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Nonlinear analysis of fibre-reinforced plastic poles
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Abstract. This paper deals with the nonlinear finite clement analysis of fibre-reinforced plastic poles.
Based on the principle of stationary potential energy and Novozhilov's derivations of nonlinear strains,
the formulations for the geometric nonlinear analysis of general shells are derived. The formulations are
applied to the fibre-reinforced plastic poles which are treated as conical shells. A semi-analytical finite
element model based on the theory of shell of revolution is developed. Several aspects of the
implementation of the geometric nonlinear analysis are discussed. Examples are presented to show the
applicability of the nonlinear analysis to the post-buckling and large deformation of fibre-reinforced
plastic poles.
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1. Introduction

Fibre-reinforced plastics (FRP) are becoming increasingly popular as alternative to
conventional engineering materials. The unique characteristics of FRP, such as light weight,
corrosion resistance and lower cost of construction and maintenance, are very promising in
the application of FRP in civil engineering. One such application is the replacement of power
transmission poles, traditionally made of either concrete, steel, or wood, by FRP poles.

Despite the many advantages FRP provide over traditional materials, problems such as
large deformation and instability due to their low stiffness, are major concerns for the
practical use of these materials. The common height of transmission poles is in the range of
10 to 30 meters. The deflection can exceed thirty percent of their height. In order to reduce
cost, such poles must be slender and the wall thickness must be made as small as possible. It
is well understood that overall buckling of a member is associated with its slenderness ratio
and that local buckling is associated with the wall thickness. Therefore, the issue of stability
and large deformation of thin-walled slender poles must be addressed before any
consideration for practical use of such poles.

The overall buckling load of a prismatic column with one end fixed and the other end free
can be obtained using classic procedures. Under the assumption of small deflection the Euler
buckling load (Chen and Lui 1987) of such a column under a concentrated load is P,=(7°El)/
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(4L%), where E is the modulus of elasticity, / is the moment of inertia and L is the length of
the column. When the critical load P,, is reached, the deflection of the column is undefined.
The post-buckling behaviour can not be obtained by the linear beam-column theory. A
nonlinear formulation was used by Timoshenko and Gere (1961) to determine the post-
buckling of a prismatic column. Similar formulation were used by Holden (1972) to obtain
the load-deflection curve of a prismatic colulmn under distributed axial loading. Bisshopp and
Drucker (1945), Wang (1969) and Barten (1945) investigated the large deflections of beams
under various loadings. All of these analytical formulations lead to the form of elliptical
integrals. The fundamental assumption made in the beam-column theory is that the profile of
the cross-section of a member is undistorted during loading although it undergoes very large
deflection. Any local deformation pertinent to the local buckling is not considered according
to this assumption.

To be cost-effective, fibre-reinforced plastic transmission poles must be tapered hollow
sections. Thus, in addition to beam-column type behaviour, local deformation might
significantly affect their load carrying capacity. To account for the local buckling behaviour,
the shell theory may be employed. In this paper, the theory of shell of revolution is employed
to take advantage of the axial symmetry and to reduce the computational effort (Gould 1985,
Zienkiewicz 1971). A large number of papers address the subject of buckling and post-
buckling of cylindrical shells (Navaratna et al. 1968, Ugural and Cheng 1968, Holston 1968).
The majority of these focus on the buckling of shallow shells whose buckling modes are
higher harmonics (n>>2, where n is the harmonic order) (Navaratna 1968). However, research
on the buckling of long cylincrical shells whose buckling modes are lower harmonics is limited.

This paper deals with the geometric nonlinear analysis of tapered FRP poles. Emphasis is
put on the post-buckling and large deformation due to beam-type bending. Full nonlinear
strains in curvilinear coordinates derived by Novozhilov (1961) are used. There is no limit
assumed for the range of displacements. Because the stress-strain relationship of fibres is
dominated by fibres especially at the high fibre volume fractions, the stress-strain relationship
of FRP is presumed to be linear elastic. The finite element method is used to investigate large
deformation and post buckling behaviour of FRP poles. Several examples are presented to
demonstrate the applicability of the nonlinear theory.

One of the interesting local buckling behaviour, namely ovalization of FRP, involves high
harmonics in the displacement function. That topic deserves a separate discussion and
therefore, is not covered in this paper.

2. Formulations

The principle of stationary potential energy states that at an equilibrium position, the first
variation of the total potential energy of a conservative system vanishes; i.e.,

SM=8U —5W =0 (1)

where U is the strain energy, W is the work done by external loads, and IT is the total
potential energy.

To optimize the use of materials, the FRP poles are assumed to be conical shells (Fig. 1)
with walls built from a combination of several laminas. The fibres are assumed to be
unidirectional within each lamina but oriented at different angles from lamina to lamina. The



Nonlinear analysis of fibre-reinforced plastic poles 787

o, ¥,y

7 7 / 77 Displacements in Global Coordinates
Fig. 1 FRP pole as shell of revolution

stress-strain relationship, expressed in global coordinates has the form:
o=D¢ (2)
where o and € are the stress and strain vectors, respectively, and D is the stress-strain

transformation matrix (Agarwal 1980, Lin 1995). The strain vector in Eq. (2) can be
expressed as the sum of linear strain vector £° and nonlinear strain vector £", i.e.,

£ =¢"+&" (3)
The strain vectors £° and £" consist of five strain components as follows:
L T
EN:[en € €33 €3 elz]T (42)
€ =[en & & & &) (4b)

It should be noted that the normal strains e;; and &, are very small and are neglected in
Eq. (4). The strain components in orthogonal curvilinear coordinated (Novozhilov 1961) are:

1 du, 1 oH, 1 0H,

“““H, oa  HH, o8 "* HH, ay (52)
H, 9 U, H, 0 (u,
ep=— — | — |+ — | — 5b
"7 H, oa (HZJ H, 9p (H]] (5b)
where H, (i=1, 2, 3) are Lame coefficients of the shell, and
1 1 ' (1 ’
811:3 elzl +[3612+(0;] +(Eel3_%j (63)

glzzen(‘;_elz_wsj +622[%eu+(o}] + [%els—wzJ (%6234”@1] (6b)

where @,, @, and @, are given by Novozhilov (1961). These are,

J

__1 |9 _ 9
= 2H H, |:aﬁ Hus) BY(HZuZ)J (72)
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1 0 3 0

0, = 2H H, I:_ay(Hlul) aa' (Hsuz)} (7b)
1 0 0

;= 2H H, [“806 (Hou,) - 8[3‘ (Hlul):| (7¢)

Uy, U, and u, are displacements in ¢, 8 and 7y directions (Fig. 1). The rest of the strain terms, e,,,
€5, En, &, €lC., can be obtained by cycling (o, B, ¥) and subscript (1, 2, 3) in Egs. (5) and (6).

In the finite element method, the displacement functions are usually assumed to be linearly
dependent on the element nodal displacements g,; that is,

u; =[F(o, B, V)l q. @®)

where (i=1, 2, 3), F, is a function of the coordinates ¢, B and ¥. It is well known that the
linear strains in an element can be expressed in terms of node displacement g,

81, :BI, qe (ga)
and
d¢' =B" dq, (9b)

where the linear strain matrix B is independent of nodal displacements.
The relationship of nonlinear strains and nodal displacements can be obtained (see
Appendix A) using the Novozhilov's formulations as follow:

&'~ B"@)la. (102
5¢"=[B"(a.)] 5a. (100)

where the nonlinear matrix B" is function of q..
The element strain energy and its variation are:

U. = %j(gL LYY D (e +e)dv (11a)
8U. = (5¢"Y De"av +[ (6€") De"dv +j (6e") De"dv +j (6€"Y De"dv (11b)

where v is the volume of an element. Letting

[ Ge") De'dv=5q7[K.1q. (12

[ @'Y De¥av =547 H.(q.)] . (13)

[ 6e") De"av=547(G.(q.)] 4. (14)

[ 6y De'av=5q71).(a.)] . (15)

and substituting Egs. (9) and (10) into Egs. (12) through (15), the following matrices are obtained:
K.=[(B")'DB"dv (16)

H - —;— | B DIB" (@) dv (17)
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G.=[[B"(q.)] DB"dv (18)

1= [1B" @) DIB" @)l dv (19)

where K, is the linear element stiffness matrix which is independent of nodal displacement g,,
and matrices H,, G, and J, are functions of nodal displacement g., called nonlinear element
stiffness matrices.

The following system of equations is obtained using the standard finite element procedures
(William and Johnston 1985):

R=f (20)

where R is te system residual vector, and f is the system nodal load vector. R and f are
defined as:

R=[K+H(q)+G(q)+J(q)lq (21)
f=AP (22)

In Egs. (21) and (22), g is the system nodal displacement vector, K, H, G, J are global
stiffness matrices; P is a prescribed load vector; and A is a load parameter which, when
multiplied with P, will describe the actual load. For large displacement, the contribution of
the nonlinear strain £" to the strain energy is significant, hence, Eq. (20) is the full governing
equation without simplification.

In solving the system of equations given by Eq. (20), the displacement vector {#} which is
a function of the coordinates (¢, 3, ¥) is defined as

{u}y=[u, uy us] (23)

In the y direction, each displacement u,, u,, and u; may be assumed to be the sum of a

constant part, which is the mid-surface displacement, and a variable part, which is a function
of v. For nonlinear analysis, u,, u,, u, are assumed linearly dependent on y as

u=v,+v¢p, (=1,23) (24)

where v, is the mid-surface displacement and ¢, is a rotation-type variable.
Using

{;}Z[W & vy ¢ Vs 3] (25)
each component of the vector {E} can be expanded into Fourier series in 3 direction, as follows:
0 . b oo
R vIO rvll,l cosl B v]b[ sinl 8
o 2 ¢1a, cos! 8 o sinl B
V2 vy | M| vesin/p M, | v5 cosl B
P = 0 +2 @ Ginl +z b
2 ¢2 = ¢2] s ﬁ =1 ¢21 COSlﬂ
;3 vo v§, cosl B vt sinl B 26)
L 3 § ¢;’] i ¢,;l1 COSlﬂ_ ¢’:}l Sinlﬁ
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Fig. 2 Displacements due to rigid-body rotation

In Eq. (26), the first vector on the right hand side represents the axial symmetric
displacements corresponding to the zeroth-order Fourier series; the second vector includes the
symmetric (about =0) displacements; the third vector includes the antisymmetric (about =0)
displacements. M, is the highest harmonic to be chosen. For linear static analysis,
displacements of different orders are uncoupled due to the orthogonality of the trigonometric
functions (Zienkiewicz 1971); so, M, can be chosen up to any particular order of interest. For
nonlinear analysis, in order to capture the most significant characteristics of slender poles,
such as large deformation and overall buckling due to beam-type bending, all the terms with
[<1 should be included. However, some terms for /=2 are needed to satisfy the requirement
for the rigid-body rotation of conical shells (Lin 1995, Fonder and Clough 1973). The
antisymmetric (about B=0) part is not included currently in the nonlinear analysis.

When the truncated pole shown in Fig. 2, for example, is given a rigid-body rotation 6
about x-axis, the point P at the reference corss-section moves to point P’ In this case the
displacements in the coordinate System xyz are:

e =0 27)
uy, =—(r + ycosy) cosf3 (1 —cos) (28)
u. =—(r + ycosy) cosfsinf (29)

However, the rigid-body displacements represented by Egs. (27), (28) and (29) can be
projected into the curvilinear coordinates (¢, B, y) as follows:

u" =u,cosfsiny—u.cosy (30)
ut, =—u,sinf (31)
u’, =uycosficosy+u, siny (32

Thus,
uh=-— % (r +ycosy) siny(1 +cos2B)(1 —cosB) — (r + ycosy) cosycosfsind  (33)

ulh), = % (r +7ycosy)sin2 (1 —cos6) (34)



Nonlinear analysis of fibre-reinforced plastic poles 791

uh,=-— % (r +ycosw) cosy(1 +cos2B)(1 —cosB) + (r + ycosy) sinycosfsind (35)
where u,, u, and u; are displacements induced by rigid-body rotation. They are expressed in
terms of ¢, B and y directions, respectively (Fig. 2).

It is evident form Egs. (33), (34) and (35) that in order to capture the displacements
induced by rigid-body rotation 6, special terms related to cos2f3 and sin2f3 must be included
in the displacement functions. The factor (1 —cosf) may be treated as a new displacement
variable; i.e.,

@D =(1-cosb) (36)

The displacement variables @, v,', ¢, etc., are all functions of coordinate ¢ only. Dividing
the pole into a number of elements in the o direction, these variables can be interpolated in
terms of nodal displacements within an element. Choosing the displacement polynomials and
following the standard finite element procedures, the equations for the displacements u,, u,
and u, can be manipulated in matrix form (Lin 1995) as:

u,=[6][I][N1] g. (37)
u,=[6][I3][N] g (38)
u;=[6:][15][N] g (39)

where matrices [6, (i=1, 2, 3) are functions of 8 only, matrices [I; (i=1, 2, 3) are functions of
y only. These are:

[6.]=[1 1 cosB cosB cos2p] (40)
[6:]=[1 1 sinB sinf sin2f] 41)
[6;]=[1 1 cosP cosf cos2f] 42)
(1000 0 0 |
0700 0 0
r,=l0010 0 0 (43)
000y 0 0
0000 —ycosysiny —siny
- 2 2 -
1000 0 0]
0y00 0 0
L=/0010 0 0 (44)
000y 0 O
- 2 2 -




792 ZM. Lin, D. Polyzois and A. Shah

(1000 0 0 |
0700 0 0
L=(0010 0 0 (45)
000y 0 0
0000 —ycoszl;/cosy/ —C(Z)Sl[/

The shape function matrices [N;] (i=1, 2, 3) are functions of & only. The element and shape
function matrices are given in Appendix B.
Eq. (20) can be rearranged in the form:

x=R —AP ={0} (46)

Generally, the Newton-Raphson iteration method is employed to solve the above nonlinear
equations. Different control schemes, namely load control, displacement control (Batoz and
Dhatt 1979, Lock and Sabir 1973), arc-length control (Riks 1979, Crisfield 1981), etc., have
been proposed and successfully implemented in various computer programs. In most schemes,
the tangent stiffness matrix K; has to be evaluated where

NEANE
<[5 «

It can be noticed form Eq. (21) that it is sufficient to find the derivative of a vector
function in the form of €2,=[M(q)q] to evaluate the derivative of K;. It can be shown that for
n X n matrix M

082y,
dq

- 58(; M(@)q)=M (g)+M(q) (482)
or
3Q,=M"8q +Méq (48b)

If we call M the immediate derivative matrix of £, then we call M the complimentary
derivative matrix of €2, Where M’ is also an n X n matrix and

g

Applying Egs. (48) and (49) to Egs. (17) and (18), it may be shown that
H =H (50)
G =2H" (51

where H' is the complimentary derivative matrix of £2,=[H(q) q]. Since computing nonlinear
matrices such as H, G and H are time intensive, the above two equations can be used to
reduce computational time.

The finite element model presented here has been implemented into a computer program. A
Newton-Raphson iteration method was employed to facilitate the solution of nonlinear
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Fig. 3 Displacement of a cylindrical tube under lateral load

equations (Lin 1995). The following examples demonstrate the applicability of the nonlinear
theory and the finite element model delveloped herein.

3. Examples
3.1. Example 1

In this example a homogeneous cylindrical tube (Fig. 3) is considered. Material and
geometric data are chosen as follows: modulus of elasticity, E=24.04 GPa; shear modulus, G=
9.25 GPa; Poisson's ratio v=0.3; r=34.29 mm, t=5.08 mm; moment of inertia, /=0.64x 10°
mm®. Five elements are used in this example. The load deflection curve obtained from the
proposed nonlinear analysis is shown in Fig. 3 along with the curve obtained from the
analytical solution developed by Bisshopp and Drucker (1945). These two curves are obtained
by applying a transverse load Q only. Very good correlation is observed since both these two
curves are almost identical through the whole range of displacements. The linear solution
obtained through the basic beam theory is also shown in Fig. 3. As shown in Fig. 3, for an
uniform beam of isotropic material, a linear solution is a good approximation to the nonlinear
solution only if the relative displacement (A/L) is less than 30%. For design purpose, the
linear solution yields conservative results.

To examine the behaviour of a tube under combined axial load and bending, an axial load
was applied, as shown in Fig. 4. In this figure, the lateral deflection of the tube at the free
and A, is plotted as a function of the axial load, P. A small transverse load 0=0.0056 kN is
applied to obtain a smooth transition from the fundamental to the secondary path (Chen and
Lui 1987). The results are compared with the post buckling results obtained from
Timoshenko's formulation (Timoshenko and Gere 1961). The comparison is made at large
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Fig. 6 Deflection of a tapered FRP pole

deflections since only pure axial load is considered in Timoshenko's formulation. P, in Fig. 4
is the Euler load. In this example, although only five elements are used, the computed results
agree very well with the theoretical results. In all the range of displacement computed, the
differences are within one percent.

3.2. Example 2

In this example a tapered FRP pole with three layers (Fig. 5) is considered. The material
properties used are: modulus of elasticity of the fibers in the longitudinal direction, E,=38.0
GPa; modulus of elasticity of the fibres in the transverse direction, E,=6.832 GPa; major
Poisson's ratio, v;;=0.3; minor Poisson's ratio, v;;=0.49; and in-plane shear modulus, G,;=2.293
GPa. The fibres in the middle layers are oriented in meridional direction while the fibres in the
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inner and outer layers are oriented at +3 degrees with respect to the circumferential direction.

The pole is divided into five equal elements. The results from the nonlinear analysis are
compared to those from the linear analysis in Fig. 6. The linear curve is obtained from the
high-order shear theory (Reddy and Liu 1985). Since the axial load P is small compared to
the critical load P, (Lin 1995), a stiffening effect is observed in this portion of the deflection
curve. For this example, linear and nonlinear solutions diverge at A/L=0.25. At A/L=0.3,
the relative difference between the results from the two theories exceeds 20%. These results
indicate that the behaviour of FRP poles could be more nonlinear in some cases.

4. Conclusions

The principle of stationary potential energy has been employed for the analysis of FRP
hollow tapered poles. Novozhilov's derivations of stains of general shells are used in the
formulation process for the nonlinear finite element analysis. The use of Novozhilov's
derivations results in a concise and compact expression for nonlinear strains and their first
variations. The evaluation of the tangent stiffness matrices is discussed. It is shown that H =H
and G=2H'. These two equations can be used to reduce computational time. The
programming of nonlinear stiffness matrices can also be systematically manipulated.

In modelling the beam-type bending of the poles, some second-order Fourier terms which
are necessary to model the rigid-body rotation are included in the displacement functions. A
special displacement variable @,=(1-cos6) is also introduced. This approach has been
proven to be successful as seen from the examples presented.

The finite element model developed yielded good results, regardless of the range of
displacement. The post-buckling behaviour can be analyzed using the large displacement
nonlinear analysis. Although transverse shear strains and hoop strains are included in the
analysis, for slender poles considered here, no significant effect was observed since the
loading conditions considered are simple.

The effect of fibre-orientation and taper ratio on the performance of FRP poles is not
addressed in this paper. Also, local buckling, such as the ovalization of long cylindrical shells
(Brush and Almroth 1975), which might occur in some situations, is not addressed. This kind
of behaviour which needs to be modeled by using more higher-order (/>2) harmonic terms
in Fourier's series, is still under investigation.
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Appendix A. Relationship of nonlinear strains and nodal displacements

In the Formulation section, the strains of shell of revolution are expressed as the sum of linear strains
and nonlinear strains (Eq. (3)).

{e"y={eL}+{e"} (A-1)
where
{eh}=[e)) ey ex3 €3 €pn]" and {eV}=[e) & &3 & €] (A-2)

The linear strain components (es; is given below because it will be used later in the expressions of
nonlinear strains) are
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du, 1 dH, . 1 oH,
=— — + u
“USH 3« THH, B 2 HH, oy °
du, 1 oH, L1 oH,
=+ U u
‘2T Y B T HH, oy HH, da
ou 4 1 OoH,4 1 OH,
€33= 77— 5+ U
“ Hy dy H.H, oa HH, 9p
Hz Uy
H; 5 | |
. O (s |, H o
e H] aa H, H3 oy | H,
. 9 (%2 |, H 9
127 H aa H, | H, 38| H,
The nonlinear strain components are
1, (1 g 2
Ei=slent|entd) v S0

&= €33 56’31‘

1
En=en|F e W ten S et

where

a)3:

1

, (1 g
Slent|yentO | TS en"0

1
E3=€p “2‘623‘501

1
+ 5921“’-’3

1
+ '2‘932*“’1

1
+ [5613_‘02

3y (H o 2)}
- ‘a— (H 3l 3):|

2H H, I:E(HZ%) 8[3 (H1"1)]

797

(A-3)

(A-4)

(A-5)

(a-6)

(A7)

(A-8)

(A-9)

(A-10)

(A-11)
(A-12)

(A-13)

(A-14)
(A-15)

(A-16)

In the finite element method, the linear strains are linear functions of element nodal displacements

(Eq. (9)).

{e'}=B'q,,

In expanded form,

and

{8eL}y=B! 8¢,

(A-17)
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911=B€1 q. 5“11:5‘11(31{1 )
9222322 q. 5‘322=5‘L»T(322)T
6332323 q. 5"33:5%?(323 )
623:B§3 q, 5623:5%?(323)7
‘331=Bé1 q. 5"31=5qu(B§|)T
elzzBlfz q, 5612:5‘I(T(BII‘Z)T
, =Bﬁ)l q. 60)1=5q(,7(B£’01 )y
®,=B, 4, §w,=5q](B,,)
®,=B,; 4, §wy=6q, (B,

(A-18)
(A-19)
(A-20)
(A-21)
(A-22)
(A-23)
(A-24)
(A-25)
(A-26)

Substituting Egs. (A-18) through (A-26) into Egs. (A-9) through (A-13), the nonlinear strain vector and

its variation can be proved to be the following expressions:

eN :% [B¥(g.)]lq., and 8¢V =[BV(q,)] 5q,

where
_ N
a. B},
N
a/B;,
N
[BY(g,)]= quBz3
N
9. B,
N
LqUTBIZ_
In expanded form, Eqs. (A-27) are
1 N N
EIIZEqZBnqc Sgll:quBn 6qe
1 N N
En= E qLTB 2249 8822:qL,TB 27 aq(
1 N N
£33 -2_ q(TB 273 q. 6823 :qZB 23 5(](
1 N N
&=~ 4,B 4. dey=q.B;, 84,
1 N N
Ep=7 ‘IL,TB 129 5812:‘IZB 12 oq,
where
N _ L \tpl T T
B, =B ) B, +p 1P 05,0,
N ool Tl T T
B, =(By) B +pyy Py tiipnn
N _/pl \T T L L\ T L T T
B =B Ry, B A B PP Byt 0P P Ry,
N _/pl T L L \T T L T T
By, =B n,, 1y Byt (B ) Py tP oy Byt n apa, v 0,
N L T ol L T pl . .T T
B, =B )T"312+"312333+(Bn VP P BL TP TPl
where

1 1 L
Pin= [5312+Bm]

(A-27)

(A-28)

(A-29)
(A-30)
(A-31)
(A-32)

(A-33)

(A-34)
(A-35)
(A-36)
(A-37)
(A-38)

(A-39)
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Pon= %B§3+Bglj (A-40)
Pin= %B§|+Bi;:z) (A-41)
. —;—B'I‘Z—Bzﬁj (A-42)
"oy = %B;—Bfol] (A-43)
ny= %B%—BL‘;] (A-44)

To prove Egs. (A- 29) through (A-33), only two terms need to be selected to illustrate the procedures.
Considering the term e;, and the cross- product term e,,@; in the right hand side of Eq. (A-9), g, can be
arranged as

€= ; [ Te ”+% el ot ! 3Te|2+--} (A-45)
Using Egs, (A-18) through (A-26),
&= { "B}, B+ q(T(B B, 3 /B, )TBf2+“} q. (A-46)
53“{41 ey + ;a) 5e12+ T Swy+ ] (A-47)
dg, = {qL,T(BII‘l )y B 5 q(T(B i )TB + — (B P )TB bt :| oq, (A-48)
If defining
B/1Vl :(Bﬁ‘l)TB€1+ %(sz)TBi;ﬁ (Baﬂ )TBll/z"'“' (A-49)
then Eq. (A-29) have been proved, that is
€= % /B4 (A-50)
5¢,=q/BY 8q, (A-51)

Similar procedure can be used to prove Eq. (A-30) through (A-33).

Appendix B. Shape function matrices for nonlinear beam-type bending analysis

If the following terms are defined:

&= (B-1)
fi=1-3E+2& (B-2)

fi =48-4& (B-3)
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(B-4)

fj =—§+2£;Q

i

where L, is the length of the element in ¢ direction, then the shape function matrices are
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