Structural Engineering and Mechanics, Vol. 6, No. 3 (1998) 339-345 339
DOI: http://dx.doi.org/10.12989/sem.1998.6.3.339

On boundary discretization and integration in
frequency-domain boundary element method

Tia Ming Fut and Toyoaki Nogamii

Department of Civil & Environmental Engineering, University of Cincinnati,
Cincinnati, Ohio 45221, U.S.A.

Abstract. The computation size and accuracy in the boundary element method are mutually coupled
and strongly influenced by the formulations in boundary discretization and integration. This aspect is stu-
died numerically for two-dimensional elastodynamic problems in the frequency-domain. The localized na-
ture of error is observed in the computed results. A boundary discretization criterion is examined. The
numer of integration points in the boundary integration is studied to find the optimum number for ac-
curacy. Useful information is obtained concerning the optimization in boundary discretization and in-
tegration.
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1. Introduction

Although the computation error in the boundary element method (BEM) can not be totally el-
iminated, it can be reduced to a certain level with elaborate treatments in boundary discretization
and integration. This, however, increases the computation size and thus the optimum degree of
elaboration should be defined in view of computation size and accuracy.

In the last decade, the self-adaptive technique has been developed to estimate the computation
error in the BEM analysis. The nature of multi-moment and multi-frequency in elastodynamics,
however, generally makes such posterior error estimation very difficult. Thus, more studies on
this technique are needed for practical use at the present time. Meanwhile, it is simple and con-
venient to establish the boundary discretization criterion in a manner that is often used in finite
element analysis. Du and Xiong (1987) conducted the numerical study on impedance of a cyl-
indrical rigid body in an infinite medium, in order to define a discretization criterion for two-di-
mensional linear problems in this manner. Such a criterion is dependent on element type and er-
ror evaluation index but neither were a part of their investigation. In the process of constructing
the coefficient matrices in BEM, signular and non-sigular boundary integrations are performed.
There are various spacial ways of evaluating singular boundary integration and the choice de-
pends on a fundamental solution, boundary geometry and element type (Hall 1988). For non-
singular element integration, Barnejee and Ahmad (1985) investigated the accuracy numerically
in three-dimensional elastodynamic problems and concluded that 3X3, 4X4 and 5X5 Gauss-
Legendre integration rules could provide the best combination of computation accuracy and size.
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In this study they examined directly the computed displacements rather than the numerical in-
tegration rule itself.

The present paper discusses errors which result from boundary discretization and integration,
in two-dimensional elastodynamic frequency-domain BEM analyses. A specific element type
and numerical integration rule are used in the discussion.

2. Element type and integration rule used

A constant element was used first in BEM. Lachat and Watson (1976) introduced iso-
parametric transformation in boundary elements. Since then, high-order elements (interpolation
functions of higher order) have been widely used, beacuse they can generally describe the actual
deformations within an element better and thus provide better accuracy. However, excessively
high order elements make the computation effort excessive. It is generally considered that qua-
dratic or cubic boundary elements are the best choices in view of the computation effort and ac-
curacy. This has been demonstrated by Seabra Pereira, et al. (1981) in elastostatics problems,
Brebbia, ef al. (1984) in the wave potential problems, and Dominguez and Gellege (1989) in the
time domain elastodynamics problems. Therefore, quadratic boundary elements are used herein.

There are two quadratures available for performing non-singular integration over boundary ele-
ments. In the Newton-Cotes integration rule, integration points are uniformly distributed over
the integrated region. With the aid of this rule, and arbitrary polynomial of order n can be in-
tegrated accurately when the number of integration points » is an odd number. When » is an
even number, the highest order of the polynomial integrated accurately is n—1. In the Gauss-
Legendre integration rule with non-uniformly distributed integration points, the highest order of
an arbitrary polynomial integrated accurately can reach 2n-1 (Chan 1991). The Gauss-Legendre
rule is generally more efficient in element integration than the other and thus is used herein.

3. Boundary discretization
A circular cavity, in an infinite homogeneous elastic medium, is considered. A harmonic
plane wave with a unit amplitude is assumed to propagate in the positive direction along the x

axis as shown in Fig. 1. The boundary is uniformly discretized with quadratic elements. The
singularity in the boundary integration is obviated by collocating the source point outside of the
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Fig. 1 A circular cavity under incident harmonic plane wave.
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Table 1 Errors in computed displacement amplitudes (%)

SH wave P wave
a, 5 10 15 5 10 15
NAx 32 36 40 32 36 40 32 36 40 32 36 40 32 36 40 32 36 4.0
0° 08 06 05 1.0 07 05 06 04 03 62 38 02 52 12 06 20 08 02
90° 27 1.7 25 44 36 29 48 24 30 14 58 31 65 32 24 54 13 13

180° 0.1 01 01 01 01 01 01 01 01 47 02 23 96 26 04 37 11 05
270° 27 1.7 25 44 36 29 48 24 30 14 58 31 65 32 24 54 13 13

region being studied in two-dimensional elastodynamic problems. Each exterior source point is
placed at a distance from its corresponding node, equal to 1.5 times the adjacent node distance
(Fu 1995). The Gauss-Legendre rule is applied with 12 integration points. The integration error
in this case is, as demonstrated later, very small and thus the error in the computed boundary
displacement is reasonably assumed to be due to the discretization.

For these conditions, the boundary displacements in scattering field are calculated by using
BEM for SH wave and P wave incidences. Table 1 lists errors in percentage for the calculated
boundary displacement amplitudes, in which Ax and A are respectively the dimension of qua-
dratic element and the wavelength of shear wave in the medium, and a, is the dimensionless fre-

quency defined as

o 2w

- =3 M

a4
where r is the radius of the cavity, @ is the circular frequency of the incident wave, and C,, is
the shear wave velocity of the medium. For P wave incidences, errors at 8=0° and 180° are com-
puted for horizontal displacements U,, whereas errors at 6=90° and 270° are computed for vert-
ical displacements U,. The table shows two clear trends. First, the computation error generally
decreases with an increasing value of A/Ax. The reason for this decrease is esaily understood.
Second, the values of error are not uniform along the boundary despite uniform discretization
along the boundary; being smallest at 6=0" and 180° but largest at 6=90° and 270°. This in-
dicates that the errors at two positions on the uniformly discretized boundary are different from
each other, if the local incident angles with respect to the boundary at these points are mutually
different. Namely, errors in the computed results exhibit the localized nature. A simple and
direct explanation for this phenomenon may resort to a quadratic element on which specific
boundary value distribution is introduced by the plane incident wave. The displacements dis-
tributed over the element are uniform when the local incident angle is normal to the boundary,
whereas they are described by a trigonometric function when the local incident angle is tangent
to the boundary. The quadratic interpolation functions can reproduce exactly the former dis-
tribution but can not reproduce exactly the latter distribution. This results in the above localized
nature of computation error.
The general criteria often used in discretization is
Aoy
Ax @
which states that the length of the quadratic boundary element is less than or equal to 1/4 of the
shear wave length. As observed in Table 1, if this criteria is adopted, errors in the computed
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boundary displacement are less than 5% even with the localized nature of errors. This mag-
nitude of computational error is acceptable in practical engineering analysis.

4. Element integration

In element integration, a general form of the integrand is F}; ¢y, |/ | in which F; is the com-

« Source point
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0 element 1 element 2 element 3 element 4
Fig. 2 A straight line boundary discretized by quadratic elements.
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Fig. 3 Variation of Py; ¢;|J| over element for 2-D anti-plane motion.
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ponent of the fundamental solution U, (displacement) or P; (stress), ¢, is the standard im
terpolation function in quadratic element, and |J| is Jacobian. The behavior of an integrand
within an element is described by a polynomial of a certain order which is defined by curve fit-
ting. Then, based on the numerical integration rule, the number of integration points in the ele-
ment is determined. “Integration error was caused by the inadequate precision in element in-
tegration and thus is influenced directly by the number of integration points each element.

A simple straight line boundary as shown in Fig. 2 is considered first. The length of each qua-
dratic element along the boundary is equal to A/4 and the source point is located at a distance
equal to A/8 from the boundary in order to consider the influence of the singularity of the fun-
damental solutions. For two-dimensional anti-plane motion, the variation of the integrand Fi,
¢5|J | over elements and the corresponding fitting curves are shown in Fig. 3. The dots in the

figures are the values computed directly from the integrand at 21 points in each element,
whereas the solid lines show the computed values by the polynomial of order £ which is defined
by curve fitting. Both values are normalized by the common largest value in each element,
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Fig. 4 Variation of U, ¢,|J| over element for 2-D anti-plane motion.
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Table 2 Errors in computed displacement amplitudes (%)

SH wave P wave
0 0° 90° 180° 270° 0° 90° 180° 270°
2 9914807 22047436 796212 2205001 2346970 683561639 29015324 68561639
3 52 59 55 59 5.6 5.5 4.7 55
n 4 0.8 2.8 04 2.8 0.1 3.4 43 3.3
5 04 3.0 0.1 3.0 0.6 2.3 0.5 2.3
6 0.5 2.9 0.1 2.9 0.5 2.3 0.4 2.3
12 0.5 29 0.1 2.9 0.6 2.4 0.4 2.4

which is computed directly from the integrand. Fig. 4 shows the integrand F, ¢, |J | for two-di-

mensional in-plane motion. Although the curve fitting is improved by increasing k from 2 to 5,
it is hardly improved by increasing k from 5 to 17. Thus, the polynomial of order about 5 is ade-
quate to accurately describe the integrand. The number of integration points, n, corresponding to
k=5 is equal to 3 according to n=(k+1)/2.

The above finding is further studied to see if it is still applicable for a more complex case
such as the one shown in Fig. 1. The boundary displacement amplitudes in the scattering field
are computed for SH wave and P wave incidences by BEM. In the computation, a,=10 and
A/Ax=4 are used and exterior source points are collocated at the same position as done earlier.
Errors in percentage are listed in Table 2 for various values of n. It is seen in the table that, as n
increases, errors decrease sharply to 5-6% from very large numbers at n=2 and then tend to be-
come stationary after approximately n=5. Thus, this and previous results suggest that the op-
timum number of integration points an element is about 4.

5. Conclusions

Boundary discretization and integration are two important aspects which influence the com-
putation size and accuracy in BEM. This is discussed systematically for two-dimensional elas-
todynamic problems in the frequency domain in the present paper.

The localized nature of error is observed in the computed displacements. Thus, the dis-
cretization error is related not only to the degree of boundary discretization but also to the local
direction of the incident wave with respect to the boundary at the location where the dis-
placement is observed. Along the uniformly discretized boundary, the computed error is smallest
where the local direction of the incident wave is normal to the boundary, while it is largest
where the local direction of incident wave is tangent to the boundary.

The error can be effectively controlled by regulating the boundary discretization mesh and the
number of integration points in an e¢lement. If the length of each quadratic boundary element is
less than 1/4 of shear wavelength in the medium, the error in the computed displacement am-
plitude is less than 5%. The recommended number of integration points in the boundary in-
tegration is 4 for efficient computation.
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