in the human brain and nervous system travel in milliseconds, whereas, the signals in
the computers are transmitted in nanoseconds. However, the human brain is capable of
performing far more complex computational tasks than our computers. This is mainly
attributed to the massively parallel structure and the enormous size of our brain, which by
some estimates contains 10" to 10" neurons and 10" to 10" connections.

One of the striking characteristics of the biological computational tasks is that they are
imprecision tolerant, similar to most real life engineering problems. The massively parallel
structure of the human brain allows computations at much lower levels of precision than the
hard computing tasks in our current generation of computers. However, the structure of the

958 Jamshid Ghaboussi and Xiping Wu

brain has evolved in such a way that enormously complex computational tasks can be
performed in real time and in an highly robust way, with internal mechanisms for dealing
with uncertainty, lack of sufficient information and background noise. Consider the
enormously difficult task of image recognition. Brains approach this problem in a
fundamentally different way than our computers. They perform a distributed computation in
the massively parallel structure of the brain in such a robust manner that images of objects
from different angles or partially covered images are easily recognized in real time. This is
one example of a large number of computational tasks wth insufficient amount of input
information. There are numerous tasks that we routinely perform in our daily lives while,
even the simplified versions of these tasks are extremely difficult to perform with our current
generation of computers.

Neural networks are soft computing methods that are inspired by the massively parallel
structure of the brains. They potentially have some of the same robustness characteristics as
brains. Even though the current generation of neural networks are too small and too crude,
they appear to be on the right path, and future research is likely to lead to more powerful
neural network based soft computing methods. Another important feature in all biological
systems that guides their survival in nature is adaptation through evolution within the ever
changing environment. Genetic algorithms or evolutionary computing methods are based on
the principle of adaptation and evolution in nature. In addition, fuzzy set theory provides a
systematic way to deal with incomplete and imprecise sensory information linguistically. On a
higher level, these soft computing tools can be integrated, even with hard computing methods,
to form integrated systems to take advantage of unique capabilities of both hard and soft
computing methodologies.

3. Neural networks as soft computing tools

The discussion in this section will be focused on multi-layer feed-forward neural networks
which are currently the most commonly used neural networks in engineering applications.
These neural networks are used to establish associations (mappings) between the vector of
input variables x, and the vector of output functions y, within the domain of the training data
set D={(x;, y;), j=1, ..., k}. The mathematical expression of the problem is in the form of :
general interpolation function.

y=f (x) 1)
The parameters of the interpolation function f can be determined to satisfy the following
condition. '

yf () (%, y) € D @)

An example of an approximate approach to this problem is regression analysis, which uses
a best fit, often posed as a minimization problem and expressed as follows. A function f is
selected,

y=f (x) 3)

and the parameters of the function are determined by minimizing the error for the training set.

Soft computing with neural networks for engineering applications 959

minimize ||y, f(x)| for all (x,y) € D @

In earlier publications, Ghaboussi and his co-workers have introduced a new notation to
represent the feed-forward neural networks. This notation is intended to facilitate the
discussion of the neural networks as well as to facilitate their use in computational mechanics.
The general form of the notation is as follows.

F=F,y ({input parameters} : {NN architecture}))

Note that the second argument field is the network architecture which contains the number of
nodes in each layer and some information concerning the training process. This information is
an integral part of the neural network and therefore it is included in the function description.
For the function in Eq. (1) the neural network representation is given by the following
equation, where the network architecture field is left blank, signifying a generic neural network.

Y=Y (x3) ©)
Such a neural network is trained with the training set, such that within the domain of the

training data it approximately represents the training data set. The approximation in neural
networks is represented by the error vectors e; within the domain of the training data.

&=y~ yw (%1); (%, 3) € D (7
A neural network learns to satisfy its training data set approximately. It differs fundamentally
from a mathematical interpolation function, which matches the training data set exactly.
Neural networks are also different than regression analysis, which requires a specified
function whose parameters are determined.

In general, the output errors for the training data depend on a number of factors relating to
the complexity of the underlying process represented in the training data set, as well as the
network architecture and the training process. It is important to note that it is not desirable to
reduce the error too much. In the limit, if the output errors are reduced to zero, then the
neural network would be functioning similar to an interpolation function and it will lose its
generalization capability. The generalization capability of neural networks is the direct
consequence of the imprecision tolerance.

]

4. Functional uniqueness and redundancy in soft computing

The question of uniqueness is of central importance in mathematical approaches to
modeling of physical phenomena, finding the best solution (optimization), obtaining solutions
to mathematical models of the physical phenomena, inverse problems and system
identification. In short, uniqueness considerations are at the heart of the hard computing
approaches which are based on mathematical modeling. Functional uniqueness does not play
any role in the neuro-biological approaches to problem solving. The task that a neural
network is trained to perform, to a great extent, is independent of the internal structure of the
neural network. Neural networks with different internal architectures can learn to perform the
same task with comparable levels of precision. In the case of brains, it is thought that the
function of human brain is largely independent of the exact topology of the connections
between neurons. Human brains are estimated to have 10" to 10" connections. It is also
known that our DNAs do not have the capacity to store the data on the precise topology of

960 Jamshid Ghaboussi and Xiping Wu

the connections.

It is important to note that imprecision tolerance plays a central role in the functional non-
uniqueness in neuro-biological soft computing methods. Another consequence of the
functional non-uniqueness is redundancy and redundant capacity in neural networks.
Generally, redundancy plays an important role in the adaptivity of soft computing tools. We
define adaptivity as the capability of accommodating new information and new data. In the
case of neural networks, this translates into ability to learn new training cases, without having
to start training a new neural network.

A related question deals with unique determinism, which relates to the sufficiency of data
for uniquely determining a process. When we wish to establish relationships between various
variables, we must first ascertain that such a unique relationship does in fact exist. In a
mathematical modeling approach, we attempt to seek unique solutions and when there is
insufficiegt data so that the uniqueness cannot be guaranteed the traditional methods fail to
find an acceptable solution. Uniqueness is a mathematical concept and it has a precise
meaning. When possible, it is desirable to meet the strict mathematical requirement of
uniqueness. However, this is often not possible, especially for practical problems. There is a
relationship between the amount of information available and the possibility of being able to
find a unique solution. In general, the more information we have, the less restricted is the
solution space and more likely that we can find unique solutions. However, in practical
problems, it is less likely that we will have all the information needed to make a decision.

In practical engineering problems, very often, we have to make design decisions in absence
of a sufficient amount of information. Biological systems often operate and make decisions
with an insufficient amount of data. In our daily lives we constantly make decisions when
little information is available. The underlying process, in the decision making in absence of
sufficient data, seems to be a relaxation of the strict mathematical requirement of uniqueness.
The biological systems seem to be able to find good solutions, not necessarily mathematically
unique, in absence of sufficient data. An important requirement of the biological decision
making is that they have to be in real time and a good acceptable solution is all that is
needed and mathematical precision is not a necessary condition.

5. Inverse problems in engineering

Most engineering problems are inherently inverse problems. However, often we solve these
problems only if they can be formulated as a direct problem, even in a much more simplified
version. Nearly all the computer simulations with hard computing methods, including finite
element analyses are direct problems, where a physical phenomenon is modeled and the
response of the system is computed. A classical definition of inverse problems is
determination of the input from the output of a system or determination of the system
characteristics from the measured input and output of the system (system identification). We
will also include design in the category of inverse problems. Design is an inverse problem, in
that, it seeks a solution from the solution space which satisfies design specification, including
esthetics.

An important characteristic of the inverse problems is that they often do not have a
mathematically unique solutions. The measured response of the system may not contain
sufficient information to uniquely determine the input to the system. Similarly, the measured

Soft computing with neural networks for engineering applications 961

input and the measured response of the system may not contain enough information to
uniquely identify the system characteristics. In short, there may be many solutions which
satisfy the problem. This again is the problem of unique determinism in the domain of exact
mathematics.

Biological systems, on the other hand, have developed highly robust methods for solving
inverse problems. In fact, most of the computational problems in biological systems are in the
form of inverse problems. Their basic strategy is to use approximate and imprecision tolerant
learning within a domain of interest, thus forgoing the universality requirement of
mathematically based approaches.

Researchers in neural networks know that a set of training data, which has been used to
train a neural network, can also be used to train an inverse neural network. In this case, we
are justified to call the first neural network a direct neural network. Then, the input of the
inverse neural network is the same as the output of the direct neural network and the output
of the inverse neural network is the input of the direct neural network. These neural networks
can be shown in the following equations

y=yw (x 2) @®

x=Xyy (¥ 2))
If the data has been generated by measuring the stimulus response of a physical process, then
the inverse neural network may be more difficult to train.

When unique inverse relationship exists, then both neural networks and mathematically
based methods can be used to model the inverse mapping. However, when the inverse
mapping is not unique, then modeling with mathematically based methods become increasing
difficult, if not impossible. On the other hand, neural network based methods can deal with
non-unique inverse problems by using the learning capabilities of the neural networks. In fact
this is how the biological systems solve inverse problem, through learning.

Modern biologically inspired soft computing methods seem to display characteristics
suitable for operating in the domains where mathematical certainty is not necessary. These
methods have robust capabilities to formulate the problem in a way that reasonable and
admissible solutions can be obtained even when we can show that mathematically unique
relationships do not exist. An example, which is discussed in another paper (Ghaboussi and
Lin 1997), is the problem of generating time histories of earthquake ground accelerations
from the response spectrum. It is known that the response spectra can be uniquely determined
from the time histories of ground acceleration. However, reverse relationship is not unique
and time histories compatible with a specific response spectrum cannot be determined
uniquely. This is a characteristic which is present in many inverse problems. The way we
pose many physical problems in mathematical formulation makes the forward relationship
unique and the inverse relationship non-unique. In the case of the inverse problem of finding
the time history of ground acceleration from a response spectrum, it is shown that a neural
network based method works and finds reasonable time histories for a given response
spectrum.

The key to the ability of biological systems to find reasonable solutions to the inverse
problems lie in learning and being able to generalize what has been learned. Unlike
mathematical proofs and strict uniqueness concepts, which are universal requirements, and
they are valid over all the possible ranges of variables, the soft computing solutions to inverse

962 Jamshid Ghaboussi and Xiping Wu

problems are only valid over restricted ranges of these variables. There is a practical
imperative for this requirement which applies equally to biological system decision making as
well as decision making in engineering design. Mathematically exact and unique solutions are
not required. The difference between mathematically exact and unique solutions and a good
admissible solution is of little consequence for the outcome of the decision making process.
Soft computing techniques seem to display the same characteristics which makes them useful
tools for finding good admissible solutions within a restricted space of variables and
parameters. The restriction in the range of variables and parameters is also based on a
practical imperative. The universality of the mathematically precise methods are of little value
in most practical problem solving.

6. Adaptation and adaptive modeling with neural networks

In the remainder of this paper, we will discuss the issue of adaptivity and adaptive
modeling with neural networks, specifically the newly developed nested adaptive neural
networks in constitutive modeling of engineering materials in computational mechanics.

Adaptation is an essential operator in the evolution process for all the biological systems.
On a micro-scale level, adaptation can be considered as dealing with progressive modification
of some structures by some modifiers or operators (Holland 1975). For example, with multi-
layer feedforward neural networks, which are most suitable for developing applications with
nonlinear function mapping type problems, the architecture of a network is determined by the
pattern of connections and the connection weights. The objective of an adaptation process is
to produce structures that perform on an optimal level in a given environment. With neural
networks, the performance is measured by its learning capabilities and efficiency. At the
initial stage, the adaptive process does not have enough information about the relative fitness
of various structures. To reduce this uncertainty, the process must test the performance of
different structures in the environment. This concept of adaptive process provides the basic
idea in adaptive determination or dynamic evolution of neural network architecture. On a
higher level, especially with constitutive modeling, this evolution of structures can also be
extended to the evolution of material models. For the simplest case, we will discuss the
adaptive architecture determination of multi-layer feedforward neural networks. In this case,
the adaptation process is incremental.

6.1. Representation and adaptive determination of multi-/ayer'féedforward networks

The following equation describes a one dimensional neural network material model, shown
in Fig. 1(a).

This is the so called strain-controlled one-point scheme material model. It shows that the
neural network has four layers in which the input layer has three nodes representing the
current stress, strain and strain increment; the output layer has one node representing the
corresponding stress increment; and there are two hidden layers with two nodes in each layer.
For multi-layer feedforward neural networks, the adaptive determination of architecture is
conducted on incremental determination of the number of nodes in the hidden layers during

Soft computing with neural networks for engineering applications 963

AOj

}

bt

Oj & Agj

(a) Initial neural network (b) Final neural network
at the start of training at the end of training
Fig. 1 A typical neural network material model and the adaptive determination of its hidden layers during
training

the training process. The training starts with an arbitrary, but small, number of nodes in the
hidden layers. The learning rate is monitored during training, and as the network approaches
its capacity, new nodes are added to the hidden layers, and new connections are generated.
Th objective of the continued training, immediately after the addition of new nodes, is for the
new connection weights to acquire that portion of the knowledge base which was not stored
in the old connection weights. To achieve this, some training is done with only the new
connection weights being modified, while the old connection weights are frozen. This is
followed by additional cycles of training where all the connection weights are allowed to
change. This process is illustrated in Fig. 2. These steps are repeated, and new nodes are
periodically added to the hidden layers as needed. At the end of training, the appropriate
neural network architecture has been determined automatically. The details of this algorithm is

¥ + ¥
/ N\
—> O _>
/x5
oj & Agj o & Ag 0; g Ag
Monitor the Add new nodes to the Unfreeze the old
learning, determine hidden layers, freeze the connections, continue
when the capacity is old connection weights, training of all t.he
reached and new train the new connection weights
nodes are needed connections

Fig. 2 The procedure for the adaptive evolution of the neural network architecture during training of the
neural network material model

964 Jamshid Ghaboussi and Xiping Wu

described in Wu (1991) Joghataie, Ghaboussi and Wu (1995). For the one dimensional neural
network constitutive model shown in Fig. 1, the final neural network, after the adaptive
determination of its architecture is shown in Fig. 1(b) and described by the following
equation.

This shows that the number of hidden nodes in each hidden layer has been increased from
two to four at the end of training.

6.2. Nested adaptive neural networks (NANNSs)

The adaptive evolution concept of neural network architecture can be directly extended for
building neural network material models. This is because most engineering data have an
inherent structure and the inherent internal structure in material testing data is modular and
nested (Ghaboussi and Sidarta 1998, Sidarta and Ghaboussi 1998). One type of nested
structure in the material data concerns the dimensionality. This basically refers to the
observation that one dimensional constitutive behavior is a subset of the constitutive behavior
in two-dimensional plane strain problems, which in turn is a subset of the constitutive
behavior in axisymmetric problems, which in turn is a subset of the constitutive behavior in
three-dimensional state of stress.

Another form of nested structure in the material data arises from the inherent path
dependency of the material behavior. From the material testing data alone, it is difficult to
determine the degree of path dependency of the material behavior. For highly nonlinear
behavior of materials, such as concrete under uniaxial cyclic compression, the behavior
captured in a neural network material model, as expressed in Eq. (11), can only be
approximate. In the past, we have included history points along the stress path in the input of
the neural network material model (Ghaboussi et al. 1990, 1991). However, the number of
history points needed in order to capture the cyclic material behavior can not be determined
in advance.

With the use of adaptive evolution of network architecture, a new neural network
architecture, the nested adaptive neural networks (NANN) is introduced to take advantage of
nested structure in material data (Ghaboussi and Sidarta 1998). A nested neural network
consists of several modules. The starting point of building a nested adaptive neural network is
to develop and train a base module to represent the material behavior in the lowest function
space in the data structure. The base module is a standard multi-layer feedforward neural
network. However, it may be trained adaptively so that the number of nodes in the hidden
layers are determined automatically during the training. The base module is successively
augmented by attaching added modules to form higher level NANNs. A first level NANN is
composed of the base module and a first level added module; the second level NANN is
composed of a first level module and a second level added module, and so on. The process,
as illustrated in Fig. 3, is theoretically open ended and more modules can be added. The
added modules themselves are also standard multi-layer feedforward neural networks. In
attaching a new added module to a lower level NANN, only one way connections are used;
all the nodes in each layer of the new added module are connected to all nodes in the next
layer of the lower level NANN. There is no connection from the lower level NANN to the
new added module. The reason for the one way connections used in NANNs becomes clear if

Soft computing with neural networks for engineering applications 965

Output vector —L> < l < I <>
| (oo | oo | oo |

[d
Arrows represent I 1}

full connections |g s oo ee]l e ee]l[cees]

from one layer to
next ._—L. ‘} I 00 o
:n....qh..%.q:
I [© oo]%\':TﬁT}?o o] :
Input vector - < <
Base module I First added ISecond addedl Open ended,
| module |module additional mod-

I ules may be

l First level nested neural network | tded
adde

I Second level nested neural network I

Fig. 3 Symbolic representation of a typical nested adaptive neural network

i
(a) The base module and its adaptive training.

Aejo]- €;

(b) Addition and adaptive training of the first history point module. The connections shown
in dashed line remain frozen and only the new connection weights (solid lines) are trained.

-, o
\/ O
O Q O
de; 05 & 01y 5 0 &, de;o; g 05 €y O &

(c) Addition and adaptive training of the second history point module. The connections
shown in dashed line remain frozen and only the new connection weights (solid lines) are
trained.
Fig. 4 The evolution and training of a typical nested adaptive neural network material model with two

history point modules

966 Jamshid Ghaboussi and Xiping Wu

~ Neural network prediction
- -~ Training data
1

—

Training Testing

Ot/f:
Ol/f-’

Op D) 4 % > 4
(a) 2nd Level NANN: Base Module (1, 2—4, 2—4, 1); 1st History Attachment (2,2-12,
2-12,1)

1

[y

Training Testing

’
.
’
.

a/f
o./f

2 4

(b) 3rd Level NANN: Base Module (1, 2—4, 2—4, 1); 1st History Attachment (2, 2—12,
2-12, 1); 2nd History Attachment (2, 2-10, 2—10, 1)

p—
oy

Training Testing

Uu/f:
U!/f-l

o]

(c) 4th Level NANN: Base Module (1, 2—4, 2—4, 1); 1st History Attachment (2, 2—12,
2-12, 1); 2nd History Attachment (2, 2—10, 2—10, 1); 3rd History Attachment (2, 2—9
2-9,1)
Fig. 5 Training and testing results of NANN models of concrete under uniaxial monotonic loading and
cyclic compression

we consider that a new added module should not have any effect on the function space
represented by the lower level module. A consequence of this observation is that the lower
level NANNSs should be retrievable from the higher level NANNSs. To satisfy this condition,
each level NANN is trained up to a satisfactory level of accuracy. After a new module is
attached all the connections of the lower level NANN are frozen and only the weights of the
new connections are trained. The process of development of a nested adaptive neural network
model for a one dimensional constitutive model is illustrated in Fig. 4. This Figure illustrates
the nested adaptive process of adding history point modules until the neural network has
adequately learned the path dependent behavior of the material.

The use of NANN to adaptively determine the neural network material model has been
illustrated in modeling the behavior of concrete under monotonic loading and cyclic

Soft computing with neural networks for engineering applications 967

compression (Zhang 1996). It has been shown that the material model, specifically the
number of history points, can be adaptively determined as the training and testing processes
are conducted. It also identifies that four history points are required in order to fully capture
the nonlinear history dependent behavior of concrete. Some typical training and testing results
are shown in Fig. 5.

7. Conclusions

Soft computing methods offer new opportunities in engineering applications. Compared
with hard computing methods, biological inspired soft computing methods have evolved very
effective and robust ways of dealing with uncertainty, lack of sufficient data and background
noise. In this paper, some fundamental issues associated with soft computing methods in
engineering problem solving, such as the universality and uniqueness of solution, imprecision
tolerance, approximate reasoning and adaptation are discussed. The concept of adaptation is
used as the basis for adaptive determination of neural network architecture, as well as the
adaptive determination of material models. The nested adaptive neural networks are
introduced by using incremental adaptive procedure to take advantage of nested structures in
material data.

It is reasoned that modern biologically inspired soft computing methods seem to display
characteristics suitable for operating in the domain where mathematical certainty is not
necessary. Because of learning and generalization capabilities of soft computing methods,
reasonable and admissible solutions can be obtained even when mathematically unique
relationships do not exist.

References

Bani-Hani, K. and Ghaboussi, J. (1988), “Nonlinear structural control using neural networks”, Journal
of Engineering Mechanics Division, ASCE, 124(3),

Chen, HM., Tasi, K.H., Qi, G.Z. and Yang, J.C.S. (1995), “Neural networks for structural control”,
Journal of Computing in Civil Engineering, ASCE, 9(2), 168-176.

Chou, J.-H. and Ghaboussi, J. (1997), “Structural damage detection and identification using genetic
algorithm”, Proceedings, International Conference on Artificial Neural Networks in Engineering,
St. Louis, Mo., Nov.

Chou, J.-H. and Ghaboussi, J. (1998), “Studies in bridge damage detection using genetic algorithm”
Proceedings, Sixth East Asia-Pacific Conference on Structural Engineering and Construction
(EASEC6), Taiwan, Jan.

Chou, J.-H., Ghaboussi, J. and Clark, R. (1998), “Application of neural networks to the inspection of
rallroad rail”, Proceedings, Twenty-Fifth Annual Conference on Review of Progress in Quantitative
Nondestructzve Evaluation, Snowbird Utah, July.

Elkordy, M.F,, Chang, K.C. and Lee, G.C. (1993), “Neural network trained by analytically simulated
damage states Journal of Computing in Civil Engineering, ASCE, 7(2), 130-145,

Ellis, G.W., Yao, C., Zhao R. and Penumadu, D. (1995), “Stress-strain modeling of sands using
art1f101a] neural networks Journal of Geotechnical Engineering, ASCE, 121(5), 429-435.

Ghaboussi, J. (1992), Potentlal applications of neuro-biological computational models in geotechnical
engineering”, Proceedings 4th International Symposium on Numerical Models in Geomechanics,
Swansea, U.K.

968 Jamshid Ghaboussi and Xiping Wu

Ghaboussi, J. and Banan, M.R. (1994), “Neural networks in engineering diagnostics’, Proceedings,
Earthmoving Conference, Society of Automotive Engineers, Peoria, Illinois, SAE Technical Paper
No. 941116.

Ghaboussi, J, Banan, M.R. and Florom, R.L. (1994), “Application of neural networks in acoustic
wayside fault detection in railway engineering”, Proceedings, World Congress on Railway Research,
Paris France.

Ghaboussi, J., Garrett, Jr., J.H. and Wu, X. (1990), “Material modeling with neural networks”, Proceedings,
International Conference on Numerical Methods in Engineering: Theory and Applications, Swansea, UK.

Ghaboussi, J., Garrett, Jr., JH. and Wu, X. (1991), “Knowledge-based modeling of material behavior
with neural networks”, Journal of Engineering Mechanics, ASCE, 117(1), 132-153.

Ghaboussi, J. and Joghataie, A. (1995), “Active control of structures using neural networks”, Journal
of Engineering Mechanics, ASCE, 121(4), 555-567.

Ghaboussi, J., Lade, P.V. and Sidarta, D. (1994), “Neural network based modeling in geomechanics”,
Proceedmgs, Eighth International Conference on Computer Methods and Advances in Geomechanics,
Morgantown, West Virginia.

Ghaboussi, J, Zhang, M., Wu, X. and Pecknold, D. (1997), “Nested adaptive neural networks: a new
architecture”, Proceedings, International Conference on Artificial Neural Networks in Engineering,
ANNIE'97, St. Louis, Missouri.

Ghaboussi, J., Pecknold, D.A. and Zhang, M.-F. (1998), “Autoprogressive training of neural networks
in complex system”, Proceedings, International Conference on Artificial Neural Networks in
Engineering, ANNIE'98, St. Louis, Missouri.

Ghaboussi, J. and Lin, C.-C. (1998), “New method of generating spectrum compatible accelerogram
using neural networks” , International Journal for Earthquake Engineering and Structural Dynamics, 27,
377-396.

Ghaboussi, J. and Sidarta, D.E. (1998), “New nested adaptive neural networks (NANN) for constitutive
modeling”, International Journal of Computer and Geotechnics, 22(1), 29-52.

Ghaboussi, J., Pecknold, D.A., Zhang, M.-F. and HajAli, R.M. (1998), Autoprogresswe training of
neural networks constitutive models”, International Journal for Numerical Methods in Engineering,
42, 105-126.

Hajela, P. and Berke, L. (1991), “Neurobiological computational models in structural analysis and
design”, Computers and Structures, 41(4), 657-667.

Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, The University of Michigan Press,
Ann Arbor, ML

Joghataie, A., Ghaboussi, J. and Wu, X. (1995), “Learning and architecture determination through
automatic node generation”, Proceedings, International Conference on Artificial Neural Networks
in Engineering, ANNIE9S, St. Louis, Missouri.

Kim, Y.-J. and Ghaboussi, J. (1998), “A new method of reduced order feedback control using genetic
algorithm”, International Journal for Earthquake Engineering and Structural Dynamics. (to appear)

Nikzad, I., GhabOUSSI J. and Paul, S.L. (1996), “A study of actuator dynamics and delay compensation
using a neuro-controller”, Journal of Engineering Mechamcs Division, ASCE, 122, 966-975.

Kaklauskas, G., Ghaboussi, J. and Wu, X. (1998), “Neural network modeling of tension stiffening
effects for RC flexural members’, Proceedings, European Conference on Reinforced Concrete, Vienna,
Austria, June.

Penumadu, D., Jin-Nan, L., Chameau, J.-L. and Sandarajah, A. (1994), “Anisotropic rate dependent
behavior of clays using neural networks”, Proceedings, XIII ICSMFE, 4, 1445-1448, New Delhi,
India.

Shrestha, S.M. and Ghaboussi, J. (1997), “Genetic algorithm in structural shape design and optimization”,
Proceedings, 7th International Conference on Computing in Civil and Building Engineering (ICCCBE-
VII), Seoul, South Korea.

Shrestha, S.M. and Ghaboussi, J., (1998), “Evolution of optimal structural shapes using genetic
algorithm” , Journal of Structural Engmeermg, ASCE, 124(8).

Sidarta, D.E. and Ghaboussi, J. (1998), “Constitutive modeling of geomaterials from non-uniform

Soft computing with neural networks for engineering applications 969

material tests”, International Journal of Computer and Geotechnics, 22(1), 53-71.

Vanluchene, D. and Sun, R. (1990), “Neural networks in structural engineering”, Microcomputers in
Civil Engineering, 5(3), 207-215.

Wu, X. (1991), “Neural network based material modeling”, Ph.D. thesis, University of Illinois at
Urbana-Champaign, Urbana, IL 61801.

Wu, X., Gaboussi, J. and Garrett, Jr. J.H. (1992), “Use of neural networks in detection of structural
damage”, J. Computers and Structures, 42(4), 649-659.

Zhang, M. (1996), "Determination of neural network material models from structural tests”, Ph.D.
thesis, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

