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Random vibration of multispan Timoshenko
frames due to a moving load
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Abstract. In this paper, an analytic method to examine the random vibration of multispan
Timoshenko frames due to a concentrated load traversing at a constant velocity is presented. A load's
magnitude is a stationary process in time with a constant mean value and a variance. Two types of
variances of this load are considered: white noise process and cosine process. The effects of both
velocity and statistical characteristics of load and span number of the frame on both the mean value
and variance of deflection and moment of the structure are investigated. Results obtained from a
multispan Timoshenko frame are compared with those of a multispan-Bemoulli-Euler frame.
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1. Introduction

The problem of loads moving on structures has been studied for many years (Dmitriev
1982, Blejwas et al. 1979, Fry'ba 1971, Mackertich 1990, Wang and Lin 1997b). In modern
cities, guideways and elevated bridges are becoming 1ncreasmgly important transportation
systems. Guideways and elevated bridges have similar frame structures. The dynamic
deflection of multispan frames due to a constant moving load is greater than that induced by
the same load in a static situation. Furthermore, a moving load's velocity is the dominant
factor on the frames vibration. Due to the technological progress, the speed and weight of
vehicles have become more complex than ever. In actual situations, magnitude and velocity of
moving loads cannot be described deterministically. Consequently, the frames responses
cannot be obtained exactly Fortunately, the stochastic characteristics of traffic flows can be
estimated. The frames random vibration owing to moving loads such as traffic flows will
induce the structures” fatigue. Therefore, this kind of random vibration is a relevant topic in
structural dynamics.

Simple beams are generally taken as examples to study a structure's random vibration due
to moving loads (Bolotin 1984, Fry'ba 1976, Iwankiewicz and Sniady 1984, Knowles 1968,
Sniady 1984, Ricciardi 1994). The type of a multispan frame is different from a simple beam.
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A multispan frame's vibration can be analyzed by the finite element method (FEM). However,
the FEM is not feasible for studying the problem of moving loads on a multispan frame
(Wang and Lee 1993). Wang and Lin (1997a) successfully demonstrated the modal analysis
method while studying the vibration of a multispan Bernoulli-Euler frame due to a constant
moving load. In this study, the approach of modal analysis is presented to investigate the
multispan Timoshenko frames random vibration due to a moving load.

The Bernoulli-Euler beam model is normally used in structural analysis. This model may
bring about erroneous results in a dynamic situation (Clough 1955). The Timoshenko beam
model is then proposed to correct errors due to the Bernoulli-Euler beam model (Timoshenko
1921). In addition to shear deformation and rotatory inertia, the axial deformation is included
for examining the vibration of T-type Timoshenko frames (Wang and Lin 1997b). In this
study, the model of multlspan Timoshenko frames is considered to study the random vibration
of frame due to a moving load. A frame's material is homogeneous and isotropic with Young’
s modulus E, shear modulus G, Poisson's ratio ¢ and mass density p. A frame's geometry has
a cross-sectional area A, second moment of area I, radius of gyration of cross section 1 and
shear coefficient k. Each frame's beam has an equal length L. Moreover, the length L* is the
same for each column. A concentrated load moving on a multispan frame at a constant
velocity is taken as an example to investigate the stochastic characteristics of deflection and
moment of the structure. A load's magnitude is proposed to be a stationary process in time
with a constant mean value and a variance. Two processes of variances are treated as
examples: a white noise process and a cosine process. The velocity effect of load and the
span number effect on the mean value of responses of the frame are examined. Furthermore,
the velocity effect and the variance type on the standard deviation of responses are also
studied. Moreover, results of a multispan Timoshenko frame are compared with those of a
multispan Bernoulli-Euler frame.

2. Governing equations

Fig.1 depicts a distributed load F(x, #) on an n-span Timoshenko frame. The longitudinal
displacement, transverse displacement, rotatory angle, axial force, transverse shear force and
bending moment of the ith beam component of the frame are respectively denoted as u;, w,
Vi, n, g; and m; which are

oy 3 ow, _ OV
m=EAS", g = KGA( - y/] =B 1)

where x is the axial coordinate. The equations of motion of the beam are

Fig. 1 A distributed load F, , on an n-span Timoshenko frame
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where ¢ is time and F(x, f) is the component of load on the beam. The sign convention for
displacements and applied forces at both ends of the beam (see Fig. 2) are

{fuwyngmtb,={uwy-n—-qm} |x=(i—1)L’

{fuwwyngmly={uwyn-qgmy}|.. 3)
The equations of motion of the ith column of the frame are
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Fig. 2 Applied end forces and displacements of the ith beam
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Fig. 3 Applied end forces and displacements of the ith column



676 Rong-Tyai Wang and Jin-Sheng Lin

where u*, w* wv* n* ¢g* m* and x; are the longitudinal displacement, transverse
displacement, rotatory angle, axial force, transverse shear force, bending moment and axial
coordinate of the column, respectively. Moreover, the sign convention of displacements and
applied forces at both ends of the column (see Fig. 3) is

{wwwyngmyi={uwy-n-qgmy’|, o
{uwwnqgmly,={uwwyn-—gq m},-*|x,:,,* ®)
The displacement conditions at the fixed ends of the frame are
Uy, =ty =0, Wi =w,, =0, Vi, =W, =0 (62)
ur=0;wys=0; yy =0, i=1,2,-,n-1 (6b)

Moreover, the displacements continuity and the forces balance at the ith junction of the ith
column and two connected beams are

* * — _ *
Ve =Wivtye = Wia s Wip U (i 41)a == Wig s Wip =W (i 11)a = Uy (6¢)
* #*®
My, +m 41y, My, =0, G, + G (141y0 T1, =0, B +1 41y, ~qia =0 (6d)

Eqgs. (1)-(6d) constitute the governing equations of the frame structure.

3. Modal frequencies

To calculate the modal frequencies of the frame, the longitudinal displacement u,, transverse
deflection Wy, rotatory angle y;, axial force n,, shear force g; and bending moment m; of the ith
beam are expressed as

{luwwyngm}, (x,t)={UW WYNQO M} (x)sin(wt), (i-1)L <x<iL 7
in which @ is the circular frequency and the function U(x) is (Wang and Lin 1997b)
U, (x)=B,cos(Ax ) +Bsin(Ax) 8)

where A=(p/E)"” o, B,; and B, are two constants. Moreover, the functions W and ¥ are
(Wang and Lin 1997b)

case 1. for P<—F
2(1+u)m?
W, (x ) =Bjcosh(px ) +Bysinh(px )+Bscos(px ) +Bgsin(pax) (9a)
¥, (x)=Bi(p1)[Byucosh(pyx ) +Bysinh(px)]
+B,(p2)[Bsisinh(pyx ) —Bgcosh(pax)] (9b)
where
2
2 4 2 4
plzz_i[umy A[Hz(_H_w}u[g_AH_m_}
2 K 4 K n K
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case 2. for A >———————~2(1+’J)n2
W, (x)=Bycos(px ) +Bysin(px )+Bscos(px ) +Bgsin(pyx ) (9¢)
lPi(x)zﬂZ(pl)[“BMCOS(Plx)+B3i5in(P1x)]
+B(p2) [ Bsisin(pax ) —Bgcos(pox )] (9d)
where
- - _ - 4 12
e B[ 20em ] |2 1+M]2+ Lj_zuwn]
2 L K | 4 i K | n K
T a1
2 r 4T r A2
oo 2l 20 AT 20em ] [ £ 20404
20 L 41 K LN K

ﬂz(p):%[_puzuﬁ_]

K

Substituting Egs. (8)-(9d) into Eq. (1) yields the corresponding axial force N(x), transverse
shear force Q(x) and moment M(x). The constants B, - B, of Egs. (8)-(9d) are determined by
the boundary conditions of the ith beam.

Similarly, the axial displacement, transverse deflection and rotatory angle of the ith column
are

{fuw vy} (x,t)={U W ¥} (x; )sin(wt ) (10a)
which can be obtained by replacing the constants By, - By, p;, p, and functions U, W;, '¥;, B,
and 3, of Egs. (8)-(9d) with the constants B,*-Bs*, p\*, p,* and functions U*, W*, ¥*

i
B,* and B,*. The corresponding axial force, transverse shear force and moment of the column
are denoted as

{n qm}i*(xi,t)={NQM}i*(xi)sin(a)t) (10b)

Substituting the functions U(x), W{x), F(x), N{x), Q{x) and M(x). into Eq. (3) and arranging
the results into the symbolic vector forms yield

{UWWNQM} =[P].{B,B,BsB,BsBg}, (11a)



678 Rong-Tyai Wang and Jin-Sheng Lin

{UWYNQM}=[G]{B\B,B;B,B;sBg}," (11b)

The relation of displacements and forces at both ends of the ith beam is therefore obtained to
be of the form

{UWYNOM}Y'=[R]|,{UWWYNQM}T (12)
where [R];=[G]{P],”'. Similarly, the following relation
{UWWYNQOMYT=[R*|,{UWW¥YNQM}T (13a)
is obtained for the ith column. Eq. (13a) is rearranged to the vector form
{-WUWY-QNM}T=[Z*],{-WU Y-Q NM}T (13b)

By introducing these notations

D} ={UW B {D}={UW ¥/

{FY={NQ M}, {F.},={NQM}J (14a)
D} ={-WU ¥, {D:*}: ={-WU ¥}
{Fi}i={-Q N M}, {F.*},={-Q N M} (14b)

Eqgs. (12) and (13b) are organized into the vector forms

D.{ _|Rn Ry, D,

{Fr }i - |:R A Rzzjli {Fl i (1)
Dr* ZT] ZTZ { D;}

{Fr } {Zﬂ ZZJ FrY, (16)

for the ith column, respectively. Employing the condition of zero displacements at the fixed
bottom into Eq. (16) yields the relation of displacements and forces at the top of the column as

for the ith beam and

{FI*}i ="[Z=1k2-1 A 1 {D,*},« (17)

The conditions of the displacements continuity and the forces balance
{D.}: +{D:}i1={D"}i 11 (18a)
{F.}i +{F.}i 1 +{F};a={0 00} (18b)

at the junction of two adjacent beams and one connected column of the frame (see Fig. 4)
imply that the relation of displacements and forces at the junction between two adjacent

beams is
D, | Isxs 0 D,
{Ft} [ R {Fr} (19)
ivt |2y Zy —Isxs| i

13
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where is an identity matrix of order 3. Therefore, the response relation at the left junction of

two adjacent beams is
D\ _ D,
oo {7 e
where the transfer matrix [S]; is.

[ ]i_ Rlzll RZ *3—1 3*
i 22y —I34; _

Under this circumstance, the response relation at both ends of the entire beam of the n-span
frame is

{%} =[R1. [S],S ], {%}1 (21a)

p,| _[Hu Hy| [D,
-l ] 2] e

The zero displacement conditions at both ends of the frame imply that the jth modal
frequency o, is determined by solving

[H21{F.},={000}" (22)

The jth set of the mode shape functions {U W ¥} “(x) of the ith beam and {U* W* ¥*}9(x)
of the ith column are obtained by performing similar calculations described by Wang and Lin
(1997a). To simplify the notations in the following section, the jth set of the mode shape
functions and the corresponding set of axial force, shear force and bending moment of the
entire beam of the frame are denoted, respectively, as {U W ¥}”(x) and {N Q M}?(x) where
O0<x<nlL. Furthermore, the corresponding set of axial force, shear force and bending moment

of the ith column is indicated as {N Q M },-(i)(xi).
% I 1% + § F r% +
12i+1 r?i+l1

or briefly expressed as

tes i03,

[ ] [ ]

*
Fl i

r i

Fig. 4 Applied end forces and displacements of a typical T-type frame
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4. Orthogonality of mode shape functions

The set of the jth mode shape functions {U” W ¥ }(x) of the entire beam satisfy the
relations

dN(i)

P w?pAUY (23a)
dQ )] , )
- —=—=w}pAWY (23b)
dx ]
_ W ,
—00+ L —appr v (230)

By omitting the description of the procedures of derivation, the following equation is obtained
nl
(w?— ) j (PAUVU® + pAWOWD 4 pI POP© ) dx
_z {Nt(,k)U(])-i-N(k)U(]) U(/)U(k) N(J)U(k)}
+2 {QW+ QO W =05 Wi — 0 Wi}
+2 {M(k)lflﬁ})j)+M»(k)l}1‘(]>)_M_Igj)l}l_(lj‘)_M‘(j)lP_g()} (24)
Similarly, the relation

n-1 L* . . ;
(0}-0f) 3, J ApAUTT U+ pAW WIS+ pL Ty

i=1

*(k) W*(J)+Q *(k) W*U) —Q’:(j) W‘Z(k) *(/) W*(k)}
a L i

= *k * *(k * *(j *(k) *(j) preth)
Z ()U (1)+Ma( )Um(l) U, })(]ib __Nia] U }

— { *(k)‘fl*(])-l"M*(k) lP*()) M;‘:(l) l}/[*(k) M;:(J) l{jl:(k)} (25)

b S
—_ —

—_

is obtained for all columns. Performing the summation of Eqs. (24) and (25) yields the
orthogonality of any two distinct sets of the mode shape functions

J"L (AU U® + pAWD W 4 pl PO )y gy
0
n— L* . . .
+ z‘: '[ (pAU,-*(’) Ui*(/‘)+pAVVi*(J) m*(k)+p1 lei*(]) 'f’i*(k))dxi =0, ] %k (26&)
i=1 0

which also implies

JHL U(I)‘ﬂ;’:) +W(j)dgx(k) +'f’(j)(Q(k)— dzlx(k)j dx
0
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~ *(k) *(k) dMF®
2 J- *(,)dlc\l’x +W*(”dQ ol Qi*(k)_T dx, =0, j #k (26b)

i i i

5. Forced vibration

According to the orthogonality of two distinct sets of the mode shape functions, the
superposition method is adopted in the section to study the frame's forced vibration. The
respective longitudinal displacement, transverse deflection and rotatory angle of the entire
beam are

{uw ll/}(x,t)=zaj(t){UW‘P}(”(X) 27)

Moreover, the longitudinal displacement, transverse deflection and rotatory angle of the ith
column, respectively, are

{uw W' (x,1)=Ya,(O{UW ¥ (%) (28)
j=1
Under this circumstance, the governing equations are
N(}) d’a
- t +Y pAUP—L =0 29
T, (1) G+ Zu G 29%)
Q(J) ( )d B
—Za = +ZpAW’ =F(x,t) (29b)
; dM d’a;
-Ya;| 0V~ +¥ pl PV—-=0 29
Yo (Q = J WAt (290)
for the entire beam and
~Za (t) +]Z:1 PAU; —dtT“—_-O (30&)
*(]) d2
—Za +ZpAW ) dt =0 (30b)
o aM’? d’a,
- Q- —— |+ ¥ pl ¥ =0 30
Z ™ ZP o (30¢)

!

for the ith column. By adopting the relation of orthogonality (26a, b), Egs. (29a)-(30c) are
combined to yield the governing equation of the kth modal amplitude a;

d2
dt’

+aia =g (1) G
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in which the kth modal frequency w, and the corresponding excitation g(z) are

Wp=m /s, g (t)= [ F (x,0)W®(x)dx/s, (32)
0
where m, and s, are the respective modal mass and stiffness:

L
S = j" (PAUCU® + pAWOW® 4 pl pORP©y ax
0

—1 *
+2 JL (pAU,-*(k)Ui*(k)+PAW*(k)W/i*(k)+PI 'f’i*(k)'f’i*(k))dxi (33)
[\]

nl

dN(k) dQ(k) dM(k)
- U(k) +W(k) + l}l(k) k) _ dx
" j(, dx dx O

*(k *(k)
*<k>———d‘fl; e Qf*‘k’—w—dﬁi dx, (34)

dN*(")
*(k) +VVI-

—ZI

For the values of initial conditions of the frame being zeros, the history of the kth modal
amplitude a,(f) is

a ()= [ h(t-T)g (D)d1 (35)
The impulse response #,(1) of Eq. (35) is
he (7)= {Sm(“’”yw" g0y (36)

6. Motion of a random load on the frame

Fig. 5 depicts that a load F(f) moves on the frame at a constant velocity v. This load is a
random process with a constant mean value Fy(=<F(¢)>) and a centered deviation f{f). The
covariance C(t;, t;) between F(t,) and F(t,) is

Cr(tit)=<f(t1)f(t2)> @37

in which < > is the operator of mean value. The respective histories of the kth modal
excitation g(f) and its corresponding mean value <gu(f)>, and the covariance C,,(t;, t,)
between g(t,) and g(t,) are

D)O0<t t, t,<nl/v

g (1)=F (1)WY (vr)/s, (38a)
<g (t)>=FW®(wt)/s, (38b)
Coior (11,12)=C; (£1, ) WO (vt YW® (vt,) /)5, (38¢)

QynL/v<t, t; (ort)
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8 (£)=0 (39a)
<g (t)>=0 (3%9)
Cojar (21, 8,)=0 (39¢)

The respective mean value histories of the jth modal amplitude, transverse deflection and
moment of the entire beam are

<a,(t)>= [ b (1)<g, (1-1)>d7 (402)
<w(x,t)>=2W(”(x)<aj(t)> (40b)
<m(x ,t)>=jz‘M(j)(x)<aj (t)> (40c)

The covariance C. (1, t;) between a(t,) and aft,) is
Com (t1:82)= | By (1=1)h (1:-1,) Cog (T, B)d Td T, (40d)

The deflection covariance C,(x,, x,, t,, t,) between w(x,, ;) and w(x,, t,) is
Co (x1,%2, 4, 15)= Y T W (x )W (x,) Cape (11, 1) (41a)

j=11=1

Moreover, the moment covariance C,,(x,, x,, t,, t,) between m(x,, t;) and m(x,, t,), is
Con (X1,%2,11,12)= Y YMP (x )MV (x,) Cap (81, 1,) (41b)

j=11=1
Consider the centered deviation f{¢) to be a stationary process, i.e.,

Cr(t1,1,)=Cr (8,-1,) (42)
The covariance Cgy, (), 1,) and the covariance C.y, (1, t,), respectively, are

Ci(ty =) WDt YWD (vt,)(s;s;), 0<t,,t,<nL/v
Co (115 3) = ! 0,1 i 1 R nL/lvsztl,tz (432)

Fig. 5 A concentrated load traversing on the n-span Timoshenko frame at a constant velocity
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Cam (t1:12)= [ ] by (t:=1) by (1= %) Co (71, ) Td T/, (43b)

Moreover, the variances of deflection and moment of the entire beam are denoted as 6,°(x, f)
and (S,,,Z(x, 1), respectively, which are

02 (x,1)=C0 (x,x,1,0)=3 IWP(x )W (x)Cop (1 ,1) (44a)

j=11=1
0,2 (x,1)=Cp (x,x,1,1)=3 IMP(x )M (x)Cop (1 ,1) (44b)
j=11=1

The following two typical types of variances with the spectral density S, are considered (Figs.
6(a) and 6(b)) in the study:

(1) White Noise
C;(1)=S76(7) (45a)
(2) Cosine
C;(1)=S¢cos(mnT) (45b)

7. lllustrative examples and discussion

To illustrate the numerical result in this study, the non-dimensional variables are introduced
as follows;
u=u/L,w=w/n, y=wL/n, x=x/L , t=(EL/pAL*)V*t,
p=p/EA , q=qL3/EIn, m=mL%/EIn, r=n/L , I, =L*/L ,
w=(pALYEl Y V2@, Fy=F L%/EIN, Sy=SL%EIn
where /, is the length ratio of column to one span. Moreover, Poisson's ratio L = 1/3, the shear
coefficient k=2/3 of each branch and r=0.03 are considered in this section. The value of F,
is assumed to be unity. The following parameters are defined to illustrate the numerical

results, —
first modal frequency of Timoshenko frame, ®;;

Ce(T) Ce(T)

2 1
So )

Ss
NN/,
Vv

(a) (b)
Fig. 6 Two types of variances: (a) white noise process and (b) cosine process
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velocity ratio, ou(=100v/ (E/p)"™);
maximum <w> of the entire beam during the motion of load, <W>,,,ax,
maximum <m> of the entire beam during the motion of load, <M>,,.;
maximum deflection variance of the entire beam during the motion of load Gw s
maximum moment variance of the entire beam during the motion of load, Gy .
position of Gy, ... during the motion of load, (Xy);
position of G, ... during the motion of load, (X,
velocity at which <W>, . appears, o.;
velocity at which oy, .., appears, O.;
The lowest sixteen modal frequencies and their corresponding mode shape functions of
frames are sufficient (Wang and Lin 1997b) to be considered in the study. Furthermore, the
velocity range to be considered is 0<o<16.

7.1. Mean value

Figs. 7(a) and 7(b) depict the comparisons of two frame models on the <W>, -0
distribution and the <M>, -0 distribution of a three-span frame (I, =1). The effect of shear
deformation causes the Timoshenko frame to have a greater <W>,, than Bernoulli-Euler
frame's within the low velocity range 0<o<9. The first modal frequency is the most
dominant factor on a frame's vibration. The first modal frequency of Bernoulli-Euler frame is
larger than that of Timoshenko frame. According to this result, the lowest bending wave
phase velocity in Bernoulli-Euler frame is greater than that in Timoshenko frame. The o, of
Bernoulli-Euler frame is, consequently, greater than that of Timoshenko frame. Within the
low velocity range 0<o.<5, the load can be regarded as a quasi-static load. The effect of
rotatory inertia on reducing the moment of the frame is negligible within this velocity range.
Therefore, the <M>,,, difference between these two frames is slight within the low velocity
range. However, the effect of rotatory inertia on their <M>,,W differences cannot be neglected
for being greater than 5. The largest <M>,,, difference appears at o..

Figs. 8(a) and 8(b) compare three I, values on the <W>,.-o distribution and the <M>,,,.
distribution of a three-span Timoshenko frame, respectively. The shorter column length causes a

0.5 A " L M 1 " 1 N n N n N
4 8 12 16 4] 4 8 12 16
(a) X (b) X
~——— Timoshenko frame —— Timoshenko frame
---- Bemoulli—Euler frame - --- Bemoulli—Euler frame

Fig. 7 Comparisons of two frame models on (a) the <—Vf/>,m-oc distribution and (b) the <M>,.-01
distribution of a three-span frame (r =0.03, /,=1) due to a random load
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(1) e=e== : =05 (1) ==c=- k=05
@ — : =10 @ — : =10
G --- i =12 G --- : =12

Fig. 8 Comparisons of three /, values on (a) the <W>,.-a. distribution and (b) <M>,,w-0c distrbution of a
three-span Timoshenko frame (r = 0.03) due to a random load

greater ;. The shorter the column and the greater ®, implies that a shorter column induces a
more stiff frame. As this result indicates, the shorter column causes both less <W>, .. and <M>,.
within a low velocity range. Fig. 8(a) reveals that the frame with shorter columns has a larger o

_Figs. 9(a) and 9(b) display the effects of span number on the <W>, -0 distribution and the
<M>,,..-o. distribution of a multispan Timoshenko frame (I,=1) , respectively. The effect of
bending wave dominating the vibration of frame is more apparent for a higher span number.
Therefore, the higher the span number implies the more both <W>,. and <M>,, are
constrained within the neighborhood of the critical velocity. Furthermore, the higher the span
number of frame implies the closer . to the lowest phase velocity of bending wave is in the
structure.

(1) —— : 5 spans () — : 5 spans
2) emeee : 3 spans @ -ooe- : 3 spans
@) --- : 2 spans () -~-- : 2 spans

Fig. 9 Span pumber effects on (a) the <_I'f’>,,,a,-a distribution and (b) the <1\_/[>,,,ux-(x distribution of a
multispan Timoshenko frame (r=0.03, /, = 1) due to a random load
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7.2. White noise

The frequency domain of power spectrum of a white noise variance ranges from negative
infinite to positive infinite. Theoretically, all modes of the frame should be excited. However,
the magnitude of each modal amplitude depends on the loading time. A slow moving load
induces a longer duration of forced vibration. The frame is in the resonance with load at o= 0.
However, the load moves too fast to excite all modal responses at a high velocity ratio.
Therefore, Figs. 10(a) and 10(b) reveal that both oy, .. and G, .. are infinite at =0 and
exponentially decrease to certain values as o increases. The higher the number of span
implies a longer duration of forced vibration of the frame due to the moving load. The longer
duration of forced vibration induces the higher the number of excited mode. Therefore, the
higher the number of span causes a larger Gy, .. as indicated in Fig. 10(a). The number of
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Fig. 10 Span number effects on (a) the EW = distribution and (b) the E‘M na distribution of a multispan
Timoshenko frame (r = 0.03, [, = 1) due to a random load with white noise variance
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Fig. 11 Comparisons of two frame models on (a) the Ew_ ma-O¢ distribution and (b) EM -0 the distribution
of a three-span frame (r =0.03, /,=1) due to a random load with white noise variance
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column support increases as the number of span increases. Each column support produces a
countered moment on the beam. Therefore, the higher the number of span implies the higher
the number of countered moment. Consequently, Fig. 10(b) reveals that for any value of o as
the span number increases the G, .. decreases. _ _

Figs. 11(a) and 11(b) compare two frame models on the Gy, -0t distribution and the Gy e
o distribution of a three-span frame (/,=1) due to the load with a white noise variance,
respectively. Fig. 11(a) reveals that the shear deformation enlarges the oy, ,, of frame.
However, Fig. 11(b) indicates that the rotatory inertia reduces the Gy of frame.

Three [, values on the Oy, .0 distribution and the Gy -0 distribution of a three-span
Timoshenko frame are compared in Figs. 12(a) and 12(b), respectively. The smaller /, value
implies the smaller mass of a frame. Therefore, both Gy, ., and Gy e Ar€ larger for a smaller
| value. Fig. 13(a) shows that the Oy, .. always appears at the middle of the second span
which has more flexibility than the others. The fixed ends always have the maximum
countered moment as displayed in Fig. 13(b).
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Fig. 12 Comparisons of three, /, values on (a) the Ew,,,“x-a distribution and (b) the B'M,,,,M—a distribution of
a three- span Timoshenko frame (r = 0.03) due to a random load with white noise variance
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Fig. 13 (a) The (;(W)(,-OL distribution and (b) the ()_( )o-0t distribution of a three-span Timoshenko frame
(r=0.03, I, =1) due to a random load with white noise variance
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7.3. Cosine process

The data /,=1 of a three-span frame is considered to study the velocity effect and the
frequency effect of load on the response variances of the structure. Figs. 14(a) and 14(b)
depict that the comparisons of three w,(=0.50,, 0.8w, ®) values on the Ow max-O
distribution and the Gy, ,..,-0 distribution of a three-span Timoshenko frame, respectively,
due to the moving load with a variance of cosine wave. Both figures reveal that the larger
@, of the variance has the smaller o of the frame. The smaller o, implies a longer
duration of load on the frame. Therefore, the larger ®, causes both the higher oy, ... and
Ou, mex- The moving load can be regarded as a steady state loading on the frame as o
approaches zero. The frame will be consequently in a resonant state for @, being the first
modal frequency of the structure at o.=0. The similar phenomenon occurs in a beam
caused by a moving random force (Fry'ba 1976). The duration of forced vibration

0 o — A ] 1 A i 1 A e " L
0 8 12 16 0 4 8 12 16
(a) X (b) X
M —— : G=0.5 ) — : =058
(2) =ovem : y=0.8 (2) wemee @ G=0.83
@) --=- : Q=1.0& @ --= : =10

Fig. 14 Comparisons of three —a—)o values of cosine variance on (a) the Em -0 distribution and
(b) the 0, ..~ distribution of a three-span Timoshenko frame (r = 0.03, /, = 1)
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) ~ -~ : D=1.0% G) --~ : G=1.00

Fig. 15 Comparisons of two frame models on (a) the EW, me-@ distribution and (b) the oy ,...-o¢ dis-
tribution of a three-span frame (r =0.03, /, =1) due to a load with cosine variance (e, =0.5w,)
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Fig. 16 (a) The (X’W)(,-a distribution and (b) the ()?M)c-oc distribution of a three-span Timoshenko frame (r
=0.03, /,=1) due to a load with cosine variance (@, =0.5,)

decreases as o increases. A short duration of forced vibration implies that the value of
cosine function will be independent of @, at a high o. Under this circumstance, the cosine
variance can be regarded as a constant variance at a high . This reason accounts for why
the difference between these three Gy, ..., as indicated in Fig. 14(a), is slight for a>13.
Furthermore, the less frequency difference of variance implies a less Gy, ., difference for
o=>13.

Figs. 15(a) and 15(b) compare two frame models on the Gy, -0 distribution and_the Gy, .-
o distribution of a three-span frame due to the load with a cosine variance (w,=0.5w,),
respectively. The first modal frequency of Timoshenko frame is less than that of the Bernoulli-
Euler frame. Therefore, @, is closer to the first modal frequency of Timoshenko frame than
that of Bernoulli-Euler frame. According to this reason, both absolute Gy, .. and G, .. of
Timoshenko frame are greater than those of Bernoulli-Euler frame. However, of Timoshenko
frame is less than that of Bernoulli-Euler frame. Both Figs. 14(a) and 15(a) or Figs. 14(b) and
15(b) reveal that the load's velocity effect on the tendency of Gy, .. -Q OF Gy .. -0 distribution
of the Timoshenko frame is similar. _ _

Fig. 16(a) reveals that the oy, ,,, of Timoshenko frame due to a cosine variance (@, =0.5@,)
always appears at the middle of the second span. The Gy, .. due to the same load occurs at
the fixed ends, as indicated in Fig. 16(b).

8. Conclusions

A multispan Timoshenko frame subjected to a moving random load is investigated
analytically in this paper. Results reveal that both maximum mean value and maximum
variance of transverse deflection always appear at the center of the middle span of the entire
beam. In addition, results also indicate that both maximum mean value and maximum
variance of moment always occur at one fixed end of the entire beam. The absolute
maximum mean value of transverse deflection occurs at the critical velocity. Both the
maximum variance of transverse deflection and that of moment of the entire beam due to a
load with white noise process exponentially decrease for an increasing velocity. A moving
load with a variance of cosine function does not induce serious deformations except at the
critical velocity. Furthermore, the larger frequency of the process implies a smaller critical
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velocity.
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