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Minimum stiffness of bracing for multi-column
framed structures
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Abstract. A method that determines the minimum stiffness of baracing to achieve non-sway buckling
conditions at a given story level of a multi-column elastic frame is proposed. Condensed equations that
evaluate the required minimum stiffness of the lateral and torsional bracing are derived using the classical
stability functions. The proposed method is applicable to elastic framed structures with rigid, semirigid,
and simple connections. It is shown that the minimum stiffness of the bracing required by a multi-column
system depends on: 1) the plan layout of the columns; 2) the variation in height and cross sectional pro-
perties among the columns; 3) the applied axial load pattern on the columns; 4) the lack of symmetry in
the loading pattern, column layout, column sizes and heights that cause torsion-sway and its effects on the
flexural bucking capacity; and S) the flexural and torsional end restrains of the columns. The proposed
method is limited to elastic framed structures with columns of doubly symmetrical cross section with their
principal axes parallel to the global axes. However, it can be applied to inelastic structures when the non-
linear behavior is concentrated at the end connections. The effects of axial deformations in beams and
columns are neglected. Three examples are presented in detail to show the effectiveness of the proposed
method.
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1. Introduction

The question of what constitutes bracing and how to design bracing in real framed structures
is of major concern to designers since it has to do with their stability performance under work-
ing loading conditions, as well as with their integrity under extreme lateral loadings such as
those caused by severe earthquakes and winds. Bracing can be divided into three major ca-
tegories:

1) component bracing to avoid local or individual member buckling;

2) sub-system bracing to avoid excessive distortion in vertical or horizontal assemblages such

as roofs and floor diaphragms; and

3) system bracing to prevent sidesway buckling of the structure as a whole and maintain the

lateral stability of the structure, including overturning effects of drift caused by severe la-
teral loads.

Component and sub-system bracing may consist of cross tension members where the axial
stiffness of the bracings is utilized; they may be provided at concentrated locations by other flex-
ural members framing transversely to the member being braced, wherein both axial and flexural
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stiffnesses of the bracing members are utilized; or such bracings may be provided continuously
by the wall panels to the columns or by the floor system to the compression flange of the
beams. Steel construction codes offer adequate guidance on these two types of bracings (AISC
versions ASD 1990, LRFD 1986 and 1994).

On the other hand, system bracing is intimately related to the interstory drift control, generally
referred to as “lateral stability. Guidance on the required stiffness and strength for story bracing
for frames is not precise but rather indefinite. This task is generally left to the designer. For in-
stance, a steel braced frame, according to AISC-LRFD-C2.1, is one in which “lateral stability is
provided by diagonal bracing, shear walls or equivalent means.” The vertical bracing system
must be “adequate, as determined by structural analysis, to prevent buckling of the structure and
maintain the lateral stability of the structure, including overturning effects of drift, ...". Details
on diagonal bracing under tension and compression are given in Volume II (Connections) of the
AISC-LRFD Manual (1994, Section 11). In reinforced concrete buildings, frames can be con-
sidered braced “when the stability index ..... for a story is not greater than 0.04, the P-A mo-
ments should not exceed 5 percent of the first-order moments ...." or “alternatively, ... if bracing
elements (shearwalls, shear trusses, or other types of lateral bracing) have a total stiffness at
least six times the sum of the stiffnesses of all the columns within the story.” (ACI code version
318R-89 revised 1992, R10.11.2).

In addition, construction codes base the “lateral” stability design on simplified 2-D analyses (i.
e., models obtained by breaking the structure into vertical plane frames) ignoring the real 3-D
stability behavior. The two major effects on the stability behavior of framed structures, namely,
the overall torsional-flexural coupling and coupling among the columns at a story level are ig-
nored by most codes. Except for totally symmetrical frames, torsional-flexural buckling must be
considered in the design of 3-D framed structures since the buckling loads can be signifincantly
below the 2-D buckling flexural loads, whereas column coupling becomes important in frames
with columns of different heights or/and under different axial loads and boundary conditions
(Aristizabal-Ochoa 1995a-b).

The only objective of this paper is to present, using the classical stability functions
(Timoshenko and Gere 1961), a formulation for the minimum stiffness of bracing required by an
entire story of an elastic framed structure to achieve fully “braced” conditions. Design re-
commendations for strength, ductility, fatigue, structural details of their connections, etc. of any
particular bracing configuration and material are beyond the scope of this paper, the proposed
formulation can be applied to plane and space multi-column frames with rigid, semirigid and
simple connections, but it is limited to elastic structures with doubly symmetrical columns with
their principal cross-sectional axes parallel to the global axes. The effects of axial deformations
in all members are neglected.

2. Structural model

The models of an entire story of a 2-D and a 3-D framed structure are shown in Figs. 1a and
1b, respectively. In both models it is assumed that the floor diaphragms are rigid in their own
planes. This allows condensation of the lateral degrees of freedom (DOF) into one DOF per
floor level in 2-D frames, and three DOF per floor level (two horizontal translations and a ro-
tation about the vertical axis at the stiffness or shear center) in 3-D frames.

The 2-D model shown in Fig. 1a is a linear elastic model consisting of » prismatic columns
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each one with different cross sectional properties (A, I), height (h;), end flexural restraints (x,
K,;), and under different axial load (P,), all sharing the same lateral spring restraint S , and sides-
way A. A typical column element A;B; of the structural system (Fig. 2a) is made up of the
column itself Ai'B,-' and the end flexural restraints A,A; and B, B, with elastic stiffnesses K, K,
(whose units are in Moment/Radian) at the top and bottom ends, respectively, and represent the
combined effects of both the flexural stiffness provided by the girders and those of the beam-to-
column connections. It is assumed that a typical column A; B; is made of a homogeneous linear
elastic material with: 1) a modulus of elasticity E; 2) straight line centroidal axis; and 3) buck-
ling taking place in the plane of the frame about one of the principal axes of the cross section.

The ratios R,=K,/(E; I/h;) and R,=K,/(E; I/h;) will be denoted as the stiffness indices of the
flexural restraints of column i. These indices vary from zero (i.e., R,=R,=0) for simple flexural
restraints (i.e., hinged) to infinity (i.e., R,=R,=c°) for fully rigid flexural restraints (i.e., in-
finitely rigid girders with beam-to-column connections). For convenience, the following two
parameters are introduced (Wang 1983 and Cunningham 1990):

1

pai =
1+—3—

ai

where p,; and p,; are called the fixity factors at the top and bottom ends of column A.B, For
hinged flexural restraints, both the fixity factor p; and the rigidity index R, are zero; but for fully
rigid flexural restraints, the fixity factor is 1 and the rigidity index is infinity. Since in real struc-
tures the fixity factors can only vary from 0 to 1 (while the rigidity index R; may vary from 0 to
o), they are more convenient to use in the analysis of framed structures with semirigid con-
nections (Wang 1983, Cunningham 1990, Xu and Grierson 1993, and Aristizabal-Ochoa 1994a-
¢, 1995, 1996). It must be emphasized that in this formulation «,; and x;,, R, and R, or p,, and
Py are stiffness parameters that include the effects of both the connections and the girders. These
are not stiffness parameters of the beam-to-column connections alone.

The relationships between the fixity factors p,;, p,; and the alignment charts factors y,; and y,
lie., y=X(El/h)./3(EI/L), at the top and bottom ends, respectively] of column i in a sym-
metrical frame were presented by the writer (1994a). In symmetrical frames with sidesway buck-
ling, these relationships are p,=2/(2+y,) and p,=2/(2+ ), when both ends A and B of the
columns are rigidly connected at the top and bottom girders, respectively (it is assumed that an
inflection point exists at the center span of each of the girders when story buckling occurs). Sim-
ilarly, in symmetrical frames with sidesway buckling totally inhibited (i.e., “braced” frames),
these relationships are p,=2/(2+3y,,) and p,=2/(2+3y,,;) for rigid beam-to-column connections (it
is assumed that the girders are subjected to uniform bending when buckling occurs). In frames
that are unsymmetrical or irregular in loading or in geometry, the fixity factors can be calculated
using structural principles as shown in Example 1. In frames with semirigid beam-to-column con
nections, the appropriate connection stiffness must be determined, however, this is outside of the
scope of this paper. An alternative is to modify the fixity factors p, and p,; as suggested by the
writer elsewhere (1994a-c).



308 J. Dario Aristizabal-Ochoa

L/
o L -
FLOOR SIAB . s},&l’m ~
/ ] Kayt
/ \ [
% 0. 0 R —— 1
s s E, 1
4\ Ayt B ésegu A:.ﬁ:lyhl-l ATKPYX)
E E B E E:r N £ 7 b B A
feo e [ N )8
N e Aales Tynden ~
N P -
b &Gy N 'g
- ) o 11 Sl BG
\ ) . 1. Lxt Iy oy
B;;‘!f'.:‘ % B\ B - B,,‘g;l Koyt J%m By
o B[ B Bottom EGe 4l
B Ka&i ,f(l,hx ﬁ,l,,,x,g_h Bottom
B
Bl
. &
(a) Two-dimensional frame with braced buckling Eéﬁ’

(b) Three-dimensional frame with braced buckling

Fig. 1 Structural models for a story with n different columns

In the case of a 3-D multi-column frame (Fig. 1b), the particular floor under consideration is
on the XY plane with the origin O located at a convenient point (generally, at the shear center of
the floor). Again, this is a linear elastic model consisting of » prismatic columns, with the cen-
troid of column i located at point (X, Y;) on the XY plane, under axial load (P;) with individual
properties including: cross area (A); principal moments of inertia (/,; and I,,); effective polar mo-
ment of inertia (J,)); height (h); end flexural connections (K., K and K, Kiy:). All n columns
share the same lateral spring restraints Sy, Sy, S, and interstory sidesways A,, A, and 6, (i.e., at
each story, the top and bottom floors serve as rigid diaphragms allowing only 3-DOF per floor).
All columns are assumed to be doubly symmetrical with their principal cross sectional axes paral
lel to the global axes X and Y (i.e., columns whose shear center and centroid coincide). Only
three types of overalll-story buckling modes are considered: pure-translational sway flexural
buckling, pure-torsional sway buckling, and combined flexural-torsional sway buckling. In-
dividual column flexural buckling without overall story sway is also considered; but individual
column torsional buckling is not.

A typical column element AB; of the 3-D multi-column system (Fig. 2c) is made up of the
column itself A/B! and the end flexural restraints A A,/, B, B,/ and A,;A//, B, B,/ located at the
top and bottom ends and along the X and Y axes, respectively. It is assumed that a typical
column AB, is made of a homogeneous linear elastic material with moduli of elasticity E, and G,
The flexural restraints A,;A,/ and A, A, at the top end A have stiffnesses K, K, [or stiffness ra-
tios R,=K,/(El/h) and R,=x,/(El,/h;) along the X- and Y-axes, respectively. Similarly, flex-
ural restraints B, B, and B, B, at the bottom end have stiffnesses K., K and stiffness indices
R,.=K,/(EL/h) and R,,=K,/(Ed,/h;).

Notice that the proposed algorithm can be utilized in inelastic framed structures when the non-
linear behavior is concentrated at the connections. This can be carried out by modifying the flex-
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Fig. 2 Single column element.

ural stiffness of the end restraints AA' and BB'. Gerstle (1988) has indicated lower and upper
bounds for x, and x, for plane frames. More recently, Xu and Grierson (1993) used these
bounds in the design of plane frames with semirigid connection.

3. Criteria for minimum stiffness of bracing

Criteria to determine the minimum stiffness of bracing for 2-D and 3-D framed structures are
given in this section. The proposed formulas formulas are presented next and derived in Ap-
pendix I

3.1. For two-dimensional framed structures

The minimum lateral bracing S, required to convert any story of a plane frame (Fig. 1a) with
sidesway uninhibited or partially inhibited into a fully braced story can be determined from Eq.

D).
Pe i % |y 3(Pui +Pbi =2Pui Pri ) + IPui Pri Tan(¢, /2)/(9,/2)
= (1P Y1=Pbi 3P ui 4P —2Pui P N1~/ Tang, J+9p,; py; [Tan(; /2)/(¢;/2)-1]
S
(ED), /b, ()
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(a) Frame and loading

where: 7= m}— =(w/K;) (2a)
P,
o’ —— = (WK, = 070, v/ B,

= EUR), (2b)

0,=P/P=ratio of axial load of column i to that of representative column j
B=(ED)/(ED)=ratio of flexural stiffness of column i to that of representative column j
Yi=h/h=ratio of height of column i to that of representative column j

K;=K-factor of the representative column j calculated from Eq. (3) under braced conditions

Tan(n/2K ;)

/K,
(1=pa; (1~py; XK ) + 3(paj+pbj_2pajpbj)|:l - WLKT)} + 904 Ps; [ @2K) - 1:( =0 o
(Sy)min can be obtained following the four steps described below:
1) The representative j-column is selected from the n-column set. The column with the lowest
critical axial load under braced conditions from Eq. (3) is generally recommended.
2) The fixity factors p,; and p,,; for each column must be determined for both conditions, brac-
ed and unbraced-i.e., with sidesway buckling totally inhibited and uninhibited, respectively.

3) The effective length K-factor (or ¢;) of the representative column j is calculated from Eq.

(3) utilizing the fixity factors p, and p,; for braced conditions. For the rest of the columns, the
braced K-factor (or ¢) is determined from Eq. (2b). In this step is important to check that the K-
factor of each column for “braced” conditions is less than that corresponding to “unbraced” con-
ditions; otherwise, the j-column initially selected must be changed to the one with the largest ef-
fective length K-factor among the n columns considering that the story level being analyzed is
“braced” .

4) The braced ¢-factors (from step 3) and p,; and p,; for unbraced conditions (from step 2) are
then substituted into Eq. (1) from which the required minimum bracings S, can be calculated
directly. The example that follows shows in detail the proposed procedure for plane frames.

3.1.1. Example 1: Simple plane frame

Utilizing Egs. (1)-(3) and the procedure outlined above for plane frames, determine the min-



Minimum stiffness of bracing for multi-column framed structures 311

imum stiffness of the bracing required to convert the frame shown in Fig. 3a into a fully braced
frame for any value of o. Assume L=h=12.192 m (40 ft), /=41.6231x 10"*m* (10,000 in*) and E
=20,684,272 KPa (3000 Ksi). Neglect the effects of axial deformations in all members.

Solution: Steps 1-3: According to Egs. (1) and (3) the fixity factors must be established first
in order to determine the effective length K-factors and S,. This can be carried out by applying a
unit horizontal load at node A (or C) (i.e., 1 Kip=4.448 KN) and finding the moments and ro-
tations at joints A and C of the frame with sidesway uninhibited (i.e., “unbraced” conditions).
This was accomplished using a conventional computer program for plane frames with the fol-
lowing results:

1. For column AB-. For a unit horizontal load applied at node C of frame of Fig. 3a: Rotation
at A=0.000624 radians; and Moment at A=19.30 KN-m (170.84 Kip-in). Therefore, the stiff-
ness of the flexural restraint provided by the girder to column AB at A is k,=19.30/
(0.000624=30,931 KN-m/radian; and the stiffness index at A is R,=x,/(El/h),z=30,931/
(20,684,272 0.4 x 0.00416231/12.192)=10.953; then the unbraced fixity factor at A be-

1 y 1
L _07850; and the fixity factor at B: p=————=1.0
143/10.953 and the Tty factor at B P=1713 /e

2. For column CD-. For a unit horizontal load applied at C of frame of Fig. 3a: Rotation at C=
(0.000119 radians; and Moment at C=12.168 KN-m (107.70 Kip-in). Therefore, the stiffness
of the flexural restraint provided by the girder to column CD at C is x,=12.168/0.000119=
102,251 KN-m/radian; and the stiffness index at C is R=K/(El/h)-,=102,251/(20,684,272 X
0.4x0.00416231/12.192)=36.232; then the unbraced fixity factor at C becomes:

1 . 1
L _0.9235; and the fixity factor at D: p, = -
Pe =113/36.232 and the Tty faclor at L p4 = 7370

Similary, the fixity factors for fully “braced” conditions were determined by an additional
structural analysis with a unit moment at C (1 Kip-in=0.11298 KN-m), and the frame restrained
along the horizontal direction AC at the top, yielding the following results:

1. For column AB-. For a unit moment applied at C of frame of Fig. 3a: Rotation at A=
3.312X 10 radians; and Moment at A=0.03742 KN-m (0.3312 Kip-in). Therefore, the stiff-
ness of the flexural restraint provided by the girder to column AB at A is k,=0.03742/
(3.312x 10%=11,298 KN-m/radian; and the stiffness index at A is R,=K,/(El/h),z=11,298/
(20,684,272 X 0.4 0.00416231/12.192)=4; then the braced fixity factor at A becomes:

1
Pa= T34 10
Therefore, using Eq. (3):

[1_ /K ]+4[Tan(7r/2K)_1:'=O
Tan(n/K) n/2K)

comes: p,=

=4/7; and the braced fixity factor at B: p, = 113/

)

Whose solution iS: (Kup)is sway rotatty inhibirea=0-5896
2. For column CD-. For a unit moment applied at C of frame of Fig. 3a: Rotation at C=
1.2733x 10 radians; and Moment at C=0.01079 KN-m (0.0955 Kip-in). Therefore, the
stiffness of the flexural restraint provided by the girder to column CD at C is K.=0.01079/
(1.2733 X 10" °)=8,474.1 KN-m/radian; and the stiffness index at C is R=x/El/h)cp=
847.410/(20,684,272 X 0.4 X 0.00416231/12.192)=3.0; then the braced fixity factor at C be-
1

_— =0
1+3.0/0

comes: p. = =0.5; and the braced fixity factor at D: p,; =

1
1+3/3
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Therefore, using Eq. (3):

(n/K)2+3[1— K }:

Tan(n/K) (5)
Whose solution iS: (Kcp)yih sway totatty inivizea=0-8431

Step 3: Taking into consideration that: 1) p,=0.785 and p,=1 for column AB, and p.=0.9235
and p,=0 for column CD, both under unbraced conditions; and 2) K,,,.,=0.5896 and 0.8431 for
columns AB and CD, respectively, then the required minimum bracing (S,),, can be determined
from Eq. (1) appling the following conditions:

A) Assuming that column AB is the first to buckle with the frame under “braced” conditions
and selecting column AB as the j-column, then K;=K,=0.58955; ¢=¢,=7/0.58955=5.3288; ¢,=

5.3288 Vo, p,=0.7850, p,i=1; p,=0.9235, p,=0; o,=1, op=0; Bi=P,=1.
(Sa)min. can be obtained after substituting these values into Eq. (1) as follows:

3x 0.21549 x 0.785(Tan 2.6644)/(2.6644)
3% 0.251(1 — 5.3288/Tan 5.3288) + 9 X 0.785 [(Tan 2.6644)/(2.6644) — 1]

_ 3 X 09235 _ (S A)min.
5.3288) 0 x 0.0765+3 X 0.9235[1 — 5.3288V/(Tan 5.3288Vor EI/h?
(EI)/hi

5.3288%{[1-

]

+ of1

(62)
Therefore:
(SA)mm 1
—————— =24.5468 + 28.3961 (1 — ]
0.4(ET)/h 0.784080c — 5.3288V/Tan(5.3288V0)) ~  (6b)
B) Assuming the column CD is the first to buckle with the frame under “braced” conditions
and selecting column AB as the j-column, then K,=0.84310; ¢,=m/0.84310=3.72624; ¢=¢ =

3726240t pa=0.785, py=1, p.,=0.9235, p,,=0, o,=1, o,=cr; B=P,=1.
(Sy)min. can be obtained after substituting these values into Eq. (1) as follows:

3.726242
o
3% 021549 x 0.785(Tan 130312, /(186312
- Vo N 1+
3.72624 3.72624 1.86312, , 1.86312
3x 0.215[1 - = /(Tan +9x 0.785[(Tan /! )-1]
[ Vo ( Vo )] ( s ( "
o[l - 3% 0.9235 (S
(3.72624)* X 0.0765+3 X 0.9235(1-3.72625/Tan 3.72625) (ED)/h? (7a)
Therefore:
145.87911Vat(Tan 1'8\7312)
o(f<2)?§;h =i 1.86312  3.72624 a3 72624 J#17.1544
o . . .
‘ 5.87911 Tan - Tan )—9.95349
Vo \ ( Vo (7b)

The minimum bracing required by the frame of Fig. 3a can be obtained directly from Egs. (6b)
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and (7b). The variation of (S g, /0.4(EI/h’) with « as indicated by Egs. (6b) and (7b) is
shown in Fig. 3b.

Conclusion: Eq. (1) indicated the required lateral bracing at a given story level of a plane
frame is a function of the degrees of fixity of the columns (p's), the load distribution (), the ra-
tio of the columns' flexural stiffness (), height (y), and the effective length K-factor of the
column that first buckles under braced conditions. For instance, for the frame of Fig. 3, from a=
0 to 0.489 the buckling under braced conditions is controlled by buckling of column AB, and
for r>0.489 by buckling of column CD. To guarantee braced buckling under any axial loading
combination (i.e., for any o), then (Sp)m/0.4(EI/h”) must be greater than 41.7011, which is
the minimum lateral bracing required to achieve simultaneous buckling in columns AB and CD
[this occurs at a=(K,/K,)’=(0.5896/0.8431)’=0.489]. Notice that the bracing indicated by the
ACI Code-Version 1992 to 6 times the lateral stiffness of the frame is 1.777 times the value ob-

(S 4nin =74.085].

tained from this analysis [i.e., ——————
0.4EL/h")

3.2. For three-dimensional framed structures

The minimum stiffness of the lateral bracings (Sy)min, (Sa)min and torsional bracing (Say)mn T€-
quired to convert any given story of a 3-D framed structure with sidesway uninhibited or par-
tially inhibited (Fig. 1b) into a full “braced” story can be determined from Egs. (8), (9) and (10),
respectively, as follows:

n
(SAx )min. = Sxi
21 8)
n
(S )min. = S i
4y Z{ y (9)
:—Z(Xzsyl +Y2S +GiJei/hi)
(10)
where the lateral stiffness coefficients S,; and S, are given by Egs. (11a) and (11-b).
Sxi =
. 3(Puni + Poxi —2Pui Poxi ) + 9paxi Do Tan(@/ 2y (¢./2)
[
(1 pa.xz (1 pbxz )+3(pax1 +pbxt 2paxt pbxl )( :p;l )+ 9paxz pbx: [Tan( ¢XI )/( ¢XI )—_1]
ai
—11—@2(E 1)/ h?
]'y, ¢]( 7 ]) J (lla)
Sy,‘ =
lL 3(payi + pbyi _zpayi pbyi) + 9payi pbyi Tan(¢yi /2)/(¢y1 /2) _1]
021 (1= P3P+ =2Pir P W) 9P P [Tan( 2y (1)

Tan d)yl

& 52
— @3 (EL;)h}?
¥ ¢ (ELy)h; (11b)
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and
P,
02 _m =(n/K,;)’ obtained from Eq. (14a) (12a)
0% = [os 12/ 13 (12b)
) P;
0% = _———(El/h y =(n/ ) obtained from Eq. (14b) (120)
¢ = [0 ¥/ Bi197; (12d)
Ki=[B./ (o PIK] (13a)
K =[B/ (o WK (13b)
where

o,=P/P=ratio of axial load of column i to that of representative column j
Y=h/h=ratio of height of column i to that of representative column j

X; and Y=XY coordinates of column i with respect to center O (Fig. 1b)

K =effective length K-factor of column+j corresponding to buckling along the X-axis
K =effective length K-factor of column-j corresponding to buckling along the Y-axis

The stability equations for “braced” conditions along the X- and Y- directions are given by
Egs. (14a) and (14b).

. Tan(¢,;/2) . _
(1 pwcj)(l pbxj)¢ +3(pw1+pbx; 2paupbx1)[1 Tan (px] ]+9paxz bx][ ‘ij/z 1]— (143)
Tan(¢,; /2)
(1 pa)’} )(1 pbyj )¢y1+3(pay; +pby; 2pa)’] pb,VJ )[1_ Tan ¢y] ]+9pay] pbyl [_@%_‘ - 1] = (14b)

The stiffnesses (Sy)mins (Sa)min. aNA (So)min. Can be obtained following the four steps described
below:

1) Similar to 2-D frames, a representative j-column is selected from the n columns within the
story level under consideration (Fig. 1b). The column with the lowest critical axial load under
braced conditions is generally recommended.

2) The fixity factors p,; and p,, must be determined in the X- and Y-directions for both con-
ditions, braced and unbraced;

3) The braced K,; and K, factors (or ¢,; and ¢,) of the representative column j are calculated
from Eqgs. (14a) and (14b) utilizing the fixity factors p,;, p.,, Pw; and ps,; for the braced case.
For the rest of the columns the braced K-factors (or ¢, and ¢@,) can be determined from Eqgs.
(13a) and (13b) or Egs. (12b) and (12d). At this step is important to check that the effective
length K-factor of each column for “braced” conditions is less than that corresponding to
“unbraced” conditions; otherwise, the j-column initially selected must be changed to the column
with the largest K-factor among the n columns considering that story level fully “braced” .

4) The braced ¢-factors (from step 2), the fixity factors p,; and p,; in X- and Y-directions for
unbraced conditions (from step 1), the XY coordinates of each column, and the individual
column torsional stiffness (G,J,/h,) are then substituted into Egs. (8), (9) and (10) from which
the required minimum bracings (Sy)mins (Sa)min aNd (Sey)m. can be calculated directly. The two
examples that follow show the proposed procedure for 3-D framed structures.
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3.2.1. Example 2: Simple space frame

Utilizing Egs. (8)-(13) and the procedure outlined above, determine the minimum bracings

(SA,,),,,,,,, (SAy),,,,,, and (S,).. Tequired to convert the simple space frame of Fig. 4 into a fully
“braced” frame for oy=a,=a,=0,=1. Assume GJ,=EI, EI=2El, L .=1.5h, L,=h. Vary the flex-

ural restraints in the X- and Y-directions at the top and bottom of all columns from hinge (y,=
W, =) to clamped conditions (,=,=0).

Solution: This is a doubly symmetrical frame about the X- and Y-axes. Therefore, the re-
lationships between the y ratios and the fixity factors, namely p,,,....=2/(2+3y) and p,pacea=2/(2+
y), will be utilized in this analysis. Table 1 shows the variation of py,uces Punsraceas the effective
length K-factor, and the required lateral bracings (normalized with respect to m°EI/h’) and the
torsional bracing (normalized with respect to 7°EL/h) with different y ratios.

Table 1 indicates that the required bracings vary very little for y ratios between o and 2 (or
0= Punbracea<0.5) which correspond to simple connections, but they increase by a factor of four
for completely clamped end conditions. This increase in the required bracings is also ac-
companied by an indentical increases in the total axial critical load from 47°EL/h’ for hinged
end conditions in all four columns to 167°EL/i’ for clamped ends in all columns. In the latter
case, the bracing indicated by the ACI Code (Version 1992) of 6X 4 X 12EI/h*=288EL/K’ is
1.824 times the value obtained from this analysis.

3.2.2. Example 3: Multi-story space frame

Utilizing Egs. (8)-(13), determine the minimum bracmgs (Sadmin> (Say)mins, and (Saw)mm requlred
to convert the first story level of the space frame shown in Fig. 5a into a fully “braced” story
for the values of ¢; listed in Table 2. Assume that all columns are rigidly connected to the
ground (i.e., clamped with p,=p,=1) and that each floor slab acts as a rigid diaphragm with the
flexural stiffness provided by the girders about the X- and Y-axes. A 20" X 20" (508 mm X 508
mm) section was utilized in all girders and columns with following properties: /,=1,=13,333. 33
in* (554,975 cm®); A=400 in® (2580.64 cm’); pure torsional stiffness=GJ,=3.536 X 1()7 Kip-in®

:

() Space frame and loading (b) Column layout and cross section

Fig. 4 Example 2: simple space frame.
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Table 1 Minimum bracings Sy, S4, and S, for the simple 3-D frame of Example 2

W pbraced purzbmced Kbmced SAx— anIx/h? SAy+ ”ZEIx/hS Suxy_ RZEIx/h
o 0 0 1.0 4.0000 8.0000 5.0947

6 0.10 0.25 0.9450 3.8522 7.7043 4.8914

2 0.25 0.50 0.8553 4.0096 8.0191 5.1078

1 2/5 2/3 0.7743 4.6936 9.3872 6.0484
2/3 0.50 0.75 0.7223 5.5074 11.0147 7.1673

0 1.0 1.0 0.5 16.0000 32.0000 21.5947

(101,473 kN-m®); elastic moduli E=3,605 ksi (24,856 MPa) and G=1,567.4 ksi (10,807.2 MPa).

Solution: Taking the origin of the XY axes at the centroid of the floor columns as shown in
Fig. 4b, the fixity factors for each column are estimated as follows:

a) Top ends-.

For columns 1, 3, 6, 7 and 8: y,=y,=>(EI/h)/X(EI/L),=(1/15+1/12)/(1/24)=3.6

Therefore, the fixity factors for unbraced conditions become: p,=p,=2/(2+y,)=0.3571; and
the fixity factors for braced conditions: p,=p,=2/(2+3y,,)=0.15625

For column 2: y,=Y(El/h)/2(EI/L),=(1/15+1/12)/(2/24)=1.8 and w,=>(EI/h)./X(EI/L),=(1/
15+1/12)/(1/24)=3.6

Therefore, the fixity factors for unbraced conditions become:

Pu=2/(2+y,)=2/(2+1.8)=0.5263; and p,=2/(2+y,,)=2/(2+3.6)=0.3571
and the fixity factors for braced conditions:

Pu=2/(2+3y,,)=2/(2+3 X 1.8)=0.27027; and p,=2/(2+3y,)=2/(2+3 X 3.6)=0.15625

12'
(3.668 m)

1 2 3
+ 3] +]
12
(3.658 m)
Y
24’
7.316 m)
12’
(3.658 m)
3
l(0.914 m)
o[’ X
4[3 TIN5 ; pel

12’
(3.658 m)

All 15
Columns and girde; 4.572 m)

20°x20°
0.508x0.508 m;

<l
- [+

24" + 24" 24 - 24"
(7.315 m) (7.316 m) (7.916 m) (7.315 m)

(b) Column layout and dimensions

ati i f ace frame T .
(2) Elevation view of the space fram (origin located at the colummns' centroid)

Fig. 5 Example 3: multi-strory multi-bay space framed structure.
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Table 2 Column load factors and minimum bracings for frame of example 3 (K,=0.65168 and assuming p,,=
P»,=1.0 for all columns at the bottom)

Frame Sut Spv Sep
case x % * % % & & %  Eyn’  EIW Elk
E2-1 13 2/3 13 2/3 1 1/3 1/3 13 62.080 62.080 109.297
E22 715 45 715 23 1 13 2/15 215 62575 63.358 105.139
E23 155 815  1/5 2/3 1 13 815 815 62424 62.083 116.757
E24 509 8/9 5/9 2/3 1 1/3 0 0 63398 65.538 104.193
E25 109 4/9 1/9 2/3 1 1/3 2/3 2/3 63347 62875 124.590
E2-6 13 5/6 2/3 12 1 12 0 1/6  62.849 64396 114.300
E2-7 0938 00938 0938 0938 1 0938 0.9386 0.9386 192.26 192.26 600.839

For column 4: y,=3(El/h)/3(EIL),=(1/15+1/12)/(1/24)=3.6 and w,=3(El/h)./>(EI/L),=(1/
15+1/12)/(2/24)=1.8

Therefore, the fixity factors for unbraced conditions become:

Pu=2/(2+y,)=2/(243.6)=0.3571; and p,=2/2+y,)=2/(2+1.8)=0.5263 and the fixity factors
for braced conditions:

Pu=2/(2+3y,)=2/(2+3 X 3.6)=0.15625; and p,,=2/(2+3y,,)=2/(2+3 X 1.8)=0.27027

For column 5: y, =y, =3(EI/h)/2(EI/L),=(1/15+1/12)/(2/24)=1.8

Therefore, the fixity factors for unbraced conditions become: p,=p,=2/(2+V,,)=0.5263 and
the fixity factors for braced conditions: p,=p,=2/(2+3y,,)=0.27027

b) Bottom ends-.

For all columns y,=y;,=0; therefore, p,.=p,=1 for any type of buckling.

Seven different load combinations were studied and are designated by the symbols E2-1 through
E2-7 in Table 2. The first six cases have a total axial load of (3 ;)Ps=4P; and (Kj),,....=0.65168.
Case E2-7 has a load pattern corresponding to simultaneous braced buckling in all eight
columns with a total axial load of (X0;)Ps=7.57P; and (K,=K,=K;=K,=K=K;=Kj),4...=0.67266.
Notice that all columns, except column 5, have the same critical load under braced conditions.
Column 5 has two restraining girders in both directions at the top end. Table 2 summarizes the
load combination factors and the calculated results according to Eqs. (8)-(13).

Table 3 shows the solution to the same frame of Fig. 5 but with all columns partially res-
trained at the fundation level with y;, =y, =1 (this is the value commonly recommended by most
construction codes for columns with foundations consisting of properly designed isolated foot-
ings); therefore, the fixity factors for unbraced conditions become p,=p,,=2/(2+1)=2/3, and for
braced conditions p,=p, =2/(2+3)=2/5. As expected, by reducing the flexural restraints at the
foundation level of the columns the required bracings are also by reduced. The results shown in
Tables 2 ans 3 also indicate that the required bracings are not very sensitive to the load pattern
as long as the total vertical load on the story level remains constant. As the load distribution
among the columns reaches that corresponding to simultaneous buckling of all columns under
braced conditions (i.e., with story sidesway totally inhibited in all directions), the minimum brac-
ings increase substantially. For instance, the minimum bacings required by the frame shown in
Fig. 5 to achieve braced buckling for any load pattern are those listed for case E2-7, which are
much larger than those for cases E2-1 through E2-6. The required torsional bracing is increased
by a factor larger than that for the lateral bracings (compare the values in the last column in
Tables 2 and 3).
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Table 3 Column load factors and minimum bracings for frame of example 3 (K,=0.7348 and assuming p,,=
Py,=2/3 for all columns at the bottom)

Frame S Sue~  SepT
case o ® & & & % EI/R’ EIR Elh
E2-1 13 2/3 13 23 1 13 153 13 43479 43479 76872
E22 715 45 715 23 1 13 215 2115 43617  43.894 73.228
E23 15 815 155 23 1 13 815 815 43.600  43.481 81.566
E24 59 89 59 23 1 13 0 0 43.848 44595 71.354
E25 19  4/9 9 23 1 13 253 2/3 43902 43739 85.618
E2-6 13 56 23 12 1 12 0 1/6 43.695  44.239 78.455
E2-7 0935 0935 0935 0935 1 0935 0935 0.935 12227 12227 37123

A computer program indicating the different steps that are required for the calculation of the
minimum bracings for a 3-D framed structure is presented next.

4. Computer program

The following coomputer program written in Microsoft QUICKBASIC indicates the necessary
steps in the calculation of (Sp)min> (Ss)min. a0d (Sg)min- Explanations and variable identification
are all included in the attached listing. The particular problem being analyzed is the 3-D frame
of Example 3 (Case E2-6).

CLS

DEFDBL A-Z

PRINT “Bracing Analysis of 3-D Framed Structures for Stability under Vertical Loads.”
PRINT “Published in the Int. Jour. of Structural and Engineering Mechanics

PRINT “Author: Dr. J. Dario Aristizable-Ochoa Data: Feb. 1997

DEFDBL A-Z

pi=3.1415927#

PRINT

FOR 1=1 TO 8 '8=Number of columns (Example Problem 3, case E2-6)
Tor(I)=196447.5 "Torsional Stiffness for all columns
H()=180 "Column height for all columns

rax(1)=2/(2+3.6) "Fixity factors for all columns at the toop (p,; and p,,)
ray(I)=2/(2+3.6)

bx(I)=1 "Fixity factors for all columns at the bottom (p,,; and p,,,)
by()=1
gam(I)=1 "Height ratios for all columns ()
bx(I)=1 'El ratios for all columns ()
by(l)=1
NEXT 1
rax(2)=2/(2+1.8) "Fixity factors for columns 2, 4 and 5 (corrected values)

rax(4)=2/(2+1.8)
rax(5)=2/(2+1.8)
al(1)=1/3 "Load ratios (c=P/P))



al(2)=5/6
al(3)=2/3
al(4)=1/2
al(5)=1
al(6)=1/2
al(7)=1E-12
al(8)=1/6
Hj=180

EI=4.80666E+07

EIL=FI,
Kj=0.651675%%#
X(1)=-288+36
Y(1)=288-36
X(2)=36
Y(2)=288-36
X(3)=288+36
Y(3)=288-36
X(4)=-288+36
Y(4)=-36
X(5)=36
Y(5)=-36
X(6)=288+36
Y(6)=-36
X(7)=-288+36
Y(7)=288+36
X(8)=36
X(8)=288+36
A=0

B=0

C=0

tot=0

FOR I=1 TO 8
gam=gam(])
al=al(I)
bx=bx(I)
by=by(I)
Tor=Tor(I)
rax=rax(I)
tbx=rbx(I)
ray=ray(I)
rby=rby(I)
X=X(I)
Y=Y(I)
fjx=pi/Kj
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"Values of Representative J-Column (i=5): h, El;, and EI,,

'Braced K-factor of J-column from Egs. (14a) and (14b)
'X-Y-coordinates of each Column (with respect to O or shear center)

‘A, B and C are Stiffness Accumulators being initialized to zero

'Accumulator of torsional stiffness G,J,/h; of the columns, see Eq. (10)
"Calculation of Minimum Stiffness of Bracing according to Egs. (8)-(10)

fjy=fjx+SQR(EIxj/Elyj)

mjx=FEIxj/Hj * 3
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mjy=Elyj/Hj " 3

fx=fjx+gam+SQR(al/bx)

fy=fjy+gam+SQR(al/by)

f1=3(rax+rbx-2raxrbx)+9xrax+rbx+ TAN(fx/2)/(fx/2)

f1=f1/fx * 2 = (1-rax)*(1-rbx)+3=(rax+rbx-2xrax+rbx)+(1-fx/TAN(fx))+9+rax+rbx*(TAN(fx/2)/
(Ex/2)-1))

f1=(1-f1)=al/gam+mjx*fjx * 2 "Calculation of -S,; according to Eq. (11a)

A=A+f1 "Calculation of (Sy,),.. according to Eq. (9)

2=3(ray+rby-2xray=rby)+9«ray+rby« TAN(fy/2)/(fy/2)

£2=12/(fy " 2+(1-ray)*(1-rby)+3*(ray+rby-2+ray+rby)+(1-fy/ TAN(fy))+9+ray xrby +(TAN(fy/2)/(fy/
2)-1))

f2=(1-f2)+al/gam+mjy +fjy"2 "Calculation of -S,; according to Eq. (11b)
B=B+{2 "Calculation of (Sy),., according to Eq. (9)
C=C+Y " 2+f1+X " 2«f2 "Calculation of (S,)., according to Eq. (10)
tot=tot+Tor

NEXT I

C=C-tot "(Spo)min. according to Eq. (10)

PRINT “Results of Minimum Stiffness of Bracing:”

PRINT “SDeltax/(EI/h"3)xj="; A/mjx 'Min. X-Bracing ratio Sy/(EI/h’)xj

PRINT “SDeltax/(El/h"3)yj="; A/mjx 'Min. X-Bracing ratio S,/(El/h’)yj]

PRINT “SThetaxy/(El/h)="; C/mjx/Hj " 2 "Min. Rotational Bracing ratio Sy,/(EI/h))x]

PRINT “Eng of Calculations. Check the answers and data!. Results obtained from this program
and then utilized in any design is your whole responsibility.”
END

5. Summary and conclusions

Definite criterion for minimum stiffness of bracing for 2-D and 3-D elastic framed structures
is presented and the corresponding equations are derived using the classical stability functions.
A condensed approach that determines the minimum stiffness of story bracing required by plane
and space framed structures to achieve non-sway buckling conditions is proposed. The proposed
approach and corresponding equations are applicable to multi-column frames with rigid, semiri-
gid, and simple connections. The proposed method is only applicable to elastic framed structures
with the following limitations: 1) the floor diaphragms including the ground floor of the framed
structure are assumed to be rigid in their own planes; and 2) all columns are assumed to the dou-
bly symmertrical with their principal cross-sectional axes parallel to the XY global axes (i.e.,
columns whose shear center and centroid coincide). The effects of axial deformations in the
beam and columns are neglected. As a consequence, overall story flexural buckling occurring
along the X- or and Y-axes and overall flexural-torsional buckling occurring in the XY plane and
about the Z axis are considered in 3-D frames. Overall story flexural buckling occurring in the
plane of the frame is only considered in the bracing analysis of 2-D frams. Pure torsional buck-
ling in a single column is not considered herein.

The proposed algorithm can also be utilized in framed structures buckling in the inelastic
range when the nonlinear behavior is concentrated at the end connections. This can be carried
out by modifying the flexural stiffness of the end restraints of each column. This is of particular
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importance, since usual civil engineering structures are of such proportions as to fail in the ine-
lastic range.

The proposed approach is not only more accurate and general than any other method
available, but allows the designer to investigate the effects of semirigid connections, flexural
hinges, load patterns, members™ properties (Span, cross sectional geometry, and elastic moduli),
and column layout on the minimum bracing requirements for plane and space framed structures.

Analytical results indicate the required stiffness of lateral bracing at a given story level of a
plane frame is a function of the degrees of fixity of the columns (p's), the load distribution (),
the ratio of the columns’ flexural stiffness (), hight (7), and the effective length K-factor of the
column that first buckles under braced conditions. For instance, for the plane frame of Fig. 3,
from o=0 to 0.489 the buckling under braced conditions is controlled by the buckling of
column AB, and for >0.489 by the buckling of column CD. To guarantee buckling with no la-
teral sway under any axial loading combination (i.e., for any ) in this particular frame, then

(SA)min.
0.4(EL/R3)
bracing required to achieve simultaneous buckling in both columns [this occurs when a=(K/K;)*=
0.489]. Notice that the bracing indicated by the ACI Code of 6 times the lateral stiffness of this
frame is 1.777 times the value obtained using the proposed approach.

Analytical studies also indicated that for 3-D framed structures, the minimum bracing depends
on the column layout in addition to the axial load distribution and the columns's properties in-
cluding their end flexural restraints. As expected, by reducing the flexural restraints at the foun-
dation level of the columns in a framed structure the required bracing is also reduced. Moreover,
the required bracing is not very sensitive to the load pattern, as long as the total vertical load on
the frams remains constant. However, the minimum bracing increases substantially when each
one of the columns are loaded to their maximum axial capacity under braced conditions (i.e., und-
er simultaneous braced buckling conditons). In 3-D frames, the required torsional bracing is in-
creased by a factor larger than that corresponding to the lateral bracings. For instance, for the 3-D
frame of Fig. 4, the required bracing at the first story varies very little for y ratios between oo
and 2 (0r 0= Puupracea<0.5, values that correspond to simple connections), but it increases by a fac-
tor of four for completely clamped end conditions. This increase in the required bracing is also ac-
companied by an identical increase in the total axial critical load. Similar behavior was observed
in the 3-D frame of Fig. 5, Tables 2 and 3 show that the bracing stiffness demand stays almost
constant irrespectively of the load distribution (as long as the total applied load remains un-
changed, as shown by Cases E2-1 through E2-6). However, in Case E2-7, when all columns
buckle simultaneously, the required bracings increase radically as well as the total critical load.

must be larger than 41.7011, which is the minimum stiffness of the interstory lateral
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Appendix I-. Derivation of the bracing equations

Determination of lateral stiffness coefficients S, and S,-. The flexural stability coefficients for
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a typical column i with sidesway in one of the principal planes of its cross section (Fig. 2a) can
be formulated in a classical manner using the flexibility coefficients (Salmon and Johnson 1980,
page 849) as follows:

M, Sing, — ¢, Cos¢, + M,, Sing; — ¢, A M,

" EL/h) 3Sing, EdM)  2Sing, U (15a)
, _ M, Sing, —¢,Cos¢, N M, Sing-¢ A M,
bi (E /h )i Q)?Siﬂ ¢i (EIﬂ’l ),' ¢i2$in¢i h,- Kpi (15b)

Where: @', and @',=rotations at A, and B, with respect to cord A,/B;’ respectively (Fig. 2b);
A=lateral sway between ends A and B;

n
0=
Since three unknows (M,, M,, and A) are involved, one more equation is required at the ele-
ment level. This equation can be obtained applying static equilibrium in the plane under con-
sideration (rotational equilibrium of column AB in Fig. 2b) as follows:

M, + M, + P,A-Hh =0 (16a)
or simply
M, M, P;
h o h  h (16b)

From Egs. (15a) and (15b) the end moments M, and M,, can be expressed in terms of the int-

erstory drift —;l as follows:

1 1-Cos ¢,
M. = [Rbi ¢, Sin ¢, 1o (EI), A
“ 2 . c X h; E—
0L L 6 T/)
R,R;; R, R Tan ¢, ¢, /2 (17a)
and
1 1-Cos¢, .
. LRy ¥ oSing, 1* ED), A
bi = -
2 , ) h  h
O L1 6 @)
RuR,,; Ri Ry Tang, 072 (17b)
Substituting (17a) and (17b) into (16b)
{ _ [(mlll + l/Rb1)+ Tan((pt /2)/(¢1 /2)]¢t (EI)t + %} :Hi/A
2 : ' 3 i
o +( 1 + 1 )i - o, )+ Tan(g,/2) _q h;
R, R, R, R, Tang, (9:./2) (18)
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The left term in Eq. (18) represent the lateral stiffness (including the effects of the com-
pressive axial load P;) provided by column i to the floor system in the direction of buckling. Eq.
(18) can be expressed in terms of the fixity factors p,; and p,; and ratios ¢, 7 as follows:

3(Pai + Poi =204 Poi ) + IPui Pr Tan(9/2)/(¢/2)
OHA—pai YA=Pyi) + 3(Pai + Pri—2Pui Poi J(1—¢; /Tang; i }+9p,; py: [ Tan(¢/2)/(¢/2) — 1]
%(EI )/ =Hy/A

+1}

(19)

The left term of Eq. (19) when applied in the X- and Y-directions becomes the stiffness coef-
ficients -S,; and -S,; given by Eqs. (11a) and (11b), respectively, and also utilized in Eq. (1).

Considering static equilibrium of the top rigid link in 2-D frames (Fig. 1a) or top diaphragm
(Fig. 1b) along the X axis and assuming that the floor is braced along the Y axis and restrained
to rotate around the Z axis for 3-D frames, then:

S S 148, YA =0
(3 sa1+5) .

Now, considering static equilibrium about the Y-axis and about the Z-axis independently (Fig.
1b), and in a similar fashion as it was done along the X-axis, the following two equations can
be obtained:

" S, ]+ 84 14, =0
{[gi 1 } e

(I3 (X3S, + Y7y +GiTo/h) +S oy Y6y =0
i=1 (22)

Egs. (20)-(22) have the trivial soultion (i.e., A,=A,=6,=0) indicating that equilibrium is pos
sible at any axial loadings provided that all columns remains straight. There is also a nontrivial
solution possible when the terms within the brackets in Egs. (20), (21) and (22) vanish. This latt
er solution is the one that corresponds to the minimum bracing conditions. Therefore, Eq. (1) for
2-D frames and Egs. (8)-(10) for 3D-frames correspond to the minimum bracing conditions.
These are also the conditions for “braced” buckling in all directions.
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Notation
The following symbols are used in this paper:

Elastic modulus of the material;

Shear modulus of the material;

height of column i;

subscript indication column-i of the 3-D multi-column system;

subscript indication the representative column-j of the 3-D multi-column system;

girder moment of inertia;

moment of the inertia of column i

effective polar moment of inertia of column i;

; and k;,; the flexural stiffness of the end restraints at A; and B,, respectively;
effective length K-factor of the representative column j;

. girder span;

(P.); buckling load of representative column j[=2EJ/(Kh,)’];

(P.)i buckling load of column i[=a(P.,)];

(P.)ror  critical load of the entire story[=(P,,); f{ai];
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n total number of columns in the story system;
Sie interstory lateral stiffness or bracing provided to the story system along the X-axis;
Sy interstory lateral stiffness or bracing provided to the story system along the Y-axis;

interstory torsional stiffness or bracing provided to the story system about the Z-axis;
stiffness index of the flexural restraint at A [=«,/(El/h)];

stiffness index of the flexural restraint at B[=x,/(El/h));

X-coordinate of column i with respect to origin O;

Y-coordinate of column i with respect to origin O;

subscript that indicates that the calculation is in the global X-direction;

subscript that indicates that the calculation is in the global Y-direction;

ratio of axial load of column i to that of representative column j=[P/P});

ratio of flexural stiffness of column i to that of representative column j{=(EL)/(E1L)];
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¥ ratio of height of column i to that of representative column j{=(h#,)];
A interstory drift;

p. and p,; fixity factors at A; and B,, respectively;

o K

v, and ;, ratios Y (EI/h) /Y (EI/L), at ends A, and B, respectively;

0 interstory angle of twist of the story floor;

@, and @,, rotations of column i at A,’ and B, with respect to column's cord, respectively.





