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A four-node degenerated shell element with
drilling degrees of freedom

Ji Hun Kimt and Byung Chai Leetl

Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology,
373-1, Kusong-dong, Yusung-gu, Taejon 305-701, Korea

Abstract. A new four-node degencrated shell element with drilling degrees of freedom (DOF) is
proposed. Allman-type displacement approximation is incorporated into the formulation of degenerated
shell elements. The approximation improves in-plane performance and eliminates singularities of
system matrices resulted from DOF deficiency. Transverse shear locking is circumvented by
introducing assumed covariant shear strains. Two kinds of penalty energy are considered in the
formulation for the purpose of suppressing spurious modes and representing true drilling rotations. The
proposed element can be applied to almost all kinds of shell problems including composite laminated
shell structures and folded shell structures. Numerical examples show that the element is of good
accuracy and of reasonably fast convergence rate.
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1. Introduction

Degenerated shell elements have been used widely for analyses of shell structures since
Ahmad et al. (1970). It is mainly because of their features such as good performance, relative
efficiency, versatility of treating variable thickness and composite laminated structures, and
extensibility to geometric and material nonlinear problems. The degenerated shell element
usually gives good results for moderately thick shells, but the results deteriorate rapidly as the
shell becomes thinner (Zienkiewicz et al. 1971). The phenomenon is referred to locking. A
lot of methods for resolving the locking phenomenon have been proposed and applied to
degenerated shell elements. One of the most successful methods is the assumed strain method.
Lately, many good shell elements adopting the assumed strain method were developed (Bathe
and Dvorkin 1986, Park and Stanley 1986, Huang and Hinton 1986, Jang and Pinsky 1987,
Choi and Paik 1994, etc.). It seems that shell elements developed by Bathe and Dvorkin
(1986) or Choi and Paik (1994) are among the best available four-node degenerated shell
elements. But they have only five degrees of freedom (DOF) for all nodes and their in-plane
shear performances are not so good for distorted meshes. The five DOF shell element results
in inconveniences that the system would be singular in the case of coplanar elements layout.

In-plane performance can be improved by including either non-conforming modes,
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enhanced assumed strains and hybrid stress fields, or drilling DOF. But, shell elements of six
DOF per node can be made only by introducing drilling DOF. Allman (1984) developed a
triangular membrane element with drilling DOF. A lot of studies have been followed to
extend and improve the membrane element empirically and theoretically. Ibrahimbegovic et al.
(1990), MacNeal and Harder (1988), and Choi and Lee (1995) studied for more rational
formulation of membrane elements with drilling DOF. Yunus and Pawlak (1991), Sze and
Ghali (1993), and Choi et al (1996) developed solid elements with full rotational DOF.
Aminpour (1992), Cook (1994), and Sze et al. (1997) proposed shell elements with drilling
DOF.

In this paper, it is shown that the Allman-type displacement approximation (Allman 1984)
can be extended to three dimensional space based on the beam theory. Using the
approximation, new displacement fields of a four-node degenerated shell element with drilling
DOF are derived from those of an eight-node element. The assumed strain method (Choi and
Paik 1994) is adopted to circumvent the transverse shear locking. Conventional steps of
calculating stiffness matrices are followed and a 2X2 Gaussian quadrature is used. Through-
thickness numerical integration is included in the formulation for the analysis of composite
laminated shells (Panda and Natarajan 1981). Since the element exhibits two spurious modes,
two kinds of penalty energy (Kanok-Nukulchai 1979, MacNeal and Harder 1988) are
considered. It is shown through numerical examples that the penalty energies do not
deteriorate the element performance. The results of numerical tests are presented to
demonstrate the good performance of the proposed element.

2. Element geometry and kinematics
2.1. Element geometry
Schemes of displacement interpolation can be derived easily from geometry interpolation.

Initial geometry of a typical degenerated shell element is represented by the coordinates of all
points within the element as follows.

X n X ., Chk _gk
ye =2 N (& mix +Y NG M) ) Vi D
z k=1 Z k=1 2z

mid 3k

where 7 is the number of nodes in an element, N, (&, 1) are shape functions corresponding to
the surface {=constant, 4, is the thickness of the shell at node k, (x;, yi. z) are the global
coordinates of node k, (£, n, {) are the natural coordinates, and {V%, V%, V%}' is the unit
normal vector at node k as shown in Fig. 1.

2.2. Kinematics

A typical degenerated shell element has five degrees of freedom at each node, which are
three displacements (x,, v,, w;) and two rotations (Q, ). Since two rotations (04, 0%) in
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x(u, O,)

(a) Global coordinate system (b) Nodal coordinate system Lo

node j
Fig. 1 Element geometry and coordinate systems

the local coordinate system can be related to the rotations (8, 6, 6,) in the global
coordinate system if the rotations are small, the displacement fields of the eight-node
degenerated shell element are written as

{u}=[N]ss {O}ss (2)
where
{uy={uv w}T,
N, 0 0 0 Nk 1—/§k —Nk ‘_/ySk

[N]ss= 0 N 0 "Nkvik 0 Nk—‘;)ék R B
0 0 N NV, -NVi 0
— h
Nk:NkC?ka

{5}58={u1 vi wi 6, 6y1 6,1 u, - ezs}T
2.3. The mid-side displacement approximation

Let us consider a four-node shell element which has straight edges and an eight-node
element of the same shape and size which has mid-side nodes on the center of each edge. We
assume that the edge behaves like a beam and the beam has the local coordinate system as
shown in Fig. 2. If transverse shear strains of the beam are constant, the two displacement
components normal to the beam axis are approximated quadratic, and the axial displacement
and three rotations are approximated linear, the displacement fields in the beam are given in
terms of 12 unknowns as follows:

u'=ag+a;s +a,s? (3a)
v =bo+bis + bys? (3b)

w' =co+cys (3¢)
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¢
x u, 8

Fig. 2 The edge of a shell element

av’ 0y = du’

ds 2T ds
where s is the coordinate along the beam axis, % and 7, are the constant transverse shear
strains. The unknown coefficients in Eqgs. (3a) to (3f) can be related to the displacement
components at both ends of the beam. With the end displacement components

’ ’ 7 ’ ’ ’
w',vi',w’, 06y, 6,7, 6, ats=0 (42)

u ! Vj’, Wj,, 91]',, 92]',, 63]” at s :l (4b)

Jj o

911 - _ '}/1’ 93’ = d(] +d1s (3d, 35, 3f)

Egs. (3a) to (3f) can be solved simultaneously. And the approximated displacement fields of
the beam are given as

7 ? 1 27 r 1 ? ’ 1 ’ r
w=u'+| (0" 6 )+~ —u)s — -7 (6" - 0) 5 (Sa)
2 l . 21
I'4 ’ 1 I4 s ]- ’ 7’ ]. 7
VvV =V + __(Gli - 91} )+ _(Vj —V; )]S + — (91,‘ - 91],) S2 (Sb)
2 l 21
’ ’ 1 , ’, ’ 1 ’ ’ ’
w =Ww; + T(W] - Wi )S, 61 - 7(9],‘ - 61] )S + 91,- (SC, Sd)
’ 1 ’ ’ , ’ 1 ’ ’
92 = 7 (92,' - er )S + 92,' . 93 = - —1—(93,' - 93j') s + 93,' (56, Sf)

The mid-side node displacements at the center node m in the global coordinate system are
obtained by substituting s=//2 and transforming coordinate systems as follows

1
Un = E(ui +u;) +y;(0,; — 6;)—2;(6,; - 6,) (62)

Vm = —;‘(Vi +v,;)+2;(6,; — 6:) —x;(6,; — 6.) (6b)
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=1 g 6, -6 6
Wi = _Z‘(Wi +w;)+x;(6, —6,)~y:(6; —6.) (6¢)

O =204 +0,), On =6, +6,), On=2(6.+6,) (6 6, 6D
where x; =(x; —x,)/8, yi =0, -8, z; =(z; —z)/8.
2.4. New displacement field including the drilling DOF
Using the Eqgs. (6a) to (6f), we can relate the displacement fields of a four-node, 24 DOF

shell element to those of an eight-node, 40 DOF shell element. We denote the relation
concisely as follows.

{8}ss = [T Isx {6}s4 (7
where

I [ Jaaxca 1

[Th] [TR]  [Ole  [Olsc
[Tk = | [Olsxs [T4] (T3] [Olss |,

0o [0l [TH]  [T3]

L [T421] [O]6x6 [0]6><6 [T411] i

l[I]3><3 [Lij] l[1]3><3 - [L,-j] 0 z; -y
mn=(* ", | ma=| 2 L b al=]m 0 x|,
[0]3x3 E[[ ]3x3 [0]3x3 E[I ]3><3 Yio —x; 0

{Osa={ur vi wi 6, 6,1 6,1 uy - 6,4}

Then we can express the displacement fields of the new four-node degenerated shell element
with drilling DOF as follows.

{u} =[N]ss[Tlsr {O}s4 ®

3. Assumed covariant strain method

Though in-plane performance can be improved by introducing the drilling DOF, transverse
shear locking still remains to be solved. To circumvent the transverse shear locking, the
assumed covariant strain method (Choi and Paik 1994) is incorporated into the present
formulation. Two transverse shear strains are assumed to be linear in the natural coordinate
system and tied to displacement based transverse shear strains at two end points. The
interpolated shear strains are transformed back to the local coordinate system through tensor
transformation.
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3.1. Definition of the covariant strain components

We can obtain covariant displacement components u,, in the natural coordinate system by
projecting displacement components u; in the global Cartesian coordinate system onto the
natural coordinate directions (&, 1, {) as follows

oxi
Ug= =557 U; =g, N 9
=u @500 ©
where repeated indices imply summation over the range of 1 to 3 (x'=x, X’=y, X’=z, u;=u, u,=v,

Us=w).
We also define the covariant strains corresponding to the covariant displacements as
1

Eup= 5(“ apt Upe) (0= s o, ) (10)

To avoid the transverse shear locking, we introduce assumed shear strain fields interpolated
independently from the covariant shear strains at two end points as follows:

1+7n

_ _ 1-
Y =28 g= 2€¢| o1 + Tnzféd £0,7=-1 (11a)

_ _ 1+
Y =28 = ———528,,C| g0t & 20| 1.0 (11b)

2
3.2. Substituted strain-displacement matrix

Since stress-strain relations are usually defined in the local Cartesian coordinates system,
the assumed covariant transverse shear strains (Egs. (11)) are transformed to the local
Cartesian coordinates system by using the following formula:

—, a . a — Y ’ ’ ’
Eir= 8fi' ax—éf Ep (O ]=x,Y,7) (12)

where repeated indices imply summation over the range of 1 to 3 (&'=¢, &=n, £=().
The other strain components can be obtained by differentiating the displacement fields ..
the typical manner. Then strain-displacement relations for the present element are given as

Evx ]
&y [B ]p _
{€}=12¢&y ¢ = [B] {6}s4=[B1{6}s4 (13)
2€ oy
2€ yy

where [B], is the in-plane strain-displacement matrix and [B], is the transverse shear strain-
displacement matrix.
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4. Element stiffness matrix

We can obtain the element stiffness matrix in the same way as that of conventional
degenerated shell elements with the strain-displacement matrix [B ].

[K]= j[B D][B]dv
= [ | BY [D1(B1IJ |d¢dnag (14)

where [D] is the elasticity matrix transformed to the local coordinate system and J is the
jacobian matrix. We extend the formulation to deal with multi-layered structures by carrying
out the through-thickness numerical integration. We consider it by substituting the variable {
to { in the kth layer such that {, varies from —1 to 1 in that layer (Panda and Natarajan
1981).

f=—1+ [22": B, —hk(l—Ck)jl/t (15)
dg_ L.dg (16)

where ¢ is the thickness of the shell and 4, is the thickness of the kth layer.
Substituting Eq. (15) and (16) into Eq. (14), we have

K1=$ [ [ [ BY DB | % aganag, a7

where NL is the number of layers in the element.

5. True rotation and penalty stiffness

Every term of the stiffness matrix is integrated by a 2X?2 Gaussian quadrature. Two
spurious modes are evoked in this element due to drilling DOF and subintegration. One is an
equal rotation mode and the other is an hourglass mode.

The equal rotation mode occurs when the drilling DOF at all corner nodes have the same
value and all translational displacements are zero. In practice, this mode is suppressed if the
drilling DOF is constrained at least at one node. Nevertheless, this mode should be dealt with
carefully in consideration of the true rotation of the continuum mechanics. The hourglass
mode occurs when the stiffness terms are subintegrated. It is the same hourglass mode that
occurs when an eight-node quadrilateral element is subintegrated. But this mode is not
commutable and suppressed if more than two elements are used.

The equal rotation mode can be prevented by supplementing the stiffness derived from the
penalty energy (Eq. (18)) of Kanok-Nukulchai (1979).

2
_ _1fov’ ou’
otz 2o w
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where @, is known as the torsional coefficient and G is shear modulus. If ¢; is the drilling
rotation at any point on the midsurface, the variation is expressed as

4 4 _ _ —
0(/3=Z_I’Ni OG; :;Ni V%6, + V56, +V30,) (19)

where @ is the drilling rotation about the local z' axis at node i as shown in Fig. 1.

A one-point numerical integration should be used in evaluating the penalty energy in order
to avoid over-constrained situation similar to shear locking. And ¢, is chosen as 0.001. The
constant ¢, has very little influence on the results of plane problems. But inappropriate choice
of o, may result in errorneous solutions for structures with curved geometry and false drilling
rotations. So, numerical experiments are considered to fix the value of ¢, The selected
examples are Cook's membrane (8 X 8 mesh, Fig. 5), a hemispherical shell (16X 16 mesh, Fig.
8), and a square slab (Fig. 10). It would be a reasonable choice since they are typical
problems for evaluating membrane performance for distorted meshes, virtuality of the drilling
rotation, and inextensional bending behavior of shell elements. The results of the test are
shown in Fig. 3. It can be observed that ¢,=0.001 is good for all examples.

The proposed element also utilizes the penalty energy (Eq. (20)) that was proposed by
MacNeal and Harder (1988) for the hourglass mode.

P,=VG 562 20)
where ©,= (04, — 04, + 033 — 04,)/4 and V is the volume of the element. The penalty

parameter & is chosen as 10, which was recommended by MacNeal and Harder (1988).
6. Numerical examples

We solve a number of standard benchmark problems to investigate static performances of
the proposed element. We also select several problems in addition to demonstrate

—g— Cook's membrane(Fig. 5)

—o— Square slab(Fig. 9)
—aA— Hemispherical shell(Fig. 8)

1E-5 16-4 1E-3 0.01 0.1 1 10 100 1000

Fig. 3 Errors as a function of penalty parameter for selected problems
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Table 1 Summary of elements used for comparison

Name Element Description

AQRS An assumed-stress hybrid four-node flast shell element with drilling DOF (Aminpour 1992)

QUADR  Four-node shell element with drilling DOF in MSC/NASTRAN (MacNeal et al. 1994)

MITC4  Four-node degenerated shell element based on assumed shear strain field (Bathe and Dvorkin
1986)

4-SRI Four-node degenerated shell element with selectively reduced integration (Belytschko et al.
1989)

SQ4A Four-node degenerated shell element based on assumed covariant strains (Choi and Paik 1994)

representability of true rotation and applicability to laminated composite materials. We make a
list of shell elements to be compared in Table 1.

6.1. Patch tests

Patch tests described in MacNeal and Harder (1985) are performed. Boundary conditions
and theoretical solutions for these tests are shown in Fig. 4. The drilling rotations on
boundary nodes are set to be zero for the membrane patch test, which is naturally calculated
from the prescribed displacement fields. The proposed element passes the membrane and
bending patch tests with exact strains and stresses.

6.2. Cook's membrane problem
A trapezoidal membrane shown in Fig. 5 is used to test the sensitivities of finite elements

to geometric distortions. The results for tip deflection are compared with the reference value
of 23.91 obtained from a refined model (32X 32 mesh). It can be observed in Table 2 that all

y
A
B b=0.24 _
x < The position of nodes
4 3 Nodes X y

2=0.12 T | 004 0.02
2 0.18 0.03
> 3 0.16 0.08
4 1 > 4 0.08 0.08

X

(a) Membrane plate patch test
Boundary conditions : u =102 (x +y /2), v =107 (x/2+y)
Theoretical solutions : ¢, = €, =Ty =107, 0y =0, = 1333.,0,, = 400.

(b) Bending plate patch test
Boundary conditions : w = 107 (x? +xy +y?)/2
Theoretical solution: 8, =107(x/2+y),8, =-10"(x +y /2)
Bending moments per unit length : M, =M, =1.111x107 M, = 3.333x10"*
Surface stresses : 6,, = o, = 0.667,5,, = 0.200

Fig. 4 The patch test
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48

< 2 E=10
T 16 v=0.33
Y
A

[ Thickness = 1.0

Out-of-plane load
44 Length =12

Thickness = 0. z
/‘ Y Twist cz:n‘%leo: 2 In-plane load
Fig. 5 Cook's membrane problem Fig. 6 Twisted cantilever beam

Table 2 Normalized solution for Cook's membrane

Nodes/Side MITC4 SQ4A AQRS Present
3 0.495 0.724 0.930 0.890
5 0.765 0.906 0.979 0.965
9 0.924 0.974 - 0.997

Table 3 Normalized solutions for twisted beam

Load In-plane Out-of-plane
Nodes/Side 3x13 5% 25 3x13 5%25
4-SRI 0.995 0.998 0.924 0.976
MITC4 0.988 0.996 0.920 0.974
SQ4A 0.994 0.998 0.982 0.994
AQRS 0.991 - 1.093 -
Present 1.003 0.997 0.997 0.997

elements with drilling DOF are accurate and of high convergence rate.
6.3. A twisted cantilever

A cantilever beam of rectangular cross section, twisted 90° over its length, is subjected to a
concentrated unit load at its free end as shown in Fig. 6. This problem tests the sensitivity of
the elements to warping distortion. Both membrane and bending contributions are significant
in this problem. The analytic solutions in the case of in-plane load and of out-of-plane load
are 0.5424x 10 * and 0.1754x 10" °, respectively, as found in MacNeal and Harder (1985).
The results of the normalized displacements are listed in Table 3. All elements show
reasonable convergency to the analytic solutions. But the present element shows better results.

6.4. Scodelis-Lo cylindrical roof
The Scodelis-Lo cylindrical roof subjected to self-weight load is depicted in Fig. 7.

Membrane contribution to deformation is significant in this problem. An analytic solution for
the transverse displacement at the center of the edge (A), as reported by MacNeal and Harder
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Weight = 90.0/ unit area Thickness = 0.04

E - 4.39%10 E = 6.825x10 fre
'0 'O X R =100

V=

: v=0.73 sym.
L=50
R=25 sym.

F=1.0
- y
F=1.0
free
diaphragm X
Fig. 7 Scodelis-Lo cylindrical roof Fig. 8 Hemispherical shell

Table 4 Normalized solutions for Scodelis-Lo roof
Nodes/Side | 4-SRI QUADR MITC4 SQ4A AQRS8 Present

5 0.964 1.055 0.944 1.044 1.021 1.052
9 0.984 1.009 0.973 1.002 1.003 1.007
17 0.999 - 0.989 0.995 - 0.998

(1985), is 0.3024. In consideration of symmetry of the structure, only a quarter of the roof is
analyzed. Normalized values for the transverse displacement at A are listed in Table 4. All
elements show good accuracy and high convergence rate for this problem.

6.5. A hemispherical shell with a hole

A quarter of the hemispherical shell with a hole is shown in Fig. 8. This problem is
intended to check the element performance with rigid body rotations and in the case of near
inextensional bending of a doubly curved shell. A reference solution for radial displacement
at the loading points is 0.094, which is given in MacNeal and Harder (1985). The normalized
displacements are shown in Table 5. Elements with drilling DOF show more or less slow
convergence, though it seems not to be severe. It is well-known that the strain energy for this
problem is almost bending energy. However, the membrane stiffness is much larger than the
bending stiffness. So, any small amount of membrane-bending coupling strongly affects the
stiffness of the shell. This membrane-bending coupling comes about by the coupling between
the drilling rotation and the bending rotations by the changes in slope at element intersections
(MacNeal and Harder 1988). The incorrect geometry representation causes the slow
convergence for the present element.

6.6. Full hemispherical shell

An alternate form of the previous problem, the full hemispherical shell, is analyzed with
the quarter model shown in Fig. 9. This problem is intended to check the element
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Table 5 Results for hemispherical shell with a hole

Nodes/Side QUADR AQR8 Present
5 0.447 0.227 0.304
9 0.962 0.681 0.894
17 0.996 0.972 0.985

performance for the rigid body rotations and the near inextensional bending of a doubly
curved shell with distorted meshes. The shell characteristics and the loading are exactly the
same as in the previous example, but there is no hole on the top. A reference solution for
radial displacement at the loading points is 0.0924, which is given in Flugge (1973). The
normalized displacements are shown in Table 6. It is noted that for the same number of nodes
per side fewer elements are used than in the previous example. The present element shows
slow convergence for the same reason as in the previous example.

6.7. A square slab sustained by a column (Right angle beam-to-shell connection)

A horizontal square slab (first proposed and solved by Frey 1988) is sustained by a vertical
central column and loaded by a resultant in-plane moment M,=800, which is applied by
horizontal forces or by concentrated moments, acting on four corners (see Fig. 10). The
St. Venant stiffness of the column is J=790.55. The slab is discretized as in Fig. 10 so that
the typical zero energy mode of rectangular elements might be avoided.

The displacements at the slab corner A for two loading cases are shown in Table 7. Since
the slab is quite stiff as compared with the column, the overall rotation ¢=u,/c of the slab is

Tz
Thickness = 0.04

E =6.825 %107
R=10.0
v=0.3

Fig. 9 Full hemispherical shell

Table 6 Results for full hemispherical shell

Nodes/Side MITC4 SQ4A Present
5 0372 1.027 0.256
9 0.920 1.002 0.827
17 0.990 0.996 0.960
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y
o r . Lo X 200
N + .
Op c
/ > x
E =2x10"
71300 v=-03
= >
1.4y L0 200 200
Fig. 10 Square slab to column connection
Table 7 Results of slab to column connection
— U=y, 10°% 6, 10°x ¢
Couples of forces (Present) 0.080301 0.394662 0.401505
Concentrated moments (Present) 0.079015 0.394662 0.395075
Column top rotation angle (beam theory) 0.39466

almost equal to the angle of twist of the column. The proposed element results in the exact
solution for 6,, while the displacement u, shows a little discrepancy compared with the
solution of u,=c X 6,=0.07893.

6.8. A three-ply laminated square plate

A three-ply laminated square plate shown in Fig. 11 is carrying a uniformly distributed
transverse load with simply supported boundaries. The plate has three layers of equal
thickness. Each layer is assumed to be orthotropic. A 66 mesh is used in all computations.
The nondimensionalized deflections at the center of the plate are presented in Table 8.
Analytic solutions are found in Reddy (1992). The results for thin shells (a/h > 10) are closer
to the analytic solutions than those for thick shells (a/h < 10). But, the errors for thick shells
seem to be still in the tolerable range.

6.9. A cross-ply laminated spherical shell

A cross-ply laminated spherical shell shown in Fig. 12 is subjected to a uniformly

E, = 30000.0
v=0,25
E,=E,/25=1200.0
G, = 600.0

G, = 600.0

G,, = 400.0

4, = -1.0

Fig. 11 Three-ply laminated square plate
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Table 8 Nondimensionalized” deflections of three-layer cross-ply square plates under uniform load (0°/90°/

0°, h=h/3)
alh 2 4 10 20 50 100
Present 7.2149 25991 1.0238 0.7689 0.6949 0.6842
Analytic 7.7661 2.9091 1.0900 0.7760 0.6838 0.6705

a; w = (WhE ,/ q,a*)x10?

distributed transverse load. All layers are assumed to be orthotropic. All edges are simply-
supported. Each edge is restricted to move in the direction of edge line but is free to move in
the direction perpendicular to the edge line. Therefore, the edge which has originally a
straight projection line on the xy-plane might not remain straight after deformation. Four
corner points are fixed in consequence. Three kinds of ply construction are considered and all
plies are of the same thickness. Because of double symmetry, only a quadrant is modeled. A
16X 16 mesh is used in all cases. The nondimensionalized center deflections are presented in
Table 9. Analytic solutions are referred to Reddy (1992). The proposed element shows good
agreement with the analytic solutions.

6.10. A curved box girder

The last example is a curved box girder shown in Fig. 13. All parts including flanges,
curved webs, and a diaphragm of the box girder are modeled by the present element. A half
of the girder is modeled because of symmetry. Vertical deflections along the web lines of the
flange are plotted in Fig. 14. The solutions are compared with the experimental results
reported by Fam and Turkstra (1976). The present element exhibits fairly good performance
even with a coarse mesh.

E, = 30000.0
v=0.25

E, = E, [25=1200.0
G,, = 600.0

G, = 600.0

Gy, = 400.0

g, =-1.0

Fig. 12 Cross-ply laminated spherical shell (0°/90°, 0°/90°/0°, 0°/90°/90°/0°)

Table 9 Nondimensionalized® center deflections of spherical shell under uniformly distributed load

0°/90° 0°/90°/0° 0°/90°/90°/0°
a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 a/h=10
Present 0.6502 16.014 0.6453 8.9500 0.6454 8.8193
Analytic 0.6441 15.739 0.6224 9.1148 0.6246 9.1463

a; w = (WhE y/qqa®)x10°
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END DIAPHRACM
THICKNESS
= 0.239

|
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r
|

(a) Top view (b) Section B-B

E =4.,0x10°
v=10.36
P=20.0

(c) Finite element model

Fig. 13 Curved box girder (geometry and finite element model)

0.20

s exterior web(experiment)
e interior web(experiment) . )
0.154_5  exterior web(Present) .

—o— interior web(Present)

0.10

vertical deflection

0.05 4

0.00

angle(degree)
Fig. 14 Vertical deflection along the half span of box girder

7. Conclusions
A new four-node degenerated shell element with drilling DOF has been proposed. The

element is free of locking and spurious modes. Numerical results show that the element is
quite accurate and of proper convergence rate. It is also shown that the element is less
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sensitive to element distortions and can be applied reliably to thin or moderately thick shell
problems. Not only isotropic but also composite laminated structures are dealt with. True
drilling rotations are calculated accurately. Stiffened or folded structures are handled more
conveniently by the proposed element of six degrees of freedom per node.
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