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Non-axisymmetric dynamic response of imperfectly
bonded buried orthotropic pipelines
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Abstract. This paper deals with the non-axisymmetric dynamic response of an imperfectly bonded bu-
ried orthotropic pipeline subjected to longitudinal wave (P-wave) excitation. An infinite cylindrical shell
model, including the rotary inertia and shear deformation effects, has been used for the pipeline. For some
cases comparison of axisymmetric and non-axisymmetric responses have also been furnished.
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1. Introduction

Dynamic response of buried pipeline/lifeline under seismic excitation has emerged as an im-
portant field of research. Earlier researchers concentrated mainly on the pipelines made of iso-
tropic material as most of utility lines were made of cast iron and steel. However, today we find
that the reinforced plastic mortar pipes (RPM) have found greater acceptance in utility lines, etc.
This has led to the need for anlayzing the dynamic response of pipes made of orthotropic ma-
terials. As a result, during the last few years a number of papers by Cole, et al. (1979), Singh,
et al. (1987), Singh, et al. (1987), Upadhyay and Mishra (1988) and Upadhyay and Mishra
(1988), have appeared on the axisymmetric and non-axisymmetric dynamic/seismic responses of
buried orthotropic pipes/shells. In most of these work it has been assumed that the pipe/shell re-
mains perfectly bonded to the surrounding medium (soil). In practice, however, this is never true.
Chonan (1981) and Datta, et al. (1984) have studied the effect of imperfect bond between the
pipe and the surrounding soil on the response of the pipe. But again, their work is also limited
to the pipes made of isotropic material only.

Dwivedi and Upadhyay (1989), (1991) have studied the effect of imperfect bond on the dy-
namic response of buried orthotropic cylindrical shell due to seismic excitation. Both these pap-
ers are concerned with the axisymmetric response only. There is no work available discussing
the effect of bond imperfection on the non-axisymmetric dynamic response of buried pipes
made of orthotropic materials. In work reported by Upadhyay and Mishra (1988), Upadhyay and
Mishra (1988), it is shown that in certain cases, depending on the soil condition and the nature
of wave excitation, flexural mode response may become even more significant than the ax-
isymmetric mode response. Therefore, in this paper we have attempted to analyze the effect of
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imperfect bond on the non-axisymmetric dynamic response of buried orthotropic pipelines.

An approach similar to Dwivedi and Upadhyay (1989) has been followed wherein a thin layer
is assumed between the shell and the surrounding medium (soil) such that this layer possesses
the properties of stiffness and damping both. The degree of imperfection of the bond is varied
by changing the stiffness and the damping parameters of this layer. It is concluded that, the ef-
fect of bond imperfection in non-axisymmetric mode is significant because, in general, the con-
sideration of bond imperfection leads to higher values of shell deformation as compared to the
same under perfect bond condition.

2. Formulation of the problem

An infinitely long thick orthotropic cylindrical shell of mean radius R and thickness 4, is con-
sidered to be buried in a linearly elastic, homogeneous isotropic infinite medium. The shell is be-
ing excited by a longitudinal wave (P-wave). A wave of wavelength A (=27/€) is considered to
strike the shell at angle ¢ with the axis of the shell. Thus the apparent wave speed ¢ along the
shell axis is given by ¢ = c¢,/cos ¢. ¢, is the speed of propagation of the longitudinal wave in the
infinite medium.

A cylindrical-polar co-ordinate system (r, ¢, x) is defined such that x coincides with the axis
of the shell. In addition, if z is measured normal to the shell middle surface such that

z=r —-R, —h/2<r<h/2 1

the equation governing the non-axisymmetric motion of a cylindrical shell can be written as
given by Upadhyay and Mishra (1988),

[L KU} +{P*}={0} @)
where [L] is a (5 X 5) matrix. The elements of the matrix [L] in Eq. (2) are the same as given
by Upadhyay and Mishra (1988).

{Ut=w v vou wl

where w, v and u are the displacement components of the middle surface of the shell in radial,
tengential and axial directions respectively, and y, and , are the angles of rotaion of a straight
line initially normal to the middle surface of the shell in the tangential and axial directions,
respectively.

The elements of {P’} are given by

Pi=(1+z/R)oz, P, =(1+z/R )0}y, P3 =(1+z/R )0}y,
Pi;=(1+4z/R )0ox,and P =z(1+z/R )ox
where 0,* denotes stresses with their usual meaning.
For the evaluation of {P*}, ,* at the outer surface of the shell (i.e., at z= + h/2) are det-

ermined in terms of the incident and scattered fields in the surrounding medium. The total dis-
placement field in the surrounding soil is written as

U=ud+ue 3)

where superscript i and s represent incident and scattered parts respectively. By solving the
wave equation in the surrounding infinite medium, components of the incident and scattered
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fields for the nth mode (n=0 and n+ 0, correspond to axisymmetric and non-axisymmetric
modes, respectively) can be written as

u,® = {{'y['n (y%)}Bl} cosnBexp.[ié(x —ct)],
) = [{_n (R/r)I, (y%)}Bl}in nBexp.[i E(x —ct )],
u,= Hiﬁln (y%)}B IJ cos nBexp.[i &(x —ct )] 4)

u'= “ym '(7%)}Bz+ {—i,B&Kn '(5%)}33*’ {n(R/r Kr (6%)}34}% nOexp.fi&(x —ct )]

ug) = [{—n (R/r)K, '(}’7:’-)}BZ+ {— in(R/r )BK, ’(5%)}33‘*' {— K, ’(53;—)}34}
sin n@exp.[i&(x —ct)],
u = “iﬁ]{n ’(y}%)}Bﬁ {521(,, ’(5;;—)}33}% n@exp.[i &(x —ct )] )

where I, and K, are modified Bessel functions of the first and second kind respectively, and
c c
ﬁ=§R :ZM/A’ y=(ﬂ2_£]2)1/2’ 5__:([;2_822)10’ glzﬂ?; =(ﬂ/COS¢), 82:,[3?_2'7 =

{(A +2w)/p,}""* and c,=(u/p,)"” - B, depends upon the intensity of incident P-wave and has
dimension of length. B,, B; and B, are arbitrary constants. (') denotes differentiation with
respect to the arguments of the Bessel functions.

The stresses at the outer surface of the shell (at » =R + h/2) can be obtained from the dis-
placement field of the surrounding medium, thus [P'] can be evaluated. Now the shell dis-
placements are assumed of the form

w=w, cosnfexp [i&(x —ct)], v=v, sinnBexp [i &(x —ct)],
u=u, cosnbexp [i&(x —ct)], Y=y cosnbexp [iE(x —ct)], and (6)
Vo= W, sin n@exp [i &(x —ct )]

These, along with {P’} are substituted into Eq. (2) to yield a set of five simultaneous
equations. Three more equations are obtained by enforcing the boundary conditions at the outer
surface of the shell.

Boundary conditions at the outer surface of the shell (r =R + 4/2) are obtained by assuming
that the shell and continuum are joined together by a bond which is thin, elastic and inertialess.
This implies that the stresses at the shell-soil interface are continuous. To take the elasticity of
the bond into account, the stresses in the bond are assumed proportional to the relative dis-
placements between the shell and continuum, i.e.,
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0 .
O | rersnr2= Lsr +Z, 5 {ui+u;—w}|, _renn

0 .
Crol =k +nn= (SG+ZG§]{M’9 +u—u—(r —R )y} | =k 2

0 _
Orx |r=R+h/2: (Sx +Zx 5;]{1"; +u;-u _(r _R )IVX} |r=R +h/2 (7)

where S,, S, and S, are the stiffness coefficients of the bond in radial, tangential and axial direc-
tions, respectively. Z,, Z, and Z, are the damping coefficients of the bond in radial, tangential
and axial directions, respectively.

Egs. (2) and (7) yield together a set of eight algebraic equations which when simplified, give
the final response equation as

[Q HUo}={F"} ®

where [Q] is a (8 X 8) matrix and {F '} is (8 x 1) matrix. All the elements of the O matrices re-
main same as given by Upadhyay and Mishra (1988) except Q; with i, j=6, 7 and 8 for which
the expressions are as follows :

, ge ,
0 o= K (@) + (27~ 1)K (06) + 27K (@)
r—1& Cr
2k

Q=1 PoK." (o) - T,CL—QC: [2i B5°K. ()]
;I

T —ieg ek (o)~ K ()} /(1 +h/2)]

Q= {nKa (0a)/(1+h/2)} + _13%2;
Q7={—in BK.(cr)/(1+h/2)} + F_Cg_rg_

—-i&
Q1= 0K, (o) + T—f%—[{—a% (o) + 87K (05)/(1 +h/2) —n2K, (0)}/ (1 +h/2)),
Q1= B 00) + = 2 B ()]

__s2 &I 2 g
Qs= 5Kn(az)+——n_i81§ [6(2B° - DK ()]

or =—n—§l%z[in BK. (05)/(1+h/2)].

Similarly, the components of F;' also remain same as given Upadhyay and Mishra (1988) ex
cept F;' with j=6, 7 and 8 which are given as:

7 rl—;'
Fﬁl:y["(al)—-r%l_lgc
r 16r

0 s ={—nK.(0,)/(1 +h/2)} +
[2n {K, (0u)- oK, "(e0)}y/ (1 +h/2)]

[2in B{ oK "(00)Ka (00)} /(1 +h/2)]

(€2~ D) (o) + 27T, "(01)]
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F} =—{nl,(0y)/(1 +h/2)}_ Cer s [2n {L. (o) - aul,"(0)} /(1 +h/2)]
F¢=ifl, (a])— gr el [2i Byl (ow)],
The response vector {U,} in Eq. (8) is given as
T )= W V (hyas28)0 (/2805 5> 3

where W= (w./By), V= (v./B,) and U= (u,/B,) are the non-dimensional deformation amplitudes of
the shell middle surface in radial, tangential and axial directions respectively.

Different parameters and material constants occuring in above equations are as followings :
G GxG GzG 1

_ E, _
h=h/R, Ny=—, —_, = , N=———, u=/G:.
yh E. = E. = E > T E, (1=voove) M=/

P =ph’R/Gr.=h LEY P, p=pu/p, 04y =(1+h/2)y, 0(1+h/2)6

i and p,, are the shear modulus and density of the medium, respectively amd p is the density of
the shell material

&= S R’ H and & ——R are the non-dimensionalized stiffness coefficients of the
bond in radial, tangennal and axial direction respectively. I'; = 2 , Tp= K and I,= K’
Z.c, Zg Z.c,

are the non-dimensionalized damping coeffcients of the bond in radial, tangential and axial direc-
tion respectively.
3. Results and discussion

Results have been presented here for a transversely isotropic shell with 7-0 as the plane of iso-
tropy. This makes

E
Eo=E,, G,=G,4, Vig=V,9, Vo=V, and G,p= —% _ and consequently 7,=1; and
2(1+vy,)
Na= G = ——T—h—— Further, v,, = v,, = v,, has been taken as 0.3.
E.  2l+vg)

Effects of imperfect bond between the shell and the surrounding soil has been shown by fur-
nishing the response (U, V & W) plots against the wavelength parameter B, taking the stiffness
(& &o &) and the damping coefficients (I, I, I,) of the bond as parameters. The bond
parameters have been varied between zero and infinity. (,=({,=(,=T,=T,=I,=0 cor-
responds to a perfect bonding between the shell and surrounding soil. Therefore, while dep-
icting the effect of one particular bond parameter, others are kept constant at zero value. Ef-
fects of soil condition and the angle of wave incidence have also been discussed by varying
parameters i and ¢, respectively. U has been taken as 0.01, 0.10 and 1.0. The value of u=0.01
represents a soft and sandy ground conditions whereas g =1.0 or more represents a hard and
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rocky surrounding. For g£=0.01, v,, has been taken to be 0.45 and for higher value of u, v, =0.
25 has been used.

The angle of wave incidence have been selected as 5°, 60° and 80°. ¢=5° represents nearly an
grazing angle of incidence, whereas 60° represents a general striking angle of incidence wave.
Since, a detailed discussion on the effects of variation of orthotropy parameters (7, and 73,) has
already been reported by Upadhyay and Mishra (1988), therefore, their effects have not been
shown in this study and hence 77,=0.1 and 7,=0.5 has been kept constant throughout the dis-
cussion. Other values taken constant are :
h=0.05 and p=0.75 N

Fig. 1 shows the relative contributions of different modes on the axial displacement, U, with
axial bond stiffness §, as parameter, for £=0.1 and ¢=60°. It is observed that the magnitude
of axisymmetric mode response can go even higher than that of the non-axisymmetric response
when shell is perfectly bonded to the surrounding medium. The difference in response of two
modes is visual for any range of wavelength, however, it is more prominant when B ap-
proaches 0.5. Under imperfect bond condition ({,=10%) axial displacement (U) in non-ax-
isymmetric mode is found to be almost comparable to axisymmetric mode response at smaller
value of B, but at shorter wavelength (8> 0.5) the non-axisymmetric mode shows a higher
value of U. It is observed that the magnitude of axial displacement is always higer when there
is perfect bond between shell and the soil. In n=2 mode, bond imperfection does not appear to
have any appreciable effect because the contribution of this mode itself is very impressive.
Same pattern of results were observed when the contribution of different modes on the radial
displacement, W, and the tangential displacement (n>0 only), V, was plotted taking { and ,
as parameters, respectively. As Upadhyay and Mishra (1988), Upadhyay and Mishra (1988),
has concluded in their papers, it is realized that the flexural mode response cannot be ignored
whether there be a perfect bond or imperfect bond between the pipe and the surrounding soil
(medium).

Since the comparison of axisymmetric and flexural mode for a perfectly bonded case by
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Fig. 1 Wavelength parameter (B) versus Axial displacement (U) for n=0.1, $=60° with {, and n as
parameters.
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Upadhyay and Mishra (1988), and the effects of imperfect bond in case of axisymmetric mode
have already been reported by Dwivedi and Upadhyay (1989), only the flexural mode (n=1)
response for imperfectly bonded shell is being presented here in rest of the plots.

Figs. 2-5 show the effect of variation of axial stiffness parameter ({,) of the bond on the axial
displacement (U) of the shell under different soil conditions and wave incidence angles. It is
seen that beyond £ =10’ changes in {, no longer change U values. Therefore, for all practical
purposes, a value of {, greater than 10° can be considered as equivalent to §, = 0.

Figs. 2 and 3 show the variation of U against 3 under a soft soil condition (i =0.01) for ¢=
5° & 60°, respectively. At grazing angle of incidence (Fig. 2), U is seen to be increaseing as {,
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B
Fig. 2 Wavelength parameter (8) versus Axial displacement (U) for u=0.01, $=5" and n=1 with {,
as parameter.
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Fig. 3. Wavelength parameter () versus Axial displacement (_l]') for IL=0.01, ¢=60" and n=1 with
. as parameter.
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is increased (bond becomes loose). But at an increased angle of incidence (at ¢=60") in Fig. 3,
a different trend is observed. Here axial displacement (U) first decreases with increase in {, up
to 10", But as {, is increased further, U goes much higher than the one for perfectly bonded
shell (£,=0). At {,=10 or 10° the value of U becomes nearly double the value for perfectly
bonded case. At higher angles of incidence (¢ =80°) and with same soil condition, the trend was
similar to that observed for ¢=60°.

In Fig. 4, U vs. B plots are given for ¢=5" and u=0.1. A comparison between Figs. 2
and 4 shows the effect of increasing the soil rigidity when ¢ is 5°. As soil rigidity is in-
creased from 0.01 to 0.1, for same angle of incidence (¢=5°), a reversed trend is observed

12 v T T T T T T T

=01, g=5°
n=1

L

Fig. 4 Wavelength parameter () versus Axial displacement (L7) for u=0.1, ¢=5° and n=1 with ¢
as parameter.
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Fig. 5 Wavelength parameter (8) versus Axial displacement (U) for u=1.0, ¢=80" and n=1 with {,
as parameter.
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in Fig. 4. It is observed that with an imperfect bond condition U is now smaller than it is for
a perfect bond condition. Thus Figs. 2 and 4 clearly bring out the effect of soil rigidity for
imperfectly bonded pipes. Although not shown but similar pattern is observed at higher an-
gle of incidence(¢ = 80°). _

When y and ¢ both are increased to £=0.1 and ¢=80°, U vs. § plots are shown in Fig. 5.
The location and the intensity of peaks are seen to be dependent on the value of (. Figure
shows that in moderately hard soil (u=0.1) with angle of incidence ¢ =80, peaks are observed
in U plot. It is seen that locations of the peaks shift towards lower 8 and the intensity of the
peaks decreases with increase in bond imperfection ({). The effect of variation in the axial bond

100 T T T T T T T -y

V x10?

Fig. 6 Wavelength parameter () versus Tangential displacement (V) for u=0.01, ¢=5° and n=1
with {, as parameter.

vV x10

Fig. 7 Wavelength parameter () versus Tangential displacement (V) for £=0.1, $=5° and n=1 with
{, as parameter.
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stiffness (£, ) on the tangential and radial displacements (V& W) was not found to be any sig-
nificance.

In Figs. 6 and 7 are shown the effects of the tangential stiffness coefficient of the bond
(¢p) on the tangential displacement V of the shell. In soft and sandy soil (#=0.1) for ¢=5°
V increased as {, is increased, as shown in Fig. 6. However, this trend is prominent only
when > 0.65, otherwise displacement closely follows each other in the range of § from 0.2
to 0.65. As soil is made little harder (£=0.1) and ¢ remains unchanged, an reverse trend is
oberved. It is observed from Fig. 7 that V goes on decreasing as the perfect bond condition
is relaxed and {, is increased. When y is increased to 1.0 and ¢ is raised to 80°, the nature
of variation of V is shown in Fig. 8. V increases as {, is increased and attains a sharp peak

40 L —
=10, ¢ -80°
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30 Gg=1 N
> 20~ -
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o . ! I n T : +
%0 02 04 06 08 10
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Fig. 8 Wavelength parameter () versus Tangential displacement (V) for u=1.0, $=80° and n=1
with {, as parameter.
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Fig. 9 Wavelength parameter (B) versus Radial displacement (W) for =001, ¢=5°" and n=1 with ¢,
as parameter.
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at {,=1. With increasing ,, these peaks appear to be shifting to the left, as was the case
with axial displacement in Fig. 5.

In Fig. 9 is shown the effect of variation of the radial stiffness coefficient () of the bond on
the radial displacement (W). Figure shows that for £=0.1 and at grazing angle of inidence (¢ =
5°) W increaes as (, is decreased, as 8 approaches 1. However, in a particular range of
wavelength (0.2 < f<0.65) this trend has reversed although difference in W is not so prominent.
As u is increased to 0.1 and ¢ to 60° (i.e., Fig. 10) radial displacement increases with increase
in bond parameter {. The difference in W with increasing value of { appears to be large as 8
approach unity. Plot in Fig. 11 for g=0.1 and ¢ =_80° describes the same nature of variation of
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Fig. 10 Wavelength parameter () versus Radial displacement (V_V) for IL=O.1, ¢=60°" and n=1 with
{, as parameter.
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Fig. 11 Wavelength parameter () versus Radial displacement (Ww’) for £=0.1, $=80° and n=1 with
{, as parameter.
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e —

30

Fig. 12 Wavelength parameter () versus Axial displacement (17) for u=0.01, ¢=5° and n=1 with
I', as parameters.

W as discussed for V in Fig. 8. The effect of the axial damping parameter, I',, on U is shown in
Fig. 12. The changes in U due to variation of I}, is identical to that shown for the variation of {,,
in Fig. 1. It has also been observed that the bond stiffness of a particular direction affects the
displacement component of that direction only. That is, {, {s and {, affect only the axial, tangen-
tial and the radial components of the displacemtnt, respectively.

4. Conclusions

On the basis of the results presented, the following conclusions can be drawn :

1) Unlike the behaviour observed in axisymmetric mode by Dwivedi and Upadhyay (1989), a
loose contact between the shell and the surrounding soil does not always give lower shell dis-
placements as compared to the same for a perfectly bonded shell. Therefore, assumption of a per-
fect bond may not always lead to a safe and conservative estimate of the shell displacements
and, hence, consideration of the bond imperfection in non-axisymmetric mode response is neces-
sary.

2) Effects of bond parameters depend upon the soil condition, incidence angle and the
wavelength of the incident wave. In hard surrounding soil and at higher angle of wave incidence
bond imperfection has very strong influence on the shell response.

3) Non-axisymmetric response of imperfectly bonded shell is of considerable importanc. Ef-
fect of bond imperfection on the axial deformation is of great significance for the axisymmetric
as well as the flexural mode (rn=1). It is observed that the axial deformation of perfectly bond-
ed shell in axisymmetric mode is much more than the same in non-axisymmetric mode; howev-
er, they become comparable when an imperfect bond is considered.

4) Bond imperfection taken in a particular direction affects the shell deformation mainly in
that direction. It gives very little effect on the deformations in other directions.
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Notations

c apparent wave speed along the axis of the shell
) speed of dilational wave in the medium

C, speed of shear wave in the medium

E,E., FE, Young's moduli of the shell
G, G, G, shear moduli of the shell
non-dimensional thickness of the shell
mean radius of the shell
stiffness coefficients of the bond in the radial, axial and tangential directions,
respectively
displacement of the shell middle surface in axial direction
displacement amplitude of the shell middle surface in axial direction
. Ug components of displacement vector u
displacement of the shell middle surface in the tangential direction
displacement amplitude of the shell middle surface in the tangential direction
displacement of the shell middle surface in the radial direction
displacement amplitude of the shell middle surface in the radial direction
Z.,Z, damping coefficients of the bond in the bond in the radial, axial and tangential
direction, respectively
non-dimentional wavenumber of incident wave
P D DS non-dimentional damping coefficient of the bond in the radial, axial and tangential
directions, respectively
[ non-dimentional stiffness coefficient of the bond in the radial, axial and tangential
directions, respectively
™, 1, N, N, non-dimensional orthropy parameters of the shell

NIz <R E= LR~
- ° - -
RS >:E/:
%]
53

~ ™
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A wavelength of the incident wave

A Lame's constant

u Lame's constant

n non-dimensional modulus of rigidity of the medium
Vi poissons ratio of the medium

Vaos Varr Vers } poissons ratio of the shell

Vios Voos Ve

é apparent wavenumber

p density of the shell material

P density of the medium

p non-dimensional density of the medium

o components of stress tensor

(1) angle of wave incidence

/8 angle of rotation, in r-x plane, of a line initially normal to midsurface of the shell
Yo amplitude of y,

Vo angle of rotation, in r-0 plane, of a line initially normal to midsurface of the shell
/% amplitude of y4

Subscripts

m medium

r radial direction

x axial direction

z normal to middle surface of the shell

0 tangential direction

Superscripts

i incident field

s scattered field





