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Abstract. A coupling system for a structure accelerating through a fluid is considered which is
composed of the structure and the fluid in a finite surrounding volume. Based on the variational
principle, the finite eclement equations of hydrodynamic pressure and structural elastic vibration are
deduced. A numerical method is given for the dynamic character and response of the structure which
takes the coupled fluid into account. The effect of axial inertial forces on the dynamic character and
response of rapidly accelerating structures is also considered.
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1. Introduction

In the early 19th Century, study of the rocking vibration of ships brought about the rapid
development of the theory of fluid-solid coupling. Haskind (1946a, 1946b) was the first to
establish a linear fluid dynamic theory. His contribution was to resolve the velocity potential
of disturbance in the flow field into diffractive velocity potential and radiative velocity
potential within the scope of linearity. This became a classical method for dealing with fluid-
solid coupling.

Ursell (1949) used a multiple expansion method to investigate the boundary value problem
of the velocity potential to obtain the force exerted by a fluid on a harmonically vibrating
cylinder. The above methods form the foundation for the theory of fluid-solid coupling for
ships, but are limited to phenomenal or qualitative analysis. It was not until the early 1950's,
that substantial progress was achieved in analysing the interaction between ship and fluids, by
using a slicing method.

Korvin-Kroukovsky and Jacobs (1957) used the concept of slender bodies in aerodynamics
to propose an ordinary slicing method. A series of improvements followed, such as the
reasonable slicing method of Ogilvie and Tuck (1969), and the method of Salvesen, et al.
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(1970). These slicing methods are based on the assumption that the structure is slender. They
give satisfactory results for a large range of velocities of conventional ships (Blok and
Beukelman 1984), but are not accurate enough for high speed underwater vehicles. To account
for the effect of velocity and for the fact that the structure is actually three dimensional, a
unified slender-body theory was developed (Ursell 1962, Newman 1964) and was then steadily
improved (Newman 1978a, 1978b, Mays 1978, Newman and Sclavounos 1980, Sclavounos
1981, 1984, 1985).

Despite successful applications of the slicing methods and of the unified slender-body
theory, three-dimensional effects have attracted more and more attention due to the emergence
of new ship structures and higher speeds. The investigation of such effects was successful for
fixed offshore structures (Faltinsen and Michelsen 1974, Chang and Pien 1976, Korsmeyer et
al. 1988 and Kagemoto and Yue 1993). Work has also been reported for ships travelling at
conventional speeds (Chang 1977, Inglis and Price 1982 and Guevel and Bougis 1982). The
results obtained were closer to experimental measurements than were those obtained by the
slicing method, but were limited to the computation of three-dimensional flow fields, with no
allowance for coupling with the elastic response of the structure.

Hydroelasticity is an important field for research on fluid-solid coupling, in which great
progress was achieved in the 1970's (Bishop et al. 1973, Bishop and Price 1974 and Betts ef al.
1977). These authors presented a two-dimensional linear beam slicing theory, in which the
structure was modelled by a linear elastic Euler or Timoshenko beam and the flow field was
approximated as being two-dimensional (Bishop and Price 1979). Two-dimensional
hydroelasticity theory was also widely used in the 1980's (Bishop ef al. 1984 and Clark 1986).

Since the late 1980's, much research has been carried out using three-dimensional
hydroelasticity, including theory (Wu 1984) and applications (Lundgren et al. 1988 and Ertekin
et al. 1993). However, there is still a lack of reported research on fluid-solid coupling for
accelerating underwater structures. This paper addresses this shortcoming as follows.

An elastic structure accelerating through a fluid medium vibrates when it is subjected to
hydrodynamic load. Its vibration induces additional hydrodynamic load through its interface
with the fluid. This process leads to coupled fluid-structure response. The effect of axial
forces on the dynamic characteristics and response are optionally considered. It is difficult to
analyse such problems precisely, because so many complex factors are involved (Lamb 1920).
Therefore, this paper uses fluid mechanics, elastic mechanics and the variational principle to
derive engineering analysis methods.

2. Hydrodynamic pressure

The distribution of hydrodynamic pressure of an accelerating underwater structure is very
complex and the additional hydrodynamic pressure induced by structural vibrations is very
small compared to the total hydrodynamic pressure. Therefore, only incompressible fluid and
small amplitude vibrations are considered. Hence the hydrodynamic fluid pressure P satisfies
the equations
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oP _  du,

On §,: F p 3 (1)
where: V is the volume of surrounding fluid taken into account, see Fig. 1, which will be
looked at in more detail later and which shows a typical underwater plane beam and its finite
element mesh, for which V= 2IXIx0.1/; §, is the fluid-structure interface; S,US, is the
boundary of the fluid; P is a given hydrodynamic pressure; »n is a normal to the fluid interface
acting from the fluid to the structure; u, is the (normal) displacement along n and; p is the
density of the fluid.

The functional that corresponds to Eq. (1) is (Zienkiewicz 1977)

(] (5] (E]|d )

If the fluid region is represented by N, accelerating elements, which are assembled such that
the usual equilibrium and compatibility conditions of the finite element method are satisfied at
the nodes, then Eq. (2) may be written as

Ng
H=ZIL

2
oP oP oP 0 n
+|l== |+ dv + PdS 3
I = I Kax} (BY) [BZ]} I 8t2 @)
and subscript e represents a typical element of the fluid, e.g., see Fig. 2, which will be looked
at in more detail later and which shows a typical triangular element, taken in this case from

Fig. 1.
The hydrodynamic pressure in the fluid element may be represented as

P=Ngq, “)

where

e/}

e/}

Fig. 1 An underwater plane beam and its finite element mesh
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Fig. 2 A typical fluid element

and the normal displacement at the element interface may be expressed as
u, =Ns d,, %)

where N and Ns are interpolation functions defined in V, and on S, and q_  and d,. are
respectlvely the hydrodynamic pressure and normal displacement vectors at the nodes of the
element. After substituting Eqs. (4) and (5) into Eq. (3) and taking its stationary value, the
fundamental equation of a fluid element becomes

H.q =F,=-B.d, ©6)
where é,,e is the normal displacement acceleration of the node on the interface and

H. j[aNTiN+aNTaN+aNTa

oX oxX =~ dY oY ~ oZ oZ
Bs.=| N'pN;ds (7

“ne

NJ dv

By using the equilibrium requirement of hydrodynamic pressure and compatibility for an
accelerating structure, the fundamental equation for the whole fluid region may be assembled
as

HQ=F=-BD; )

where @, F and D s are vectors of, respectively, the hydrodynamic pressure of the nodes, the
equivalent node loads and the normal acceleration of the nodes.

3. The hydrodynamic pressure on the contact interface

Partitioning the hydrodynamic pressure of the nodes into three parts gives

(0
Q=0 ©)

where @, @, and @, are the hydrodynamic pressures of nodes, respectively, on the
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boundaries S, and S, and elsewhere in the fluid. Partitioning Eq. (8) accordingly gives

I!PP HP" HPV QI’ EP BP
0.
0.

The above equation can be solved when @, is given on §,. If S, is placed sufficiently far
from the structure, it can be assumed that the hydrodynamic pressure on S, has no influence

on the structure, i.e., @,=0. Therefore the above equation can be solved convenlently under
this assumption. Hence the fundamental equation for (), may be obtained as

I:INQn FN =—BND9

Ijnp I!nn an En - B” DS’
H, H, H F.| (B

ie.,
Q. =—H;'ByD; (10)

in which

F H, . H
By=B,—-H,.H.B, 11)
The Q,, which is needed to analyse the fluid field, may also be obtained as
Q. =H(F. ~H.Q.) (12)

4. Equivalent node load

Introducing a location matrix A,, the hydrodynamic pressure of the nodes on the structure-
fluid interface of the k-th element can be found from @, as

~k:[ékQ'l k=1, 27“"SE (13)

where S, is the number of structure elements in contact with the fluid. Then the
hydrodynamic pressure on the contact interface may be represented by

Py :NSkgk:NSkékQ”’ k=1,2,-,8 (14)

Applying a virtual displacement éu, normal to the contact interface and using Eq. (5) gives
the virtual work of P, as

6W=js SulP, dS =54H€ N!P.dS
nk Ynk

Assuming that the ordering of the equivalent node load vector F, is consistent with ¢ . and
that its directions are consistent with d,, gives

(SW:&Z:;(EE/(

Comparing the above two equations shows that the equivalent node loads may be obtained as
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Eek:j‘ N;Pkdsa k:1525.“’SE (15)
Snk

Similarly, assuming that the ordering of the equivalent node load vector F,, at all nodes on
the contact interface is consistent with @,, the location of each element of F,, in the F, may
be written as

EQk :‘ékTEeka k:11 27 .”’SE (16)

After applying Eq. (16) to every element on the interface, the equivalent node load induced
by additional hydrodynamic pressure may be calculated as

S S
Fy=Y Fu=3 AF, (17)
k=1 k=1
Substituting Egs. (15), (14) and (10) into Eq. (17) yields
Fo=-MpD; (18)

where M, is the additional water mass matrix given by
S,
M, - [254&4,(] H;'By (19)
k=1

where
L k= J. N sTkN Sk ds
Sk

A co-ordinate transformation is necessary before using Eq. (18) in the analysis of the
structure, as follows. L

A common global structural co-ordinate system (XY Z) and positive normal n, of a node A
located on the interface of the structure and the fluid are given in Fig. 3. The normal
displacement of node A may be written as

Upay=[cos(msX) cos(myY) cos(maZ))| v, |=Tad 4

Fig. 3 Structure-fluid system
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where (n, X ) represents the angle between the normal n, and the X axis, etc.
The ordering for all nodes located on the contact interface may be represented as

—u,, (])_ Il gl
Uy T, d,
_u"(g)J Z‘ 4 —4—8
which may be written as
DS = Aljs (20)

The node load and the normal acceleration of the node have the same transformation
relationship i.e.,
F,=AF,, D;=AD; 1)

Substituting Egs. (20) and (21) into Eq. (18) and introducing the well-known property of
the transformation matrix A, i.e.

AA =1
where I is a unit matrix, gives the equivalent node load vector in the global co-ordinate
system as
Fy =—MPbS (22
where
M, =A"M, A (23)

5. The dynamic equation of the structure

The discretized dynamic equations of the structure in the global co-ordinate system can be
written as

MD+C D+KD=F; +F, (24)
where M, C and K are, respectively, the mass matrix, damping matrix and stiffness matrix of
the structure, while D is the degrees-of-freedom of the nodes of the assembled structure. F
contains those parts of the node loads which are induced by additional hydrodynamic pressure

while F; contains the other node loads, which are applied directly to the structure.

D can be partitioned as
_ |Dy
D= D, (25)
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where the elements of D are called the moisture degrees-of-freedom, which are located on the
structure/fluid interface and D, contains the remaining dry degrees-of-freedom. Because the
order of matrix F differs from that of Fj, it is necessary to introduce

SUsthid

Le.,
Fy =-M;D (26)
Substituting Eq. (26) into Eq. (24) and rearranging gives
(M+M;)D+C D +K D=F; @

This is the fundamental dynamic equation for the structural analysis which includes the
influence of the fluid. For natural vibrations, Eq. (27) becomes

(M+M;)D+CD+K D=0 28)
If damping is not considered, Eq. (28) simplifies to

(M+M;)D+K D=0 (29)

In this paper, the subspace iteration method is adopted to solve the natural vibration Egs.
(28) or (29) and the method of superposition of vibration modes is adopted to solve the
dynamic response Eq. (27).

6. The effect of axial inertia forces

Consider an accelerating column of length / subjected to an axial force F at its end n, see
Fig. 4. The acceleration of the column is

a = —]\7 (30)

where M is the total mass of the column. If the column is divided into n elements and n+1
nodes, as shown in Fig. 4, then the axial inertia force on the i-th element may be

Ao
3

Fig. 4 Slender column in axial motion
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approximately defined as
m; .
FizFi_1+—F, l=1,2,"',l’l. (31)
M
where m; is the mass of the i-th element and F,=0, F,=F and M=2m,.

The effect of the axial force F, can be called the geometric stiffness matrix (Holand and
Bell 1972, Kabaila 1970). For example, for a plane beam element it may be defined as

(E symmetric
5
o2
10 15
ch:.Ili -6 -1 6 (32)
5 10 5
[ -r -1 207
10 30 10 15

Thus, the stiffness matrix K in Egs. (27), (28) and (29) is assembled by including all the
element matrices i.e., K becomes K+ K, where K; is the result of assembling all of the k.

7. Numerical examples
7.1. Example 1

Fig. 1 shows a plane cantilever beam of length L=2/ and width 0.1/ immersed in water and
with a global X-Y co-ordinate system. The water volume is taken as 2/Xx/X0.1] with
thickness A=0.1/. For the numerical calculations /=0.1m, the beam was divided into 2 plane
beam elements and the water region was divided into 8 plane triangular elements, giving the 9
nodes shown for the coupled structure/water system of which the first three are located at the
structure/water interface.

The cross-sectional area of the beam A=0.0002m> and its second moment of area J=—§— X

10 *m’. Young's modulus E=200 GN/m’, density p,=10* kg/m’ and the water density p=10’
kg/m’. Note that the values chosen here are only approximately correct for real materials,
having been rounded to convenient values to make the following calculations easy to follow.
Similarly, although the beam depth of 0.2/ (=0.02m) is quite large it has been treated as small
by the water finite element mesh of Fig. 1.

The k-th fluid element is used to illustrate the application of the method presented in this
paper, as shown in Fig. 2 with k=4.

The interpolations N and N are taken, respectively, as (Przemieniecki 1968)

N=[N; N; Nu]
M :(ai +b,X +C,Y)/2(4
a; :X] Ym _'Y]Xm’ bi =YI _Ym, Ci :Xm _X] (l.j.m)



622 Zhengxing Liu, F.W. Williams and A.K. Jemah

~NS :[Xt _X X —X\' ]/(Xt _Xv)
where A is the plane area of the triangular element. Eq. (7) gives H, and By, as

8 T a a T a
H =h —N' —N+—N — N |dxd
o L,CLa)r ox° " ay~) i’
b2 bb, bbm C: C.C, CCn

Bu=[ N'pNodS =220 [N X X-X]dX

St :

al‘thz'{" % (biX[ —ai))(f— % biXt3 _a,Xth +% (a, —Xs b,)Xt2+ % b,‘Xt3 1
h 1 1 1 1
= BL | @)X 2 0 X —a) X b X —a XXt 5 (@ =Kb) X+ 3 b XY
amA,tz + l (met _am)X'f_ ‘1— metZ _avath + l (am _Xs bm )Xt2+ l bmAX,S
I 2 3 2 3
aiX[Xy +% (b,AXt _ai)XSZ_ % biXs3 _aiXs2+—§‘ (a, —Xs b,‘)Xs2+ % b,'AXS3
axx e L ex-a)x Lo —a xS @ Kb T BX
an XX, + % (b X, —an) X2 - % boX® —anX?+ % (am —X, b)) X2+ % b X

Inserting numerical values into the above and treating the triangular elements in the order k=
1, 2, -, 8 enables Eq. (8) to be written (using the order Q,, @, instead of Q,, Q, for

- 250 =50 0 —-100 O 0 -100 0 O 7 [ 417
~50 500 -50 0 =200 0 0 =200 O 9>
0 -50 250 0 O —-100 0 O —100 ‘g
-100 0 0 125 -25 0 O 0 O 94
0 -200 0 -25 250 =25 0 0 O ds
0 0 -100 0 =25 125 0 0 O ‘q]‘;
~100 0 0 O 0 0 125 -25 0 7s
0 -200 0 0 0 0 =25 250 -25 a5

L 0 o0 -100 0 0 0 O =25 125 - L
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convenience) as

210

141

012
. |00o0]|d,
:‘—1;’—”000 d,»
000/{|d,

000

000

000

Because @, and @, are neglected in this example, so that @,=Q =0, Eq. (10) becomes

250 =50 0 fg] _ . [210 dny
~50 500 -50| |g,|=—-L 11 4 1]|d,,

0 -50 25095 012||d,
which has the solution
7, 103 70 7 11|dn
s =—£6 35 110 35 | ||d,,
qs 7 70 103|||d,,

which can be written as Eq. (10), i.e.,
Qn :‘f]IGlBNbs

It is obvious that the location matrices in this example are

100 010
A=lg 10l 4=001

By using Eq. (19), L., L, and M, are found to be

21 21 , [ 241 250 49
lh h plh
Ll:? 1 2] Lz:? 12| Me=75]250 580 250 (33)
49 250 241
and M, may be transformed to give
, 1540 0 O
M.=P% | o 1080 0 (34)
~ 216

0 0 540
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Fig. 5 Lateral vibration of underwater beam

which is called the lumped mass matrix of the fluid elements. This differs substantially from
the approximate expression often used in preliminary engineering design, i.e., (Lu 1992)

oo 100
M. =220 2 0|=pin?[0 2 0 (35)
001 001

Because the normal displacement d, at the interface with the fluid is coincident with the
node deflections v of the beam, a co-ordinate transformation is not needed for this example,
see Fig. 5.

The total set of degrees-of-freedom of the beam were ordered to give

D=[v,0,v,8,v, 6] (36)

The stiffness, compatibility and lumped mass matrices for the plane beam element are taken
from Przemieniecki (1968). Hence, by assembling all of the elements and using the boundary
conditions v,=0,=0, Eq. (29) becomes

24 0 -12 6l 312 0 54 -13]
E7| 0 8% -6l 2 2 p,A| 0O 8% 131 3P
P |-12 -6l 12 —6l| "™ | 420 | 54 131 156 -22i

6l 20° -6l 4l —131 -31* =221 4P

580 0 250 O v,
2 0 0 00 0
+ PR~ “|=0 (37)
216 |250 0 241 0 vy | T
0 0 0 0 0,

where the latter two matrices are the compatibility mass matrices for the beam and the fluid
elements. Hence the first three natural frequencies are readily obtained as £2,=3.154, £2,=20.
980 and €2,=80.737 where €, is the normalised natural frequency defined as Q=wL’

\ pbA /EJ , where @, is the i-th natural frequency of the beam.

Table 1 compares the values of €2, €, and € given above with those given by six other
methods. Except for the results of column 1, the results were all obtained by the finite
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Table 1 Normalised natural frequencies for first example, calculated by seven
different methods

Method
1 2 3 4 5 6 7

o 3.515 3.478 3.156 3.154 2.828 3.305 3.009
Q, 22034 21826 16250 20980 14.542 20.735 21.922
£, 61685 81.189 - 80.737 - 80.778 -

element solution presented in this paper but with the different assumptions listed below. Thus

columns 1-7 correspond to:

(1) an analytical solution in which the influence of the fluid is ignored (Lin and Qu 1989);

(2) the influence of the fluid was ignored and the compatibility mass matrix was used for
the beam elements;

(3) the influence of the fluid was again ignored but the lumped mass matrix was used for
the beam elements;

(4) the compatibility mass matrices were used for both the beam and the fluid (i.e., Eq.
(33)) elements (these are the assumptions which gave the values of Q,, £, and €,
given beneath Eq. (37).);

(5) the lumped mass matrices were used for both the beam and the fluid (i.e., Eq. (34))
elements;

(6) the compatibility mass matrix was used for the beam elements and the approximate
mass matrix of Eq. (35) was used for the fluid elements; and

(7) the lumped mass matrix was used for the beam elements and the approximate mass
matrix was used for the fluid elements.

7.2. Example 2

Fig. 6(a) shows an accelerating underwater uniform simply-supported beam subjected to a

central concentrated force P sin 8¢, with P=10N and 6=0.01/s, and to a constant axial force F

at its end. (The simple supports and F could result from the beam being attached to a parent
structure which is accelerating with acceleration a parallel to the length of the beam). It has
length L=2 m, mass per unit length m=25 kg/m, Young's modulus £=200 GN/m’, moment of
inertia J=2x 10> m" and F=Lma, where a is the axial acceleration. The beam is uniformly
divided into the 4 plane beam elements shown in Fig. 6(b).

Psin6t

(@ (b}

Fig. 6 Underwater motion of a simply-supported beam, showing the mesh used: (a) a simply-supported

beam; (b) finite element mesh
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Table 2 Normalised natural frequencies and deflection for second example

Qian a/g
(1979) 0 0.1 1 100 -0.1 -1 - 100

In air Q 9.8700 9.8721 9.8722 9.8723 10.7990 9.8721 9.8720 8.7740
Q%' 394800 39.6341 39.6341 39.6342 40.2411 39.6341 39.6340 39.0207

Vv 2.105 2.080 2.055 2.050 1.725 2.055 2.060 2.580
In water € - 77211  7.7215  7.7216 84468 7.7115 7.7104  6.8625
Q - 30.8932 30.8947 30.8948 31.3671 30.8947 30.8936 30.4171

- 2.055 2.050 2.040 1.725 2.060 2.070 2.585

Table 2 compares the analytical solution of Qian (1979) for the beam in air with the results
given by the method of this paper with the beam in either air or water and with a=0, 0.1 g, g,
100 g, -0.1g, —g, or —100 g.

The acceleration of gravity, g, was approximated as g=10 m/s’ and the additional water
mass was represented by the approximate lumped mass method of Eq. (35). F was calculated
from a by using Eq. (30), £ is the normalised natural frequency and V' is the normalised
deflection amplitude at the centre of the beam, defined as

Q*:w,.lz\/p—’" and V' =Y~ %10
i EJ L

where @, is the i-th natural frequency and v, is the deflection amplitude at the centre of the
beam.

7.3. Example 3

Application of the theory to the free vibration and dynamic response of an accelerating
underwater missile.

7.3.1. Model

The outer shape of the missile is shown in Fig. 7. Its body is a slender and thin cylindrical
shell and the equation of the curve of the cowl at its head is known. The ratio of its length to
diameter is 6: 1. It is quite slender so that it can be modelled by a beam with varying circular
cross-section. Since the material and cross-section vary in the axial direction, and its head is
curved, the missile is divided into 17 elements in the axial direction. The cowl at its head

Fz Fz Fz Fz

———

N2 3456789 10111213 14 15 16 1718 X

Fig. 7 Finite element model of a missile
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Table 3 Dimensionless frequencies of free vibration

o @, @, @, @ @
in air 28632 30164 52197 62928 67.683 10423
underwater 14332  30.164 38795 52.197 55.598  70.848

involves 6 elements. This cowl contributes to the stiffness and mass matrices, and the head
part of the missile can be considered as a double-layered shell.
The material and geometrical properties of the elements vary within the following bounds:
v=0.3~0.33, E=11.9~210 GN/m’
Thickness 6=0.001~0.017 m
Second moment of area J,=/,=J,/2=1.755x 10 *~5.204X 10 "* m*

810 12 i4

-5 X{m)
*
-10 W, =38.795
-15
- 20 .
Third mode Wz Third mode Wz
(a) (b)

Fig. 8 Principal modes corresponding to @;, @, and @, for the missile: (a) underwater; (b) in air



628 Zhengxing Liu, F.W. Williams and A.K. Jemah

Table 4 Maximum internal forces in the missile

Axial force N, Shear force Q.

Value Position (m) Time (s) Value - Position (m) Time (s) Value Position (m) Time (s)

Bending moment M;

In air 716.958 3.461 0.61 21.166 8.548 0.61 35845 4.069 0.61
Underwater 692.020 3.461 0.61 12531 8.548 0.61 17.176 3.461 0.61
x*soo N¥ 800
700 700
600 600
500 X =3.461 (m) 500 X=3.461(m)
400 400
300 300
200 200
100 100
O™01 02036406566 07 001 0203 0.4 0506 07

T{s) T(s}
Axial force plot

Axial force plot

Q¥ *
z Q, 2{
0.5 I /
Ejjlllllll[lllllnlllll‘lllnllll |
O Q. 02 03 04 OS5 Op 07 OE 1 A . A 'q 0.7
- 0.5 T{s) -1E T(s)
-1 ..2:._
-1.5 -3k
X = 3.461(m F X=3.461(m)
-2 -4f
-2.5 3
Shear force plot Shear force piot
*
M 6p
af
2|
K OA 04 O5 06 07
-2¢ T(s)
_4;
-6f i
T 8F X =3.461 (m) 2sF 3.461 (m)
—lOi— = 3. m - : X =3. {m
- 12F C
3 - 35
- 14f r
_|6;— _45:_.
- 18k L

Bending moment plot

(a)

Bending moment plot

(b)

Fig. 9 Temporal variations of the internal forces at x=3.461m for the missile: (a) underwater; (b) in air
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NS oo NXs00
700 700:—
600k 600}
500 500}

400
300F

400F
300

200: T=0.61(s)

200
100 100F
[TV POV FOUR FOT TV O | E
S S N N O ™™ ™8 o 12 s
X (m) X {m)
Axial force plot Axial force plot

T=0.6l(s) T=0.61(s}
- B_
Shear force plot Shear force ptot
*
My sop
25
20¢
15

10 T=0.61{'s)

SE

o]
- 5'
-10
-15
-20%

Bending moment plot Bending moment plot
(2) (b)

Fig. 10 Axial distributions of the internal forces at 7=0.61s for the missile: (a) underwater; (b) in air

7.3.2. Frequencies and modes of the vibration of the missile moving in air or
underwater

Let the dimensionless circular frequency




630 Zhengxing Liu, F.W. Williams and A.K. Jemah

i

Fig. 11 Sign convention for the internal forces

be introduced, where L is the length, E is the mean_Young's modulus, J is the mean second
moment of area, p, is the mean mass density and A is the mean cross-sectional area of the
missile.

The first six values of @ of the missile accelerating in air or underwater are listed in Table
3, from which it can be seen that @, underwater is only one half of o, in air because of the
water/structure coupling. In contrast, @, is the same in both cases since it is a frequency of
rotational vibration, with the mass of adhering water neglected.

The first three principal modes corresponding to @,, @, and @, for both the in air and
underwater cases are shown in Fig. 8.

7.3.3. Dynamic response of a missile moving in air or underwater

Define the following dimensionless quantities:

NX* — N X , QZ* — Qz , My* — M v
AEJ AEJ AEJ
L’ L* L

where N, is the axial force, , is the shear force in the z-direction and M, is the bending
moment about the y-axis.

The maximum absolute values of N, Q. and M;, their positions (as values of x) and the
time of their occurrence are listed in Table 4. It can be seen that the coupling between the
water and the structure causes the maximum values of the internal forces (especially the shear
force and bending moment) to be reduced, but that it leaves the time of the occurrence of the
maximum values unaffected.

Fig. 9 shows the temgoral* Variatio*ns of N,, Q. and M; at x=3.461 m and Fig.* 10 gives thg
axial distributions of N, Q, and M, at T=0.61 s. The positive directions of N, Q, and M,
are defined as in Fig. 11, i.e., if a force vector or a moment vector coincides with the positive
direction of the corresponding coordinate axis, it is defined as positive, otherwise negative.

8. Conclusions

The first example was chosen to be very small and also artificial, so that it could be solved
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by hand to give more insight into the methods considered in this paper. The second example
is also small, but used a small computer program. However, several largely predictable
conclusions may be drawn from Tables 1 and 2, as follows: (1) the precision given by the
compatibility mass matrix is higher than that given by the lumped mass matrix; (2) because
so few elements were used only the lower order natural frequencies approach the analytical
solution; (3) the natural frequencies decrease when the influence of additional water mass is
considered, with the lower order natural frequencies being more affected than the higher ones;
and (4) the natural frequencies are increased by the inertial acceleration when it is positive, or
are reduced when it is negative.

Example 3 shows the capability of the method in dealing with the free vibration and
dynamic response of an accelerating underwater missile. Table 3 shows that the first
frequency parameter of the missile underwater is half of that in air, due to the water/structure
coupling, whereas the second frequency parameter is the same for the missile underwater and
in air as it corresponds to a rotational vibration, with the mass of adhering water neglected.
Table 4 shows that the water/structure coupling causes a reduction in the values of the
internal forces, while the time of the occurrence of the maximum values remains unaffected.
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