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On Beck's column with shear
and compressibility

L.J. Cveticanin and T.M. Atanackovict

Department of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Yugoslavia

Abstract. In this paper the influence of rotary inertia, shear and compressibility on the
value of the critical force for the Beck's column is analyzed. The constitutive equation is of
Engessers type. As a result, the critical load parameter for which instability of flutter type
occurs is calculated for several values of the column’s parameters.
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1. Introduction

In his classical paper, Beck (1952) ananlyzed stability of an elastic column subjected to
constant follower type force at the free end. He showed, by the eigen modal analyzes, that the
column will loose stability, by oscillating with increasing amplitude, when the magnitude of
the compressive follower force reaches the critical value

k
Feo =20.05 LMz (1)

where k,=El=bending rigidity of the column; L=length of the column. In deriving Eq. (1) the
classical Bernoulli-Euler theory was used. Later many additions and generalizations to the
Beck's problem were proposed. For example, Carr and Malhardeen (1979) showed that eigen
modal analysis gives indeed the stability boundary for the Beck column. Smith and Herrmann
(1972) analyzed the influence of an elastic foundation of Winkler type on the stability, while
Hauger (1975) used a model of compressible elastic rod and determined the critical force.
Becker, Hauger and Winzen (1977) generalized the problem by introducing external and
internal damping. Beck's column with variable cross section was treated by Matsuda,
Sakiyama and Morita (1993). Critical review of some results for Beck column is given by
Panovko and Gubanova (1987).

The main objective of this paper is to investigate the effects of rotary inertia, shear and
compressibility on the critical load for the Beck's column. Thus, in deriving the equations of
motion, the constitutive equations for the column in the form given by Schmidt and DaDeppo
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(1971) are taken which belong to the so-called Engesser type of constitutive equations (see
Gjelsvik 1991). The use of Schmidt and DaDeppo type of constitutive equations for the study
of Beck's column is the main contribution of this paper. Other possibility would be to use
Haringx's type of constitutive equations, as presented, for example, by Libai (1992).

2. Formulation

Consider a thin, heavy elastic column, fixed at one and free at the other end. The column is
loaded at the free end C by a tangential force P. We assume that the rod is constrained to
move in a fixed plane II (see Fig. 1) to which its axis belongs at the initial moment (¢=0).

Let ¥ and y be Cartesian coordinate system with the origin at B. Assume that the axis of
the column is extensible and in that unloaded straight state has a length L. A differential
element of the column has a length 4S at time ¢=0 (rod is undeformed) and in the deformed
state at time ¢ has length ds. Then, the strain of the rod axis is

ds—dS
£= 2
1S 2)
From the D' Alembert's principle we obtain (see Fig. 1b)
dH =—q.dS (32)
dv =g, dS (3b)
dM =V dx — Hdy + m dS (3¢)

where H=component of contact force in X -direction; V=y -component of the contact force;
M=bending moment; x and y=coordinates of and arbitrary point; g, g,=intensities of
distributed forces in X¥ and y direction per unit length of the undeformed column axis,
respectively; m=couple per unit length of the undeformed column axis. The positive signs for
moment and forces are shown in Fig. 1b. It is assumed that the only distributed forces and
couples come from the inertia so that
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Fig. 1 Coordinate system and load configuration
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o’x
q. =~ a_gz— (43)
dy
=— 4
4, Pat22 (4b)
o'
m=-pJ e (4¢)

where p=mass per unit length in the undeformed state; d=angle between the tangent to the
column axis and X axis; J=a constant describing the rotary inertia of the column cross section.
The following geometrical relations are added to (3a)-(3c)

g—; =(1+€) cos ¥ (5a)
% =(1+¢) sin ¥ (5b)
The constitutive equations in the form given by Schmidt and DaDeppo (1971) are as follows
N
£=— 6
, (62)
y=-2 (60)
G
9 _dy__ M (69)

S 9S  kycosy

where k.=the constant describing extensional rigidity of column; k;=the constant describing
the shear rigidity of the column; kj,=the constant describing the bending rigidity; N=the
component of the contact force in the direction of the tangent to the column axis; Q=the
component of the contact force in the direction of the sheared planes.

Q makes angle (71/2)+y with the tangent to the rod's axis. In writing (4c) an 9°(J— y)/aﬁ
can be substituted for 0°®%/0¢2. This would lead to Timoshenko's beam theory. The expression
0°(1— y)/ot2 represents the angular acceleration of the column cross section while 9°1%/0t2
represents angular acceleration of an element of the colume axis. The choice of angular
acceleration is that proposed by Schmidt and DaDeppo (1971). Physwally 9*19/0t2 corresponds
to the column that consists of “light” discs mounted on a “heavy” wire.

Q and N are expressed in terms of H and V. From the definition of Q and N it follows that
(see Atanackovic and Spasic 1991).

_ y.cos %4 _y Sm ) (7a)
cos y cos ¥y
N=H cos(® -7 v sin(® — ) (7b)
cos ¥ cos ¥y

Eliminating € from the systems (3)-(7) we obtain
oH 0*x
— =0 8
s P (82)
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2
vV Iy _y (8b)

s P

%—?—V—S—%+H%+p}%=0 (8¢c)
g—;—(ué H cos(ﬁ-)é)ol-;/sin(l‘/‘—?’))ws 8=0 (8d)
Z-(+ H cos( ﬁ‘t)():;/Si“(i"”)sin =0 (8¢)
M1 p[(@y/at?)cosv — (9% /0t2) sin ¥Y]

cosy—y siny kg

Ay 1 Vsind-H cos® 99 1 p[(@y/0r) cos® - (@x/9t?) sind | _ 8)
S  k;, cosy—vy siny dS kg (cosy—7y siny) g

In particular (8g) follows from (6b) and (6c). The following boundary conditions must be
applied to Eqgs. (8a)-(8g) at the base (B)

x(0,t)=0 (9a)

y(0,1)=0 (%b)

%0,1)=0 (9¢c)

at the free end (C)

H(,t)=—P cost(L, 1) (9d)

y(L,t)=0 (9e)

V(L,t)=—P sin(L, 1) (90)

M(L,t)=0 %g)

Note that (9¢) corresponds to the case were the axis of the rod has fixed direction or clamped
conditions at (B). Instead of 0, £)=0, X0, f)—v(0, )=0 can be used. This condition
corresponds to the so called welded end. This is in agreement with our choice of angular
acceleration term.

The trivial solution to (8a)-(8g) i.e., the solution in which the rod axis remains straight
reads

V=0 (10a)

M°=0 (10b)

y’=0 (10¢)

9°=0 (10d)

y’=0 (10e)

x=s1--L) (10f)
EA

H'=-P (10g)



The solution to (8a)-(8g) is as follows
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H=H+H
V=V0t+V
M=M'+M
x=x0+i
y=y0+v
Y=+ 9
y=y'+vy

and introducing the non-dimensional quantities

H =

Then, the linearization of (8a)-(8g) about trivial solution (10a)-(10g) reads

751

(11a)
(11b)
(11¢c)
(11d)
(11e)
(11f)
(11g)

(12a)
(12b)
(12¢)
(12d)
(12¢)

(12f)
(12g)

(12h)

(12i1)

(12j)

(12k)

(121)
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oH _du
5o (13a)

ov _ dv
=5 (13b)

oM _ 0v v

P y? FEs +V(1- ,)+la€ (13¢c)

ou H
o _ 2 13d

v .
S =0 2)19 (13¢)
_ L IV
v _ B ot’
3 = 1_1 (13f)
B
1o
Jdy _ A B ot’ 1 o
ag - ﬂ 1_& /3 arz (13g)
B
The boundary conditions are those given by (9) or (14)

u(0, 7)=0 (14a)
w0, 7)=0 (14b)
%0, 1)=0 (14c)
H(1, ©9)=— A cos (1, 1) (14d)
y(1, 7)=0 (14e)
V(1, 7= A sin (1, 1) (14f)
M(1, 1)=0. (14g)

From (13) H, u and 7 could be solved after the solutions for V, M, v and © are found. Thus
we consider first the system consisting of (13b), (13c), (13e) and (13g). This system is further
reduced to a single fourth order equation for v

84 A, o 82v d'v

854 (1 2) aT agz _885281_2 =0 (15)
where
- |
A= g ; B= y‘/l (16)
1-— 1-—
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Under the following boundary conditions at end (B)

v (0, 7)=0 (17a)
9"%?1 ) (17b)

and at end (C)
B a;‘%(;;f) A a%a(g; L (170)
% 82va(rlz, D 4 azva(élé 9 _y (17d)

The system (15) and (17) represents the generalization of the Beck's problem for the
generalized (Engesser type) elastica with rotary inertia.
The solution to (15) is taken

v(E D=X(§)eiwr (18)
Substituting Eq. (18) into (15) is obtained

AXY +(A+Ba)X”-a'(1- %)X =0 (19)

where the prime superscript is simple (d/d§). With Eq. (19) and the boundary conditions the
following eigenvalue equation is obtained

5 153]A af(% £B) (52 —52)—A%s? +s;)—% o] -
515, cos(s,) ch(s))A af(% +B) (s} —s2)+A’s 22 -——Zﬁé ']+
sin(s,) s (s,) [w“%(s; —sf)—A—(;—z(sl“ +53)+24Bs s I ~A%s s (s —s2)]=0 (20)
where
5= {—E%(?HB “’2)+2147 [((A+B &'y’ +4A d(l——%)]w} (21a)
§,= —1—(/1+B wz)+—1— [(A+B &’y +4A af(l——)“—)]” ) (21b)
724 24 %%
3. Resuits

The flutter type of instability occurs when @ in Eq. (19) has a nonnegative imaginary part.
This is equivalent to the condition that the first two roots of Eq. (20) approach a common
real value. Fig. 2 shows a typical plot of Eq. (20) in the A - @’ plane.

Curve 1 corresponds to (=10", w=10°, 1°=10"°), curve 2 to (B=oo, p’=o0, y°=0) and
curve 3 to (B=10°, u’=10°, %’=0.01). The parameters B, u and % represent the influence of
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Fig. 2 Follower force as a function of frequency

Table
A("'
%7=0 7°=0.05 %=0.1

ﬁ?:; 20.05095 15.43159 12.30468
5?213000 19.52230 15.00423 11.95776
B:OO

{F=10000 20.11711 15.47743 12.34050
B=1000

LF=10000 19.58338 15.04576 11.99020

shear rigidity, extensional rigidity and rotary inertia, respectively. The critical values of A=A,,,
for several values of parameters are shown in the Table below.

4. Conclusions

In this paper we treated the generalized Beck's problem. The main results may be
summarized as:

1. The nonlinear partial differential equations describing in-plane motion of the rod for
which the constitutive equations are taken in the form proposed by Schmidt and DaDeppo,
1971 are derived.

2. The nonlinear system of equations of motion is linearized around the trivial solution
defined by Egs. (10a)-(10g). The resulting linear system is given by Egs. (13a)-(13g), which
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is further reduced to a fourth order partial differential Eq. (15).

3. The stability condition is obtained from the requirement that the solution of Eq. (15) is
bounded. The analysis of stablllty conditions leads to the following conclusions:

The critical load parameter in the case f=c0 and p’=co (classical case) agrees well with
that recently obtained, hlghly accurate result of Jankovic (1993).

From the results shown in the Table above it is concluded that by 1ncreasmg the rotary
inertia coefficient 7°, the value of the critical force decreases. The same is true for the
parameter 3, i.e., by reducing the shear rigidity (k;) the critical force becomes less. The
opposite is true for the slenderness ratio . That is, by reducing the extensional rigidity (k;),
the critical force is increased.

4. Note that the present generalization could be modified by using different angular
acceleration term and different boundary condition at the fixed end. Results of such
investigation will be reported elsewhere.
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Notations

H : contact force in x direction
i : V—1=imaginary unit

J : rotary inertia of rod

ke : parameter describing the column’s extensional rigidity
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: parameter describing the column's shear rigidity

: parameter describing the column's bending rigidity

: column’s length

: bending moment

: bending moment per unit length on the undeformed column axis

: component of the contact force in the direction tangent to the column axis

: follower force

: component of the contact force in the direction of the sheared planes

: intensity of distributed forces in x direction per unit length of the undeformed column axis
: intensity of distributed forces in y direction per unit length of the undeformed column axis
: length of the undeformed column

: length of the deformed column

: time

: contact force in y direction

: coordinates of an arbitrary point

: parameter measuring relative influence of shear rigidity with respect to bending rigidity
: strain of the column axis

: shear angle

: non-dimensional rotary inertia

: non-dimensional follower force

: slenderness ratio

: the frequency of the system

: mass per unit length in the deformed state

: angle between the tangent to the column and x  axis
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