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Analysis of composite plates using various plate theories
Part 1: Formulation and analytical solutions

P. Boset and J.N. Reddyi

Department of Mechanical Engineering, Texas A&M University,
College Station, TX 77843-3123, U.S.A.

Abstract. A unified third-order laminate plate theory that contains classical, first-order and third-
order theories as special cases is presented. Analytical solutions using the Navier and Lévy solution
procedures are presented. The Navier solutions are limited to simply supported rectangular plates while
the Lévy solutions are restricted to rectangular plates with two parallel edges simply supported and
other two edges having arbitrary combination of simply supported, clamped, and free boundary
conditions. Numerical results of bending and vibration for a number of problems are discussed in the
second part of the paper.
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1. Introduction
1.1. Background

Most of the structural theories used till now to characterize the behavior of composite
laminates fall into the category of “equivalent single layer (ESL) theories . In these theories,
the material properties of the constituent layers are “smeared” to form a hypothetical single
layer whose properties are equivalent to through-the-thickness integrated sum of its
constituents. This category of theories have been found to be adequate in predicting global
response characteristics of laminates, like maximum deflections, maximum stresses,
fundamental frequencies, or critical buckling loads. The present study deals with a unification
and critical evaluation of various ESL theories in predicting global response characteristics of
a composite laminate. The following literature review forms a background for the present
study.

1.2. Review of literature
The subject of plate and shell theories continue to attract the attention of researchers

judging by the number of publications in this area. Beams, plates, and shells being among the
most common structural components in use today, their analysis is of considerable interest to
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engineers and scientists. The theories used for modeling laminated composite plates and shells
fall into the following three categories (Reddy 1997, 1990, 1989).

1. Equivalent Single Layer (ESL) 2-D theories

2. Layerwise (LW) 2-D theories

3. Continuum based 3-D theories

Since we will be primarily concerned with the ESL theories, the literature related to that
class of theories will be discussed in detail. The literature for layerwise and continuum based
theories will also be discussed briefly.

1.2.1. ESL theories

In the ESL theories, the displacements or stresses are expanded as a linear combination of
the thickness coordinate and undetermined functions of position in the reference surface

N
¢i(x,y,z)=) ox,y)zi, (i=1,2,3) (1)
j=0
where N, are the number of terms in the expansion. ¢/ can be either displacements or stresses.
This reduces the 3-D elasticity equations to 2-D equations in terms of thickness-averaged
forces and moments.

In all the assumed displacement ELS theories, the displacements and their derivatives (and
hence the strains) are continuous through the thickness of the plate. However, since the
constitutive properties of each layer are different, the stresses are discontinuous at the layer
interfaces. The principle of virtual displacements or the method of moments are used to
derive the equations of motion.

The simplest ESL theory is the Classical Laminated Plate Theory (CLPT) (Timoshenko and
Woinowsky-Kreiger 1961), in which the transverse shear and normal deformations are
neglected. The classical plate theory was originally developed for homogeneous isotropic plates
and was later extended to laminated composite plates. Laminated plate theories based on CLPT
can be found in the works of Lekhnitskii (1981), Stavsky (1961), Reissner and Stavsky (1961),
Dong et al. (1962), Bert and Mayberry (1969), and Whitney and Leissa (1969). The CLPT
underpredicts deflections and overpredicts natural frequencies and buckling loads.

The simplest theory to take into account transverse shear deformation is the First Order
Shear Deformation Theory (FSDT). This theory accounts for linear variation of inplane
displacements through the thickness:

u(x,y,z)=ulx,y)+z¢(x,y)
uL(x,y,z)=vx,y)+zo(x,y)
u3(x’y’z)zw(x’))) (2)

where ¢, and ¢, are the rotations of a straight line in the xz and yz planes. In FSDT, the
normals to the midplane remain straight, but not necessarily normal, to the deformed surface.
Although the particular nomenclature, “first order shear deformation theory”, was introduced
by Reddy (1985), the original idea can be found in the works of Basset (1890), Hildebrand et
al. (1949), Reissner (1945), Hencky (1947), and Mindlin (1951). Another early paper which
included shear deformation effects in homogeneous plates was due to Uflyand (1948).
Attempts were first made to include shear deformation in non-homogeneous plates by Stavsky
(1960), Ambartsumyan (1969), Yang et al. (1966), Whitney (1969), and Whitney and Pagano
(1970). FSDT gives a state of constant shear strain through the thickness of the plate.
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However, according to 3-D elasticity theory, the shear strains vary at least quadratically
through the thickness. The so-called shear correction factors were introduced to correct for the
discrepancy in the shear forces of FSDT and 3-D elasticity theory. The value of the shear
correction factors depend on the constituent ply properties, lamination scheme, geometry, and
boundary conditions, among others (Bert 1973, Whitney 1973, Chatterjee and Kulkarni 1979).

Higher order shear deformation plate theories are those in which the displacements were
expanded upto the quadratic or higher powers of the thickness coordinate (see Nelson and
Lorch 1974, Sun and co-workers 1971, 1972, 1973, Librescu 1975, Jemeilita 1975, Schmidt
1977, Krishna Murty 1977, 1986, 1987, Lo et al. 1977, 1978, Levinson and co-workers 1980,
1983, 1983, Murthy 1981, Reddy 1984, 1987, Bhimaraddi and Stevens 1984, Di Sciuva 1984,
Stein 1986, and Tessler 1991, 1991). The third order theory of Reddy (1984, 1987), referred
to as the Special Third Order Theory of Reddy (STTR), is based on the displacement fields
used by Vlasov (1958), Jemeilita (1975), Schmidt (1977), and Krishna Murty (1977) for
isotropic plates. Reddy (1987, 1997) extended the theories in Reddy (1983, 1984) to include
geometrically nonlinear effects.

Higher order theories with similar displacement fields were developed by Levinson (1980),
Murthy (1981), and Bhimaraddi and Stevens (1984). Schmidt (1977) also accounted for
nonlinear strains. However, Schmidt and Levinson used the equilibrium equations of the first
order theory, while the stresses are evaluated using strains associated with the higher order
displacement field. Murthy also used the same approach to obtain the equations of motion.
Such equations are not consistent with the principle of virtual displacements. Krishna Murty
(1987) suggested that the transverse deflection be split into two parts, one due to bending,
and the other due to shear. A similar representation was given in the 1960s by Huffington
(1963) for beams. Of all the higher order theories, Reddy (1984) was the first to obtain the
equilibrium equations in a consistent manner using the principle of virtual displacements. This
gives rise to self-adjoint equations, and the type and form of the boundary conditions fall out
uniquely. Lewinski (1986) investigated the mathematical aspects of the theories, while Bielski
and Telega (1988) presented the existence of solutions to Reddy's nonlinear theory (1987).

Lo et al. (1977, 1978) proposed a high order theory in which the inplane displacements are
expanded upto the cubic power in z, and the transverse displacement is expanded upto the
quadratic power in z. The theory will be referred to as the General Third Order Theory
(GTOT). Reddy (1990) developed a modification of Lo's theory in which he accounted for
the zero transverse shear stress conditions at the top and bottom of the plate. This theory will
be referred to as the general third order theory of Reddy (GTTR). It also takes into account
the stretching of the transverse normals. Analytical and finite element solutions of this theory
(in a slightly modified form) will be carried out in the present study. GTTR contains as
special cases STTR, FSDT, and CLPT. The displacement field for GTTR (in its unmodified
form) is

_ 1 al//q N 1 891 4 aw
ul—u+z¢]+22( > o ]+Z» 3 + e {¢>,+ ax]
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Uz=W +ZYhs+220, 3)

Analytical solutions of the CLPT were developed by Whitney and Leissa (1969), and of
FSDT by Whitney (1969, 1987), Bert and Chen (1978), Reddy (1984), Reddy and Chao
(1981), Reddy, Khdeir, and Librescu (1987), and Chaudhuri et al. (1989, 1992). Analytical
solutions of the higher order theories are due to Levinson and Cooke (1983), and Khdeir,
Reddy, and Librescu (1984, 1985, 1987, 1988, 1989).

Numerous finite element models of the theories have been put forward. Of these, only a
few representative contributions will be mentioned. For the first order theory, they include the
work of Hughes and co-workers (1977, 1978), Hinton and co-workers (1979, 1984) and
Reddy and co-workers (1979, 1980, 1983). Hughes et al. (1977) suggested reduced
integration for shear terms to prevent “locking”. A C’ penalty finite element formulation was
developed by Reddy (1979) that explained the use of selective integration in evaluating the
stiffnesses associated with transverse shear deformation. For the third order theories, Phan and
Reddy (1985), Ren and Hinton (1986) developed displacement finite element models of
Reddy's special third order theory (1984), which we refer to as STTR. They used C'
interpolation functions for the transverse displacement, and C" interpolation functions for the
other displacements. Averill and Reddy (1992) analyzed plate finite elements based on STTR
and FSDT for distortion sensitivity, accuracy, reliability and efficiency. Putcha and Reddy
(1986) developed a mixed finite element formulation of STTR. Doong (1987) used the
general third order theory (GTOT) of Lo ef al. (1977) to study the stability and vibration of
initially stressed thick plates. Other finite element models are due to Ren (1987), Di Sciuva
(1986), Engblom and Ochoa (1986), and Kant and co-workers (1982, 1988).

In the stress-based theories, the stresses are expanded as a linear combination of z and
unknown functions of the inplane coordinates. A stress-based formulation was first presented
by Reissner (1944, 1945, 1947). He assumed linear variation of the inplane stresses through
the thickness. The transverse stresses were obtained from the equations of equilibrium,
which were in turn, derived using the principle of virtual forces. Other stress formulations
are due to Panc (1964, 1975), and Kromm (1953, 1955). Gol'denveizer (1958, 1962)
generalized Reissner's theory by replacing the linear distribution of stresses through the
thickness by a distribution represented by an arbitrary function. Salerno and Goldberg (1960),
and Voyiadjis and Baluch (1981, 1988) also presented theories which were modifications or
extensions of Reissner's theory to composite plates. Pryor et al. (1970) conducted a finite
element analysis of Reissner's theory.

Although rarely used, a mixed formulation where both assumed displacement and assumed
stress expansions are used was presented by Reissner (1961, 1976). The governing equations
are obtained using the mixed variational principle. Other works in this area are by Pagano
(1978), Reissner (1984, 1986), and Putcha and Reddy (1986).

1.2.2. Layerwise theories

In the ESL theories, due to the single displacement expansions through the thickness of the
laminate, the transverse strains are continuous through the thickness. When the laminate is
made of layers of dissimilar materials, the ESL theories do not give very good results. The
same is true when it comes to accurately modeling local phenomena like delamination. In
such cases, piecewise stress/displacement approximations in the thickness direction have been
used in some theories. They are called layerwise theories, or are sometimes referred to in
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literature as discrete layer theories; see Reddy (1997). The layerwise plate theory expanded
as a linear combination of known layerwise continuous functions of the thickness coordinate
¢/(z), and undetermined functions U/(x, y):

w ey, 2)=ule,y)+ Y U ) 0)()  (1=1,2,3) @

where N, is the number of subdivisions (hypothetical layers) through the thickness. The
approximation in Eq. (4) can be interpreted as the global semi-discrete finite element
approximation of u;s through the thickness. In that case, ¢/ denote the global interpolation
functions (they are piecewise continuous functions, defined only on two adjacent layers), and
U/ are the nodal values. On appropriate selection of the value of N, a lamina can have more
than one element, or several laminae can be included in one element.

A number of other layerwise theories have been proposed. Yu (1959) and Durocher and
Solecki (1975) considered the case of a three-layer plate. Mau (1973) used the first order
theory with layerwise generalized displacements. Rehfield and his colleagues (1982, 1983)
advanced a layer-wise assumed stress theory, where the layer-wise stresses are expressed in
terms of the stress and moment resultants using CLPT. Murakami (1986), and Toledano and
Murakami (1987) based their work on Reissner's mixed variational principle. Legendre
polynomials were used for the stress and displacement expansions. Seide (1980) also derived
a theory for layer-wise linear displacements. Librescu (1975, 1976) presented a multilayer
shell theory which included geometric nonlinearity. Pryor and Baker (1971) presented a finite
element model based on linear functions on each layer. Hinrichsen and Palazotto (1986) used
an idea similar to Reddy's GLPT (1984), but used cubic spline functions to account for the
thickness variations. Other publications which fall into the category of discrete layer theories
are due to Epstein and co-workers (1977, 1983) and Owen and Li (1987).

1.2.3. Continuum based theories

A 3-D elasticity solution for simply-supported homogeneous isotropic plates was presented
by Vlasov (1957). Later, with the development of composite materials, there was increased
interest in the accurate prediction of the response characteristics of composite plates. Analytical
solutions to the bending, free vibration, and stability of laminated plates were presented by
Srinivas et al. (1966, 1970, 1970, 1973), Pagano (1969, 1970), Lee (1967), Jones (1970),
Pagano and Hatfield (1972), and Seide (1975). Lee and Reismann (1969) studied the dynamic
response of rectangular plates. Noor and Burton (1989) and Savoia and Reddy (1992)
presented analytical solutions for bending and free vibration problems of rectangular
multilayered anisotropic plates. Finite element three-dimensional models were developed by
Putcha and Reddy (1982), and Liou and Sun (1987). The finite element modeling of 3-D
theories is cumbersome, especially if one is dealing with transient or nonlinear problems.
However, the analytical 3-D elasticity solutions are useful for the purpose of comparison with
results obtained from other analyses performed using less rigorous theories.

1.3. The present study
In the present study, we shall develop a unified third order theory and evaluate the

performance of some displacement based ESL theories in predicting deflections, stresses, and
natural frequencies in laminated composite plates. The theories considered here are the
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classical laminated plate theory (CLPT), first order shear deformation theory (FSDT), the
special third order theory of Reddy (STTR), the general third order theory of Reddy based on
(1990, 1995) which includes transverse normal stresses (GTTR), and the general third order
theory proposed by Lo et al. (GTOT); GTTR can be obtained from GTOT by imposing the
condition that the transverse shear stresses by zero at the top and bottom planes of the
laminated plate. In this study, all commonly used assumed displacement, single layer theories
are unified as special cases of the general third order theory of Reddy by the introduction of
so-called “tracers”. By assigning different values to these tracers (0 or 1), one can obtain the
displacement field for either GTTR, STTR, FSDT, or CLPT. While this kind of unified
kinematical relations have been presented before (1990, 1995), what is novel about the
present study is that the equations of motion, analytical solutions, and finite element models
have been derived for the comprehensive unified theory.

2. Governing equations

2.1. Introduction

In this section, the kinematical relations, constitutive equations and the governing equations
of motion are presented. As stated in the Section 1, an effort is made to develop a
comprehensive theory, which encompasses all the lower order theories. The lower order
theories can be obtained from the unified theory by changing the values of the tracers.

2.2. Lamina constitutive equations

The linear constitutive equations for the k-th orthotropic lamina are given by

o] [ChChpCy0 0 07 (8
o, C,, C;, Cr 0 0 0 &
o Cly Coy CH O 0 0 &
o, [0 0o 0o cLo0 o0 £ ®)
o 0 0 0 0 CLO0 £
o, ~0 0 0 0 0 C,- |&

In the above equation, the coordinate system is the principal material coordinate system.
However, in general, the coordinate system of a problem will not coincide with the material
coordinate system. Hence it is necessary to determine the elastic properties with respect to the
(x, ¥) (problem) coordinate system when the elastic stiffnesses are known relative to the (x', y")
(material) coordinate system.

In the laminate coordinates the stress-strain relations can be written in matrix form as

o FCuCp C3 0 0 Ci| (g
02 ChuCp €3 00 Cy &
O3 - Ciy €y C3 0 0 C & )
o, 0 0 0 Cu Cy 0 &
Os 0 0 0 C4h Cs5 0 Es
O, L Cip Coo Cag 0 0 Cood &
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where the components C,; of matrix [C] are given by (c=cos6, s=sin6)

C=Cic4+2¢25C 1y +2C 45 )+ C 15
C=c35YC,, +C —4C )+ C (' +5%)
C13=C 502+ C 82
Cro=cs[C11c2=C 52— (C 1y +2C 6 )(c* —52)]
Cn=Cp54+207sYC 1, +2C o)+ C e
C13=C 1352+ C 52
Cars=cs[C 52— C 12+ (C 5 +2C o6 )(c* —52)]
C33:C3,3, C36:CS(C1,3 _C2’3)5 C44:C~;4C2+C5,5 52
Cis=cs(Cy —Css), Cs5=Cyys2+Cos 2
Ce=c25%C 1 +Cr —2C ) HDgs (¢’ —52)
A plane stress state is one in which the out-of-plane stresses are neglected. For a lamina in
the (x, y) plane, this is defined by setting
0.=0 7,=0 T.=0 (8)

For a lamina of constant thickness and made of an orthotropic material, the plane stress
constitutive equations in the laminate coordinates are

O, Qun Qi Qs &

O =01 0» 0x| & &)
Os Qm Q26 Q66 &
and
Gy Qu Q| (&
{0'5} - Qus QOss {85} (10)

where Q; are the transformed reduced stiffnesses. The relations between the Qs and the Q,—,-'s
are exactly the same as the relations between their counterpart C;s and Cj;s in the 3-D stress
state.

2 3. Kinematical relations
2.3.1. General third-order theory

We consider a general third-order laminated plate theory in which the inplane displacements
(uy, uy) are expanded upto the cubic term in the thickness term z, and the transverse
displacement u; is expanded upto the quadratic term in z. This is done to take into account the
parabolic variation of the transverse shear stresses through the thickness of the plate.

ux,y,z, t)=ux,y, t)+zd:i(x,y, 1) +z295(x, y, 1) +236,(x, y, t)
uxx,y,z,)=v@,y, t)+z¢,(x,y, t)+z2ys(x,y, 1)+230(x, y, t)
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(1)

where u, v, w, ¢, &, ¥, ¥, y;, 6, 6, 6; are unknown. Here (u, v, w) denote the
displacements of a point on the mid-surface of the plate (z=0). ¢, and ¢, are the rotations of
the transverse normal in the xz and yz planes. The term y; can be interpreted as the stretching
of the transverse normal. For the remaining higher-order terms, a physical interpretation is not
immediately apparent, but can be taken to the higher-order rotations or extensions. Lo et al.
carried out an analytical investigation on the behavior of elastic plates based on the general
third-order theory given above.

A number of special cases can be derived from the above theory:

* If we assume that the transverse normals are inextensible (y;=0, 6,=0), the number of
unknowns reduce to nine. In this case, the plane stress assumption may be used.

*» A third-order theory in which the second-order terms are neglected (y,=0, y,=0, y;=0).
The number of unknown functions are eight.

* A second-order theory in which 8, and 6, are set to zero. In this case, there are nine
unknowns. An extension of this is when, additionally, 6; is set to zero. If we incorporate
the transverse normal inextensibility condition, then y;=0, and the number of unknowns
are seven. For this case also, the plane stress reduced stiffnesses can be used.

» A theory in which the inplane displacements (u,, u,) are expanded upto the linear power
of z and the transverse displacement (i) is expanded upto the quadratic power of z.

* A class of theories in which the transverse shear stresses (

0,., O,,) are made to vanish on

the top and bottom of the plate (z=+h/2). This class of theories will be discussed in a
susbsequent section.
The linear strain field for the general third order theory is obtained from the strain-

displacement relations as
0 1 (2 3
& £ e & &
& 82(0) 82( 1) £ (2) £ (3)
€ £® M £ o
= dB Lz 18 L4208 g S (12)
e £ e £ e
& o e £9 0
2 3
& " gln £? ey
where
0= _a_Li, = % e@= %’ co= 90
Yoox” Y ox Yoox T
£0= Voo 9 o W 596
oy’ oy’ eyl 9
Y y Y y
eV = l//, eN=20, =0, =0
1A 89
8(0) ¢2+ , 8‘51):21,/24_ _a_l/,;’ (2) 392+ _ 2 84(3):()
aW aw; 89';
O+ M = 9Ys  eo= 3=
eV=¢, + o & =2y + o & =36,+ eP=0
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au aV a(pl a¢2 all/l al//2 891 802
V= —+—, gW=—"+—"—" eP=—"-+—", ePV=—ou+—" 13
S 9y ox’ °  dy  ox oy ox ®  dy  ox (13)
2.3.2. General third-order theory of Reddy

The displacement field for the general third order theory of Reddy (GTTR) will be derived
in this section. In a particular lamina, the transverse shear stresses are given by (see Reddy

Oy Qu Qus| (& 14
os[ | Qs QOss| |& (14)
If the transverse shear stresses o, and O; are to vanish at the bounding planes of the plate (at
z==+h/2), the transverse shear strains €, and & should also vanish there. That is

1990, 1995).

h h
&[x,y,-ajzes[x,y,-—z—]:() (15)
which imply the following conditions
1 alllz 1 | 803 4 Bw ]
== 6=——— | — 4+ — + —
T2 o’ Y 3o K (‘pl ax]
1y 136 a(  aw)]
= ——, Oh=——|—+—5|ht+t— 16
Putting the above conditions in Eq. (14) leads to the following displacement field
=u+z0,+22|- = — |+ - —+ 5|+ —
ui=u 2o Z( 2 ax) ‘ 3)ox A e ox
1 oy 1 | 96: 4 ow
u2=v+z¢2+zz[—3 ayqj+z3 —g -j-f'ﬁ( 2+§y—J
Urs=w +Zl//3+2203 (17)
In order to simplify the analysis, the following substitution is made:
¥ (18)

C:93+FW

The introduction of { prevents the occurence of redundant boundary conditions in the
equations of motion. It also simplifies the finite element modeling using this theory.
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The number of variables requiring C' continuity is reduced from three to two. Also, at this
point, we introduce some parameters called tracers into the displacement field of Eq. (17). As
these tracers assume different values, the displacement field reduces to different special cases.

_ .
4 1 Jys 1 o
u,=u-+z 1—%;[—2—] ¢]+/'lz-[—5 BZj+yZ}[—?§x£j

BN RO 1 f YOG N7 TN (I B
u2—v+ztl X3(hj ¢2+122( > ayj+yz3[ 3 ayj

ugzv; +zys+z2Al-cw) (19)

where ¢,=4/h’, and y, A and 7y are tracers. The different theories that can be obtained by
assigning different values to the tracers are

* Classical Theory (CLPT): y=A=y=0, ¢,=—dw/dx, ¢,=—dw/dy

« First Order Shear Deformation Theory (FSDT): y=A=y=0

« Higher Order Shear Deformation Theory (STTR): y=1, A=0, y=1, {=cw

s Third Order Theory which has provision for transverse normal stresses in its kinematics

(GTTR): y=A=y=1
The strain field associated with the displacement field in Eq. (17) is of the same form as in

Eq. (16) with the strain components
2
w9 o AIW 1 { o0 99, +y CJ

0 —
&=

ox ! ox ! 2 ox2’ ! ox Ox?2
v o, A v ¢2 C
0 9V no %2 2 (3):_
82 ay , 82 ay ’ 82 > ay2 ’ 2 +vY

ow * :
£0=¢,+ a—;‘:, eM=0, £(2>——c,[x<p2+y 5 ) eM=0
eV=¢+ aa_;v eV =0, s(z)——cl(x¢,+ya—} eP=0
du | dv d¢; . 99, CA
0 — H__rt , 77 [e3)
&=t 8T T & A ey
d¢ 99, 9’
@ A A )
&3 ["C'( oy | ox ]”y 3x dy @9

2.4. Laminate constitutive equations
First we define the overall laminate stiffnesses A;, B;, D, £, F;, G; and H,.

(AUaBljaDtj’EijaFija Gi]’ )+J C(k)(l 25 22 Zg 24 Zq zﬁ)dz
(i,j=1,2,3,4,56) (21)
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If we write the A;, B, etc., in terms of the ply stiffnesses C,-j(") and the ply coordinates z, and
Zis1, We have

1
l]’Eij7Fij7 Gif’Hij):_zC(k)(Zk+1 an) (n:1,2, 3, 4, 5, 6, 7) (22)

k=1

A;,B;,D

ijs

For the plane stress case, we substitute the C;“’s in the above equations with the plane
stress reduced stiffnesses Q) G . Next, the stress resultants N, M, P, S, are defined.

VoM PLS)=[" 6.0, 2,22, 29d2 =Y [ oW (1, 2,22, 29 dz (23)
~h/2 k=1 2k

If we write Eq. (12) as
{e}={eD +z {eV} +22{e®} +23{} (24)

then from the constitutive relations and the above equation, the stress resultants can be written
in compact form as

wy [1a1 8] 0] E]] [t}
3| |81 0] [E] [F1] {e")
Py T|p1 [E] [F) [G1] e} @5)
sy |1 1F] [G] [H]| |4}

For cross-ply laminates, the plate stiffnesses can be simplified. The 16, 26, 36, and 45 terms
are zero. Also, for symmetric laminates, B,=F,=G;=0, and for antisymmetric cross-ply
laminates, B,=B=FE,=F =G ,=G=0.

We introduce the following plate inertias:

N Zy
(117]25 13, 14’ 15’ 16, 17)=2Jk lp(k)(l,z’zz’ 23, 24’ 25, 26)dz (26)
k=1 %

If the material for all the layers are identical, that is if the density p* is the same for all &,
then we have

1,=1,=1,=0
L=ph, Li=—ph’, Ii=- ph® I,=—1 pn’ @7
12 80 448
2.5. Equations of motion
The Hamilton's principle for an elastic body is
[ @U +8v-8K)dt =0 28)
y

where OU is the virtual strain energy, 8V is the virtual work done by external forces, and 6K
is the virtual kinetic energy:

oU = H (G, ;) dz dx dy

~h/2
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=] (N, +M; 8¢+ P, 862+, 8e) dz dx dy
Q
8V == lq(x,y)dus] dx dy

5K:J IM p(w; du;) dz dx dy i=1,2,..,6. j=1,2,3.
/2

Q"—h

For the general third order theory, we obtain the following equations of motion from (28):

Su agcl + agliﬁ =1 u+1,0,+1,y,+1,6,

Sv: agc" + aa]\;z =1 v+1,0,+1,y5+1,0,

Sw: ag; + 8;\)’}4 +q =1 w+I1,y+1,6,
S %1— + agi"’ —Ns=Lu+1¢,+1,y,+156,
50, agiﬁ + agiz N, =1y +1:0,+1,y,+1:6,
Sy: a;jcl + aaf;ﬁ —2M =1 +1,,+1y,+16,
Sy a;;(‘ + aal;z —2M =1 +1.0,+ 1y, +1:6,
Sy agi*‘ + agi“ ~Ns+q,=Lw+1,y,+1,6,
86, aai’ + aai“ —3Ps=1+1s¢,+1y+1,6,
56,: aai" + 8;;)2 3P, =1y +1s¢,+1y,+1,6,
56;: aais +%Py—4 —2M +q,=1w+1,y5+150;

where ¢ is the transverse load on the top surface and q,=qh/2, q,=qh’/4.

(29)
(30)

(1)

(32)

The primary variables (i.e., generalized displacements) and secondary variables (i.e.,

generalized forces) of the theory are

primary variables: u., Uy, W, On, Os, Yo, W5, Y2, B., O, 6.
secondary variables: Ny, Nug, N2, My, Mys, P, Pus, M, S, Sus, P

(33)

Proceeding in a similar manner, we use Eq. (19) and Eq. (20) in Hamilton's principle to get

the equations of motion for the special third order theory.

ON, ONg . —. A oy vy o
Lo = I — — 7 -1
ou ox * dy T+ If, 2 h ox 3 L ox
JONg ON, . = A 8%_1 %
bv: = o+ > DL R e 1)
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aNS + aN4 +2'}/C1M3"7C1 9‘& + aP4 +q :711/;14-3,?21]/3‘1'7;35
ox ay ox ay

X2 | =+ —=— |~ (Ns—xc\Ps)= 12“+13¢1—*14—_—I =

aSl aS(, - al//"; ’)/— ac
ox oy ox 3 ox

ox dy dy dy

ez
o[

CAl(oP, PP, P, Ay (ou v, A (96 99
oy —Z—Maxz +28x8y + 3 —2N;|+q,= I W + % 14 ™ + %

aM aS, oS — 9d — 3¢
2] Xcz{“—(,"' 2} Ny—xcPy)= 12V+13¢2_—I4 %"%Isg

o X [Ty Py ; PIE, I
+7LIzw+/11;1/A 1 [a -+ 3> +MI4C—— e +W
s FS, S du v 99, 9%
s¢ L L 226 1 922 ) oM. +q.=L 1, —+—+I 1
Cz‘“axfr xdy | oy I RE Rl PV ox oy
. ) 3 L s
+ Yl w+ Ayl oy, - M/Ie a% % + Y16 -+ LAY ”E‘)’g (34)
0x? 8y2
where
7~1=I]—ZYC113+_3/2C2[5, _12212—XC214
_ L=l-ycd,, 13:13—2)@2_1.5"'7(2‘1217
Ii=1;—yclds, 1,=1,—xc)e, Is=Is—yc:l;
c,=4/h*, c¢,=4/3h°, d,=c}, d,=c} (35)
The primary variables and secondary variables of the theory are

primary variables: u., us, W, ¢n, @5, Y5, aa . & ,8_4:
s Rz,

secondary variables: N, Nue, N., M, M, Q:, P, S (36)

3. Analytical solutions
3.1. Introduction

In this section, we develop the exact solutions of various theories for rectangular plates. An
exact solution satisfies the governing equations of the problem at every point of the domain
and the boundary conditions. Both the Navier and Lévy methods assume solutions in the
form of an infinite trigonometric series. In both cases, however, the series can be truncated
after a few terms to get a sufficiently accurate solution.
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Since we shall find out analytical solutions for the special third order theory and its
particular derivative cases, we write the equations of motion (2.37)-(2.43) in terms of the
displacements. We shall consider the case of symmetric and anti-symmetric cross ply plates in

which all the laminae are of the same material. The equations of motion in terms of
generalized displacements are:

ou:

— 2 az a 82 a 1 83 3
A“%“‘”a By A, B a(pl +2B”y[gf aﬁf] 7 g
1L Py &6 o Fu v Py

2 Py T3 E ["Cl 2 T | G T anay | T ey
o 2
=1ii= 5 Al alf (37)
ov:
o’u v s, o’u 9% oy, ¢,
A(’ﬁ[axay * 8x2j AD 0x dy? tAngay ox dy tAngs dy? AT ay tBa ady?
of w1l . O 1., dy 1 ¢, 2
+232}y(8y —a E)y] 2 AD. ox2y 2 AD: > 3 Eaa | xe, dy? +yay3
e 1, 0w
=1y 5 A, % (38)
ow:

S0, Pw ), (30, Fw) o (0 dw) o (9 ow
As (ax 32 j+A44( 3y + PE c\Dss| x E Y o2 c\Da| X dy +7 dy?

a‘Pl 82W 8(])2 o'w a¢1 o'w
—v¢iDss (a—x + I ] —yciD gy (a—y +Y Jy? + yeoF'ss Z—x +Y =

¢ 1 o’y 1 00 0¢
+27D33(§_C1W) AEn 2 _EAEBF);?_?FH XC1

0 2 — . o~
—%FB( | E)¢ +ygy§ﬂ+q:11w+yl3g (39)

09y
2 2 2 3
B“%%_MBB W p TO ., T (gg_ awj 1, P

ox ox?2 ox dy ox ' ox 2 M ok
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1 e ) 1 3’0, 9’ o ¢ ¢
‘?F“("‘“az”’axz T3 X050y T ey | TP e F ey

I’¢ ¢ ) 2 3¢ ou a9, 9’9,
Mf“@z+a@;‘§”“&@f“ nae T 5
9’9, o _oaw)_ 1., dw 1 Ie ¢
tRagny T2 [ax € ax) > Mg T H e 5o s

¢ o 7o, 70, 5.
- le (Zc: ox ay }’axay ]+F (ax? ox dy o o ' 0x oy
2 0
y ) aaag } . (¢1+—a—]+61Dss (pr,ﬂ/ = ]+ZC1DSS (tP] a:)

T
—xcoF ss [X‘pl +Y aaw ) 3¢1 -5 715 a_ (40)

0, 0’9, oI’¢, az¢2 2 9°¢
+D66(8x8y o e | 5 Yo |73 e g
2 2 2 3
Bzz‘é’)‘i"'23239£‘|”D1:z"——ad)1 +D22%+27D23 % o -1 2zayf
y y y y 2 0y’

¥ oy
1 0’9, ¢ 1 &¢ ¢ ’e I,
3 Fr (xcl 0x dy i oxy | 3 Faz | xe: dy? T dy3 2| Fos dx dy * ox?
az(pl az¢2 2 0’ 4 0%v s, 82¢1
~ Xt (axay * x| 3 e 0x2dy tEa dy? FAEs dy tFegy 0x dy

9’9, 14 ow 1 I’y 1 o’¢, 9°C
+Fy 3y +2YF 5 (@‘Clgj_awzzy“g 12 | XC 1 ox dy +yax23y

¢,
_%HZZ[Xla‘pz +Ya§]:| 44[¢2+_j+ch44[x¢2+y%W)

+xc1D (¢2+%‘5‘j XCoF 4 [Z¢2+?’— 1‘1’2'_ yI;—g—C (1)
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o'u oy o'vs ou o CRZ

+2D""(a 3y vy ] “ W wgar tPegg PP s TP
o'¢, EX4 ow) 1 dys 1 'y
+Ezz“a'y—3+27 23[5)’;“01 ayzj_i IZW_EAFBW

1 J’ o* d J
- — G22 (ch ¢2 +’)/5;}‘§_]j| _A[Alqa—.l;‘ +A233_;+M33%+Bl3‘§x“ +B23§y“

3 dy?
0’ 1 o’ 1 J 0’
+2'J/B33(§—C1W) _wm avf “EMB—ay_llf"‘?ElB (xcl%"'y_c]

a1y (a0, @
3E23(118 +Yay j:| Zﬂs[x‘l'ayj

) oy Fu.
+ XLy, — ),2 s ( 8;’/23 + 8;2 j (42)

1 o'u 0’ |78 agd)l a3¢2
?Y{E“ SR P e i L) I PR e

1 oy, 1 7o ) 1 0’0, o'
2 AG ox4+ 3 3 Hu 26 ox3 +y8x4 e Gl 0x 20y +y8x28y2
83 aS 83 83 4 4
+2F66[ (Pl + ¢2 ]_Zxd1H66( (pl + ¢2 )—g']/Hﬁﬁax—aza%;

oxdy?  0dx2dy oxdy?  ox2dy

83v a ll/s ag(p] a3¢2 82C azw
Ezz‘a_y‘;‘*'/'lEzsa, Flzaa2 +Fy Jy? +2YF 5 W_Cl

1 841113 1 ‘1’1 845: 1 83(2)2 a4C
“y Mag o e g Y T3 R X0 TG

0 0
—21{Bna +3238 + By + Dy —— 0 +D a(i +2yD 35(—cw)

ox oy ox

2 2
AEna"" L a%——l—Fm{% % ”ac]

ox: 27 P ogyr 3 ox | ox2

_1 %, ., 9 . 0¢ 99, , 99,
F23[xc]a +yay2 yay yI;w+ v ™ %

3
. R
+yIsC - ry vl [WCZ + WC;] (43)
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3.2. Navier solutions

We consider the cases of symmetric and anti-symmetric cross-ply rectangular plates which
are simply-supported on all sides. The dependent unknowns (u, v, w, ¢, ¢, ¥s, {) and the
load term g (in the case of bending analysis) are expanded in a double trigonometric series in
terms of unknown coefficients. The trigonometric functions of the series may be either sine or
cosine functions depending upon the particular boundary conditions of the problem. The
series expansions of the generalized displacements are then substituted into the governing
equations of motion. This results in a set of simultaneous algebraic equations in the
undetermined coefficients, which can be easily solved in the case of bending analysis. For
free vibration analysis, the substitution leads to a generalized eigenvalue problem, which can
be solved for the eigenvalues and eigenvectors. See Reddy (1997) for additional details.

3.2.1. Boundary conditions

The Navier solutions are developed for the following set of simply-supported boundary
conditions (for a rectangular plate of dimension a by b).

ux,)=u(x,b)=0, , Nyx,0)=N,x,b)=0,
v(0,y)=v(a,y)=0, , N,0,y)=Na,y)=0,
wkx,0)=wkx,b)=0 = w(,y)=w(a,y)=0,
O(x,0)=¢,(x,b)=0, , Myx,0)=Myx, b)=0,
¢:0,y)=¢xa,y)=0, , Mi0,y)=Ma,y)=0,

Y, O=ys(x, b) = ys(0,y)=ys(a,y)=0,

dor, 0)=4x,b) = {0,y)={(a.y)=0. (44)

3.2.2. Assumed displacements

The following displacement field satisfies the above boundary conditions.

u(x,y):i i Unn cos ax sin Py

m=1 n=1

v(x,y)=i i Vo sin ax cos fy

m=1 n=1

w(x,y):i i Wi sin ox sin By

m=1 n=1

¢1(x,y):i iXm,, cos oo sin fy

m=1 n=1

Oax,y)= Z Z Yo sin ot cos Py

ZY sin o sin Sy

MS It
Ms i

Wi(x,y)=

fx,y)=

—_

b3
I

_

Z, sin cxx sin Py (45)

s
M

=
H
il

where a=mn/a and B=nn/b.
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3.2.3. Bending analysis

The distributed transverse load g is expanded in a double trigonometric series

Q(X,Y)=iian sin oce sin fy (46)

m=} n=1

Where (,,, can be evaluated for different types of loading conditions. For example

(16q )/ (mn 1) for uniformly distributed load (UL)
™ = | (4P /ab ) sin(m n/2) sin(n 1/2) for point load at the center (PL) (47)

where m=1, 3, 5, --- and n=1, 3, 5, ---.
Substituting Eq. (45) and Eq. (47) into the static equilibrium equations of Section 2, for
each (m, n), we get a set of equations of the form

[S1{A}={F} (48)
where
{AY={Um Vir Wi X Yo Z 22} (49)
{F}={0 00000\ Q™ (50)
05 =0m(72),  QP=Qm(h’/4) (1)

and the coefficients §;=S; are given in Bose (1995).

Eq. (48) is solved for the undetermined coefficients (U,,, V,,, --- etc.) for each (m, n). The
actual displacements (u, v, -+ etc.) are then obtained from Eq. (45). Note that the equations
have been developed for the special comprehensive third order theory (GTTR). All the other

theories (CLPT, FSDT, STTR) can be obtained from GTTR by assigning different values to
the tracers.

3.2.4. Free vibration analysis

For free vibration analysis, we assume that the displacements are of the form

Gy ) | utey)
vy ) | | vy
wx,y,t) wi(x,y)
B,y )b =1 g0ey) b emion 52)

¢2(x,y,t) ¢2(x’y)
Wix,y, 1) Va(x,y)
fx,y, ) 8, y)

where @ is the frequency of natural vibration.
On substituting the above relations in the dynamic equilibrium equations of Section 2, we
get

((S1- w5, [M]){A}={0} (43)
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The coefficients M,=M, are given in Bose (1995). The above equations can be solved for
eigenvalues and eigenvectors for each (m, n).

3.3. Lévy solution

In this case, we consider a rectangular plate which is simply-supported at y=0 and y=>b. The
other two sides (x=—a/2 and x=a/2) can have a combination of free, clamped, and simply
supported boundary conditions. The generalized displacements are expressed as a product of
undetermined functions of x and known trigonometric functions of y. The trigonometric
functions (sine or cosine) are chosen such that the simply supported boundary conditions at y=
0 and y=b are identically satisfied.

3.3.1. Assumed displacements

We assume solution in the form

u(x,y)zi U, sin By
m=1

v(x,y)=i V.. cos fy
m=1

w(x,y)zi W,, sin By
m=1

9i(x,y)=Y X, sin By

m=]

$ax,y)=Y" Yu cos Py
m=1
ysx,y)=Y Z,Vsin By
m=1
Lo, y)=Y 2,9 sin Py (54)
m=I
where B=mm/b.

3.3.2. Solution technique

Unlike the Navier method, for the Lévy method, the solution technique is similar for static
and free vibration problems. The procedure will be described in the subsequent paragraphs.
First, the distributed transverse load q is expanded in a manner similar to the displacements.

q@x,y)=Y QOusinfy (55)
m=1
As before, 0, can be evaluated for different types of loading conditions.
(49,)/(m m) for uniformly distributed load (UL)
On = (2P /b)) sin(m 7/2) for line load along the centerline y =b /2 (LL) (56)

where m=1, 3, 5, ---.
Second, the time-dependent displacements are expressed in exactly the same manner as in



602 P. Bose and J.N. Reddy

the Navier method (see Eq. (52)). Of course, the generalized displacements u, v, --- etc. are
defined differently in this case. Substitution of this displacement field into the dynamic
equilibrium equations gives rise to a system of ordinary differential equations in x of the form
e Unte U +esV, e W, +eX, +eZ W +e.ZV +es 2P +e 2 =0
e, +e \Vute,V, +e Wy te Ynte s ZW+e 2V +e,ZP=0
e, +e WV, texWn+es W, ternX, +enYn+enZVvesZV +ey 2P +e,,Z@ =0
€U, +e W, +es3Xm +es X, +enY, +tenZV +euZ ) +ess 2 +e3, 2P =0
€3V +esxWn tesX, teyVn +eyY, +enZ,V+enZ?+euyZ? =0
eyU, +esU, +euVa eV, +eoWn +es W, +es X, +enX, +essVn +es, Z,"
tessZ\ tesZ\ te Z P +e s Z P +esZ Y + 0, =0
U, teaU, +enVm tegV, +euWn +esW, e X, +exX, +ewYn+ewZ
where
0,"=0nh72)  QP=0u(h’/4) (58)
and the coefficients e; are given in (Bose 1995). The primes over the variables indicate
differentiation with respect to x.
The next step is to modify Eq. (57) to make it suitable for the state-space approach. We try
to bring the highest powers of each variable to the left hand side and express it in terms of its
lower powers as well as the lower powers of the other variables. This will convert the set of

equations to a tractable form which can be solved by the state-space procedure. We introduce
a new set of variables

O Un
0, Un
0, Vi
6, Vi
Bs Wi
6 Wi
o, X
6 Xon
& | _ | Va 59
O Yo
Oy VAY)
Oy, AQ
O3 VA%
Oy A4S
O5 YA
o VA
Oy AS
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Eq. (57) is written in the form as described in the previous paragraph.

{e} =[A]{6} +{I'} (60)
were {I'} is the load vector after manipulation. Obviously, for a free vibration problem, {I'}
will not be present. The general structure of the matrix [A] and the vector {I"} are given in
Bose (1995). Their components are not written out explicitly since they are very long.
However, the actual effort involved in manipulating Eq. (57) to bring it to the form of Eg.
(60) is not too much. Note that the equations above have been derived for the comprehensive
case of the special third order theory (GTTR). The other theories, viz. CLPT, FSDT, and
STTR can be derived from GTTR quite easily. Also, the definition of @s change with the
different theories as do the form of [A] and {I"}, {©®} is given below for the different cases
and [A] and {I"} are given explicitly for CLPT, FSDT, and STTR in Bose (1995).

CLPT:
@l:U”H @2:Un;s @?:VWH @4:W”,,

O=W,, O=W,, =W, =W~ (61)
FSDT
0,=U,, ©,=U,, ©0,=V,, 0,=V., O,=W,,
0,=W,, ©&=X,, =X, O0,=Y., O,=Y (62)
STTR

6,=U., 6,=U,, 6,=V,, 6,=V,, 0=W,, =W,
@7 = W”:, @g = W”;", @g :Xm . @10 =X"; ) @“ = Ym 5 @12 = Y”,l (63)

3.3.3. State space solution and imposition of boundary conditions
The solution to the state space Eq. (60) is given by Franklin (1968) and Brogan (1985).

{60} =[e™1{K} +[e™] [[eE{T} d& (64)

where {K} is a constant vector which is to be determined from the boundary conditions of
the problem and [¢"] is given by

e 0
[e™]=[T] ; (1" (65)
0 e

and A, denotes the distinct eigenvalues of [A], and [7] is the matrix of distinct eigenvectors of
[A]. The value of n is 8 for CLPT, 10 for FSDT, 12 for STTR, and 18 for GTTR. The
second term on the right hand side of Eq. (64) is present only for bending problems.

Eq. (64) is then substituted into the boundary conditions associated with the two adges x=+

a/2. In the case of bending analysis, this results in a system of non-homogeneous equations
which can be solved for {K}

[PI{K}+{R}={0} (66)

The Kis can then be put back into Eq. (64) to obtain U,, V,, W, ---, etc.
In the case of free vibration analysis, we get a system of homogeneous equations
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[P1{K}={0} (67)
For a non-trivial solution, the determinant of [P] should be zero.
|P|=0 (68)

Eq. (68) gives the natural frequencies for each value of m.
3.3.4. Boundary conditions

The boundary conditions for simply supported (S), clamped (C), and free (F) at the edges

x==+a/?2 for the different theories are
CLPT
S:v=w=N,=M,=0
C: u=v=w=—a—y—:0
ox
oM oM
F:N1=N6:M1:( ~+2 “]:0 (69)
ox dy
FSDT
S' V:W:¢2:N1:M1:O
Ciu=v=w=0¢=0,=0
F: N]=N6:N5—M1—M(,—O (70)
STTR
S: V:W:¢2_N1_M]:S1:O
C: uzvzw-ﬂv——q)1 ¢,=0
oS AP
F: N,=N¢=|(Ns—cPs)+d, | = + =0
ox dy
M]ZSIZMﬁ—d1S6:0 (71)
GTTR

S: V:W:¢2=W3:C:N1=M]_P]:SI:O
d
Ciu=v=w=¢=0,=y5= —é:— § =0
F1: NI:N6:(N5—CIP5):M1:S1:(Mﬁ_' 1S6):0
o°P, dP, s, 9Ss
1 [ ox dy ] (Bx dy
F2: N|:N6=(N5_C1P5):0
M1=M6:P1=P6:S1286:0 (72)
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Note that two sets of boundary conditions have been given for a free edge in GTTR.

3.3.5. Computational aspects

Some computational problems encountered while implementing the Lévy method and their
suggested solutions are discussed here.

There are a multitude of methods avaliable for calculating the matrix exponential [¢"]. The
method which immediately attracts attention is one in which it is evaluated in the form of an
infinite series Chen (1984):

=W 1+A ]+ 5 AT+ 57 AT+ 73)

Although this procedure is easy to program and does not involve complex numbers, the
series will diverge if even one of the eigenvalues of [A] fall on the right half of the complex
z-plane.

The closed form expression for the matrix exponential follows from the Cayley-Hamilton
Theorem (1985). Due to the sparse nature of the [A] matrix, the matrix [P] in Eq. (66)
obtained after imposing the boundary conditions is often ill-conditioned and computer
overflow or underflow is a common occurence. This problem is overcome in the following
manner Nosier and Reddy (1992). Eq. (64) is rewritten in the form

eh* 0
{60)}=[T] ; [TT'{K}+[er] [[e»]{T} d &
0 eM

or

et 0
{6(x)}=[T] : {K}+[er][[e4]{I'} d& (74)
0 e
where {k }={T} {K}. In effect, we will be solving for {k } instead of {K}. After imposing
the boundary conditions, we arrive at an equation similar to Eq. (66).
[Q K} +{R}={0} (75)

But, in this case, the matrix [Q] is not ill-conditioned and can be easily handled. In the
bending case, after solving for {K'}, {K} can be obtained by

{K}=[T1{K} (76)
For free vibration problems, |P|=0, Eq. (68), implies
[[QIH{T}Y | =0
or |Q|/|T]|=0 (77)

However, it should be kept in mind that while, in the previous case, [P] and [K] were both
real matrices, after the transformation, [Q] and [K ] will, in general, both be complex.
In another scenario, difficulties might arise during the computation of the eigenvalues and
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eigenvectors of [A] since the diagonal elements of [A] are always all zero. This can be
circumvented by adding a constant non-zero number to the diagonal elements of [A]. The
eigenvalues of [A] can be obtained by subtracting the same number from the eigenvalues of
the new matrix. The eigenvectors are the same in both cases.

4. Conclusions

In this paper a unified third order theory of laminated plates is developed. All existing plate
theories can be obtained as special cases of the theories developed herein. Analytical solutions
using the Navier and Lévy methods are developed for cross-ply rectangular laminates.

Althogh the Lévy method is more general than the Navier method in its range of
applications, it has two limitations.

1. Two opposite edges of the plate have to be simply supported. In our case, the simple
supports are assumed to be at the edges y=0 and y=>b.

2. The shape of the loading function should be the same for all sections parallel to the
other two edges. In our case, the loading function should have the same shape parallel to the
y-axis.

But, the convergence of the Lévy solution is much faster compared to the Navier solution.
Thus, very accurate results are obtained with only few terms of the Lévy solution.

In the second part of this paper, we develop the finite element model of the plate theories
discussed here, and present numerical results for bending and natural vibration.
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