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Analysis and design of inclined piles used to
prevent downhill creep of unsaturated clay
formations
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Abstract. This paper present an analysis which may be used to obtain a rational design of a system of
inclined piles used in preventing downhill creep of unsaturated clay formations. It uses two simple and re-
latively easy to measure parameters (an estimate of the maximum downhill creep together with a
knowledge of the depth of the so called active zone) to calculate the required section size and the optimal
spacing (pitch) of the piles for a desired efficiency of the system as a whole. Design charts are provided
to facilitate the process.
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1. Introduction

This paper is an extension to an earlier work by the first author and his colleagues in Brazil
(Poorooshasb, et al. 1988) who proposed an elementary method of analysis of inclined bamboo
dowels to prevent the downhill creep of slopes consisting of unsaturated clays. Quite apart from
the fact that the cited paper contained a mistake in logic, it suffered from two other constraints.
It required a knowledge of the modulus of lateral reaction (a parameter very difficult to estimate)
and it would not provide any information regarding the spacing of the piles (the pitch) in the
system. Both these difficulties are overcome in the present paper by using a new analytical ap-
proach (called the ID technique since the procedure involves the evaluation of an Intergro-Dif-
ferential equation) which was recently introduced (Poorooshasb, et al. 1996a, b) and applied to
the examination of the performance of a system of vertical piles. The results of the analysis are
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summarized in a number of design charts which may be employed directly.

This paper is written in the following sequence. First a brief literature review is presented.
This is followed by a discussion of the nature of the creep under study. Next an outline of the
ID technique pertaining to the present situation is provided together with the numerical scheme
employed. Next the influence of various factors involved in the study (the angle of slope of the
hill, the depth of the active zone, size and properties of the piles used and the spacing of the
piles) on the overall performance of the system is examined. Finally the paper is concluded with
three design charts for timber piles, concrete piles and H section steel piles.

2. Literature review

Stabilization of slopes using stiff piles, dowels or drilled shafts has been in usage in geo-
technical engineering practice for some time. The reinforcement members are often driven or in-
serted vertically into the ground so as to intersect the potential failure surfaces and transfer the
force from sliding mass on the stronger underlying strata. Most of the approaches presently
available for the design of the stabilized slopes, are based on the limit equilibrium method.

Wang and Yen (1974) provide a solution for estimating the average soil pressure due to pres-
ence of piles in a slope and obtain an expression for the critical spacing of piles above which
there is no arching. Ito and Matsul (1975) use the analogy of the extrusion of metals through
dies and rollers, to estimate the pressure exerted on piles as the soil is squeezed through the
space in between. The bending moment developed in the piles can be calculated according to
Fukuoka (1975). Viggiani (1981) proposed mechanism for the yielding of the piles by the de-
formation of one or two plastic hinges. Guidelines for the analysis of drilled shafts for sta-
bilizing slopes have been proposed by Reese, et al. (1992) while Pearlman, et al. (1992) des-
cribes the analysis of vertical and near vertical “pin piles . All these approaches deal with in-
creasing the stability of the slope in terms of a factor of safety and designing the piles or drilled
shafts to provide the required stabilizing force. Gudehus and Schwarz (1981) consider reduction
of the creep rate of cohesive slopes consequent to the installation of vertical dowels. For cal-
culating the reduction creep rate the soil is treated as viscous fluid while the dowel is analyzed
as a flexible beam unrestrained at the top.

An alternative approach is soil nailing. The soil nail, typically a steel bar, is installed at vari-
ous inclinations, the most preferred direction being the one orthogonal to the potential failure
surface, The nail is duly bonded to the soil and improves the stability of the ground in the form
of tensile reinforcement. The nails together with the in situ soil form a coherent structural mass
that arrests the movement of an unstable slope. Gassler (1990) presents a detailed state of the art
report for the design of soil nailing.

3. Cause and magnitude of the creep movement

Fig. 1 shows a portion of a slope of “infinite extent” with an active zone of depth z, Within
the active zone the moisture content of the soil undergoes seasonal changes increasing its mois-
ture content during the rainy season. At elevations below the active zone the water content of
the soil remains unchanged. The variation of the moisture content within the active zone is as-
sociated with a softening of the material; that is, a marked reduction in the soil suction and con-



Analysis and design of inclined piles 247

moisture content curve
end of dry season

- slope angle = o

N =~
&\‘

moisture content curve
end of rainy season

Fig. 1 Seasonal variation of moisture content with depth below surface of the slope.

sequently its shear modulus. Let the shear modulus and the unit weight of the soil at the end of
the dry period be dented by G, and 7, respectively. Similarly let G,, and 7, be the corresponding
values at the end of the rainy season. It is easy to deduce that since G,>G, and y,<7, then
downhill movement of magnitude u, takes place such that:

dus _ Yzsina  YzsinQ
dz G. G,

1)

where z is measured from the surface as shown in Fig. 1. Near the surface the soil is fully sa-
turated and furthermore since there are no overburden pressure the shear modulus of the soil ap-
proaches a negligible value. At depth z, the shear modulus is at its constant value of G,. Thus it
is logical to assume a variation of G, with depth in the form;

G, =7z, 2
where A, a constant, is given by the relation:

G,
A== &)

It is difficult to estimate the value of A (or G,) which is required in the analysis. However its
magnitude can be estimated from a knowledge of the total downhill creep. When G,,, as defined
in Egs. (2) and (3), is substituted in Eq. (1) and the results integrated the profile of the creep is
obtained in the form;

(z —z,) sincx

1
Us :T {szo—a Yz +Zo)] “)

At z=0 (i.e., on the surface) u=0, where & is the maximum creep of the soil layer. Thus from
the last equation the value of A is obtained as;

_ zgSina 1
A= 5 [Yw 5 n} &)

All quantities involved in Eq. (5) are now easily determined. Thus the evaluation of A (and
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hence G,) is accomplished. Actually in the numerical application the expression used is G,=
.00001 + Az to prevent the division by zero error message.

4. Outline of the analytical procedure

Fig. 2 shows the right handed coordinate system used in this study. The origin of the coor-
dinate system is taken at the center of a pile with the z axis along its center line. The x and y
axes are assumed to pass through the center of the cross section of the adjacent piles. In this
paper the pattern of installation is assumed to be square (i.e., the spacing downhill is assumed to
be equal to the spacing across the hill) although this is not by any means a restriction that need
be imposed in general. In view of the symmetry of the problem the solution region occupies
only one half of the volume contained within the four neighboring piles as shown in the Figure.

The pivotal point in the analysis presented here is the following assumption; for the type of
problem considered the magnitude of the downhill movement of the soil is so large in com-
parison with the other components of the movement that the other components may be assumed
to be negligibly small. Thus if the movement along the x, y, z axes are denoted by u, v and w
respectively then the fundamental assumption used in this paper states that;

u=u(x,y,z) (6)
v=w=0 (7)
With this assumption it is easy to show that the following relations hold true:
20+v)G du ou ou
O = —— — =G —; 06.=G — 8
T—v_2v? ox° TV G0 FETV Y ®

where, v is the Poisson ration of the soil (about 0.2 for most soils) and where the subscript w

has been left out of the symbol representing the shear modulus in the set of Egs. (8). Inserting

the last set in the incremental equation of equilibrium in the x direction, that is, the equation:
00. 00, 00

8x+8y+az:0
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Fig. 2 Key figure. (a) Isometric view of the system, (b) Coordinate system used and the assumed
displacement field, (c) Plan view of the solution region projected on to a plane parallel to the slope.
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and integrating between the limits 0 to z yields the governing equation of the problem viz,;

2(1+v) du 92
T—v—2v2 ox2 | dy?

G(z)—+j G(é)[ ]d& 0 ©)

Eq. (9) can further be simplified by introducing a linear transformation X=0tx where:
o= / 1-v—2v’
2(1+v)
With this transformation Eq. (9) is reduced to the form:

G )—+j {G(§)Vu}d§=0 (10)

ax? 8y2
Eq. (9) the shear modulus is not a constant but a variable as defined by Eq. (2).

Before closing this section it must be emphasized that the formulation presented here is a
kinematically admissible solution in which the pertinent equation of the equilibrium is satisfied, i.
e. the solution is approximate although very close to the actual solution. Also note that the
governing equation must be solved with the appropriate boundary conditions which are as follow.

The boundary conditions at y=0 and y=.5%s. Let the spacing between the piles be denoted by
s. In view of the symmetry of the problem it is obvious that at these boundaries;

Ju
dy
for all x and all z. That is on these boundaries the conditions;
Ju(x,0,z) ou(x,s/2,2) ~0
dy dy
The boundary condition at x=s. This boundary represents a horizontal line passing through

the tip of the piles. Again noting the symmetry it is obvious that the following condition must
hold;

where the symbol V? represent the two dimensional Laplace Operator . Note that in

=0

u(s,y,z)=u(0,y,z)

The boundary condition along the pile soil interface. The forces imposed on the pile cause a
bending of the pile which causes a deflection of magnitude u,;,. These deflections must be equal
to the displacement experienced by the soil u. Thus on this boundary the condition;

e 0, r,2)=u(0,r,z)

where r represents the pile radius must be satisfied.

5. The numerical scheme employed

Since the governing equation is expressed in terms of u(x, y, z), the soil displacement field, it
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n=k
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Fig. 3 The three dimensional nodal scheme used in this study.

is natural that a solution in terms of this quantity is to be sought. Thus the solution region is
covered by a number of “nodal points” at which points the values of u are to be determined.
Fig. 3 shows the solution region using transformed coordinates (X, y) and the proposed nodal
points. To distinguish the nodes from one another each node is assigned a set of integers (i, j, k)
where i=1, 2, ---, imax, j=1, 2, ---, jmax and k=1, 2, ---, kmax; imax, jmax and kmax being the
maximum number in each category.

To break down the governing equation into a form suitable for numerical evaluations several
steps had to be taken. First it was necessary to transfer from the (i, j, k) system to a single
number to represent each node (i.e., to get the nodal number). This operation is required since
the final set of equations to be solved consist of nmax (=imax * jmax % kmax) set of linear
equations to be solved for nmax set of u values; u(1), u(2) --u(nmax). To achieve this transfor-
mation (from the i, j, k system to the node number, nn, system) the following equation was used.

nn =(k —1)Xijmax+( —{)X jmax+j;
ijmax =imax X j max (11)

Next the governing Eq. (1) was broken to its finite difference form and expressed as;

n=k
Au+y BE, z)Vu =0;
n=1
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_ (G4’
B, z)= {_(G_(ZVTTT} (12)

where the operator V, is to operate at each level above the current point situated at level k, Az
is the interval along the z axis and AT=AX=Ay. The procedure of this operation is indicated at
the bottom of Fig. 3.

To clarify the procedure let imax=6, jmax=5 and kmax=7 say. Then there are a total of 6 X 5X
7=210 equation to be solved for the 210 unknown nodal displacements. Furthermore let Az=.8
and AT=1 meters say. Now consider the node at i=3, j=4 and k=4 say. For this deck z=3X Az=
2.4. According to the Eq. (11), this particular node will form equation number nn=(4—1)x 12+
(3— 1) X 5+4=36+10+4=50.

Next consider the second deck (i.e., k'=2). For this deck £=1X Az=.8. Thus the value of f3 is;

G(8) .8x8 _ ., G(8)
G24) 1x1 ~ G4)

and the node on deck 2 above the nodal being considered is (2 1)X 124+(3 — 1) X 5+4=26. Thus
the contribution form the nodes on deck 2 equation number 50 of the final set is;

a (50, 26)u (26)=—4x B(.8, 2.4)u (26)
a (50, 25)u (25)=P(8, 2.4)u (25)
a(50,31)u(31)=5(8, 2.4)u (31)
a(50,27)u(27)=P(.8, 2.4)u(27)
a (50, 21)u (21)=B(8, 2.4)u(21)

since nodes 25, 31 (=25+jmax), 27, 21 (=26 - jmax) are the four nodes in the immediate vi-
cinity (west, north, east and south) of node 26.

Although the procedure appears to be cumbersome, in practice it proved to be quite easy re-
quiring a very simple subroutine.

B(8,2.4)=

6. Evaluations: general comments and results

In what follows three types of piles will be considered. The first type consists of timber piles
of circular cross section having a Young's modulus of 1.25x 10’ kPa. The second type ex-
amined are concrete piles, again of circular cross section, having a Young's modulus of 2.94 X
10" kPa. The third type consist of Japanese steel H section with the specifications shown in
Table | below.

Some general observations and discussions are presented first. Fig. 4 shows the behavior of a
group of timber piles of various diameters and installed at several pile spacings. The depth of

Table 1 Specifications Japanese steel H piles
HxB (mm) Area (cm’) Weight (kg/m) I, (cm®)

100x 100 21.9 17.2 383
200x 200 63.53 49.9 4720
300 x 300 119.8 94.0 20400
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Fig. 4 Variation of efficiency with pile diameter and nd.

the active zone in all cases shown in the figure were taken equal to 2 meters. Note that here, and
in the subsequent figures, spacing is expressed by nd, where nd stands for “multiple of di-
ameters . Thus the actual spacing for a group of piles each 12 cm in diameter with a value of nd=
4 is 48 cm. Also note that the efficiency of a system, 7, expressed as a percentage is defined as

(%) = i—‘;&“ x 100
where & is the creep of the untreated slope and &, is the maximum creep of the slope with the
piles installed. When no piles are present 6=3,,,, and the efficiency is zero as expected.

From this figure it is obvious that for any given nd value the efficiency of the system in-
creases with the pile diameter until it reaches an optimum value (corresponding to a pile di-
ameter of about 200 mm) after which it drops again. The reason for this observation is simple.
The value of 3, the maximum creep of the slope with the piles installed, is composed of two
components. The first is due to the yielding (bending) of the piles under the exerted earth pres-
sure and the second component is caused by a movement of the soil relative to the bent piles.
When the piles are “very stiff 8., is composed almost exclusively of the second component.
For “flexible piles’ the reverse is true i.e., the major component contributing to 8, is the
movement caused by the deformation of the piles. To demonstrate this point reference may be
made to Figs. 5 and 6 which show the pattern of creep as observed on the surface of the slope
and a cross section through a row of columns.

In both figures the material of the pile is wood, they both have the same diameter of 30 cm
and are at the same spacing nd=5. In both cases the slope angle is assumed to be 20 degrees.
What differentiates between the two cases is that in the first instant (shown in Fig. 5) the depth
of the active zone is assumed to be one meter while in the second case (shown in Fig. 6) this
depth is taken to be equal to 3 meters. In the first case the pile behaves as a rigid member as
may be seen in lower part the figure and the maximum flow of the system is solely due to the
creep of the surficial soils passed the piles.

The piles shown in Fig. 6, although of the same type as in the previous case are acting as
flexible members (see Fig. 6b) since here the active zone is quite deep. In spite of this, the max-
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original position  Position after creep

Fig. 5 Flow pattern on the slope surface (a) and mode of pile deformation (b). Active zone=1 m.
Scale d on LHS=2 cm creep.

Fig. 6 Flow pattern on the slope surface (a) and mode of pile deformation (b). Active zone=3 m.
Scale d on LHS=2 cm creep.
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Fig. 7 Efficiency vs. spacing for various slope angles.

imum flow of the system is smaller giving rise to a higher efficiency; 59% as compared to 37%
in the previous case. These two figures demonstrate clearly that the efficiency of the system is
very dependent on the active zone depth.

In contrast the angle of the slope does not appear to effect the results two much. This is evi-
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ACTIVE ZONE=1m ACTIVE ZONE =1.5m

= a3
90 m
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80—

nd=5

&

50 |
o 100 200 300
pile diameter (mm) pile diameter (mm)
ACTIVE ZONE =2 m ACTIVEZONE =3m
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90 - 90~
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80— 80

nd=5

70 70

60 60

50

100 200 300 100 200 300
pile diameter (mm) pile diameter (mm)

DESIGN CHARTS FOR TIMBER PILES

Fig. 8 Performance of timber piles installed at a slope of 20 degrees.
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dent from Figs. 7a and 7b. Once again wood piles are used in the example and the angle of the
slope is varied between 20 to 45 degrees. Note that the high value is for the sake of de-
monstration only: “infinite slopes” of 45 degrees in clays are very rare!

7. Evaluations: design charts

The results of the above analysis are presented in a set of three design charts which are shown
in Figs. 8, 9 and 10 respectively. In all the three cases the slope is assumed to have an angle of
20 degrees and the depth of the active zone to vary between 1 meter to 3 meters as stated in the
charts. Note that the efficiency values below 50% are considered low and are not indicated in the
charts. The use of these charts is demonstrated by means of the following example.

7.1. Example
It is known that the depth of the active zone in a slope of 22 degrees is 2.2 meters and that

the magnitude of the yearly creep is about 3 cm. Calculate the maximum creep of the system as-
suming concrete piles 25 cm in diameter are installed at 150 cm center to center.

100 100

ACTIVEZONE=1m ACTIVEZONE =1.5m

pile diameter (mm)

10 ACTIVE ZONE=3m __ nd=3

90

nd=4

ACTIVEZONE=2m
50 .

100 200 300 100 200 300
pile diameter (mm) pile diameter (mm)

DESIGN CHARTS FOR CONCRETE PILES

Fig. 9 Performance of concrete piles installed at a slope of 20 degrees.
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7.2. Solution

In this case use the chart of Fig. 9 for active zone depth 2=m. The value of nd is obviously
150/25=6. From the chart read the corresponding efficiency of 67%. Thus; 8,,,=6(1—.01n)=
3(1-0.67)=.99. Thus the maximum creep of the piled slope is estimated to be of the order of
one centimeter. It is worth noting had these piles been installed in the same pattern (spacing)
and in a similar slope with an active zone depth of one meter then they would have been totally
ineffective in reducing the maximum value of creep.

8. Concluding remarks

This paper merits attention for two reasons; (i) it uses a very simple method (the ID technique)
in the analysis and (ii) the parameters needed for the analysis (the yearly maximum surface
creep and the depth of active zone) can be measured with relative ease or they can be estimated
based on the past experience. It is very unfortunate that although the technique of prevention of
downhill creep using piles has been used in many locations no field results, to the knowledge of
the authors, have been placed at the public domain. Thus a comparison of the results contained

100 100
ACTIVEZONE=1m
q
90
R R
s £ 80
oy oy
8 5
8 8
: 5
ACTIVE ZONE
60— B =1.5m )]
LI
100 200 300
section size B=H (mm)
100 100
nd=3
90 nd=
8 ®
£ g0 =
= >
2 g
2 70 2
5T §
ACTIVE ZONE=2m b ACTIVE ZONE=3m
I ©r- B
H H
50| Il 1 50 II ]
100 300 100 200 300
section size B=H (mm) section size B=H (mm)

DESIGN CHARTS FOR HSECTION STEEL PILES
Fig. 10 Performance of H section steel piles installed at a slope of 20 degrees.
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in the paper with actual field records is not possible at this stage. It is also important to realize
that the analysis is applicable to formations which undergo successive drying and wetting i.e., lo-
cations where the surficial -soils are unsaturated for a good period of the year.

Next, a comment about the physical properties (constitutive constants) describing material
behavior as used in the analysis. The use of symbol G, and G, Egs. (1) to (3) to describe the
shear stress-strain characteristic of the soil does not mean that the soil is treated as an elastic ma-
terial. Only that the soil within the range of strains encountered (of the order of 1%) behaves
linearly which is a good approximation. Elasticity implies reversibility and of course no such
claim is made. Furthermore for an elastic solution the shear modulus is kept constant throughout.
In the analysis presented here it is linearly varying from a small value near the surface to its
maximum value at the depth corresponding to the depth of the active zone. In this respect and
within the active zone the material is assumed to behave as a Gibson Foundation, a concept
widely used in geotechnical analysis.
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